metal-organic compounds
Poly[tetraaquabis(μ3-oxalato-κ5O1,O2:O1′:O1′,O2′)(μ2-oxalato-κ4O1,O2:O1′,O2′)dipraseodymium(III)]
aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: haochengjun2008@163.com
In the title complex, [Pr2(C2O4)3(H2O)4]n, the two independent PrIII ions are both nine-coordinated in a distorted monocapped square-antiprismatic geometry by seven O atoms from four oxalate ligands and two water molecules. The PrIII ions are bridged by the oxalate ligands, forming a layer parallel to (001). O—H⋯O hydrogen bonds connect the layers.
Related literature
For the structures and potential applications of lanthanide complexes, see: Ma et al. (2001); Shibasaki & Yoshikawa (2002); Song et al. (2012).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2002); cell CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812011014/hy2521sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812011014/hy2521Isup2.hkl
A mixture of Pr(NO3)3.6H2O (0.5 mmol, 0.217 g) and oxalic acid (1 mmol, 0.09 g) in 10 ml of H2O was sealed in an autoclave equipped with a Teflon liner (30 ml) and then heated to 453 K for 4 days. After gradual cooling to room temperature, crystals were obtained and collected by filtration with a yield of 31% based on Pr.
H atoms of water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O). The highest residual electron density was found at 0.82 Å from Pr1 atom and the deepest hole at 0.80 Å from Pr2 atom.
During the past decade, considerable efforts have been devoted to the design and construction of new lanthanide coordination polymers due to their intriguing structural diversity and potential applications in many areas (Ma et al., 2001; Shibasaki & Yoshikawa, 2002; Song et al., 2012). Oxalate owning four carboxylate O atoms is highly accessible to lanthanide ions to form novel structures.
As shown in Fig. 1, in the
of the title complex, there are two independent PrIII ions with a similar coordination environment. Each PrIII ion is nine-coordinated by seven O atoms from four oxalate ligands and two O atoms from two terminal water molecules. The Pr1 and Pr2 atoms are bridged by two carboxylate O atoms, forming a Pr2O2 subunit with a Pr···Pr distance of 4.2893 (7) Å. Such subunits are connected by the oxalate ligands, generating a layer parallel to (0 0 1). It is noted that the oxalate ligands exhibit two kinds of coordination modes: one adopts a bisbidentate coordination mode bridging two PrIII ions; the other adopts a chelating and bridging coordination mode connecting three PrIII ions. The adjacent layers are further linked into a three-dimensional network via intermolecular O—H···O hydrogen bonds (Table 1).For the structures and potential applications of lanthanide complexes, see: Ma et al. (2001); Shibasaki & Yoshikawa (2002); Song et al. (2012).
Data collection: CrystalClear (Rigaku, 2002); cell
CrystalClear (Rigaku, 2002); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (i) x, y+1, z; (ii) -x+1, y-1/2, -z+1/2; (iii) x-1, y-1, z; (iv) -x, y+1/2, -z+1/2.] |
[Pr2(C2O4)3(H2O)4] | F(000) = 1160 |
Mr = 617.94 | Dx = 2.952 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3600 reflections |
a = 8.6358 (17) Å | θ = 1.4–28.0° |
b = 9.5356 (19) Å | µ = 7.02 mm−1 |
c = 16.885 (3) Å | T = 293 K |
V = 1390.4 (5) Å3 | Block, green |
Z = 4 | 0.23 × 0.22 × 0.20 mm |
Rigaku Mercury CCD diffractometer | 3181 independent reflections |
Radiation source: fine-focus sealed tube | 2826 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω scans | θmax = 27.4°, θmin = 3.2° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | h = −9→11 |
Tmin = 0.295, Tmax = 0.334 | k = −12→12 |
13654 measured reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0284P)2 + 3.201P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3181 reflections | Δρmax = 1.34 e Å−3 |
217 parameters | Δρmin = −1.44 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1344 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.49 (3) |
[Pr2(C2O4)3(H2O)4] | V = 1390.4 (5) Å3 |
Mr = 617.94 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.6358 (17) Å | µ = 7.02 mm−1 |
b = 9.5356 (19) Å | T = 293 K |
c = 16.885 (3) Å | 0.23 × 0.22 × 0.20 mm |
Rigaku Mercury CCD diffractometer | 3181 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | 2826 reflections with I > 2σ(I) |
Tmin = 0.295, Tmax = 0.334 | Rint = 0.047 |
13654 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.072 | Δρmax = 1.34 e Å−3 |
S = 1.04 | Δρmin = −1.44 e Å−3 |
3181 reflections | Absolute structure: Flack (1983), 1344 Friedel pairs |
217 parameters | Absolute structure parameter: 0.49 (3) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pr1 | 0.37510 (4) | 0.75389 (2) | 0.143154 (14) | 0.01214 (9) | |
Pr2 | −0.12589 (4) | 0.26126 (3) | 0.137142 (14) | 0.01185 (8) | |
O1 | 0.3263 (5) | 0.4984 (4) | 0.1336 (3) | 0.0245 (10) | |
O2 | 0.1023 (5) | 0.6852 (4) | 0.1081 (2) | 0.0220 (9) | |
O3 | 0.1479 (5) | 0.3304 (5) | 0.1473 (3) | 0.0383 (12) | |
O4 | −0.0761 (5) | 0.5159 (5) | 0.1102 (3) | 0.0236 (10) | |
O5 | 0.5734 (5) | 0.8913 (4) | 0.0744 (2) | 0.0220 (9) | |
O6 | 0.4832 (5) | 0.9677 (5) | 0.2184 (2) | 0.0221 (9) | |
O7 | 0.6490 (5) | 1.1490 (4) | 0.2172 (2) | 0.0209 (9) | |
O8 | 0.7467 (5) | 1.0643 (5) | 0.0716 (3) | 0.0255 (10) | |
O9 | 0.0572 (5) | 0.0999 (5) | 0.0683 (2) | 0.0205 (9) | |
O10 | −0.0198 (5) | 0.0560 (4) | 0.2191 (2) | 0.0230 (9) | |
O11 | 0.1596 (4) | −0.1155 (4) | 0.2289 (2) | 0.0186 (9) | |
O12 | 0.2521 (5) | −0.0484 (4) | 0.0791 (2) | 0.0219 (9) | |
O1W | 0.4097 (7) | 0.6778 (5) | 0.0052 (2) | 0.0361 (14) | |
H1W | 0.4747 | 0.7253 | −0.0215 | 0.054* | |
H2W | 0.3561 | 0.6140 | −0.0168 | 0.054* | |
O2W | 0.6418 (6) | 0.6597 (5) | 0.1743 (3) | 0.0357 (11) | |
H3W | 0.7010 | 0.6599 | 0.1341 | 0.053* | |
H4W | 0.6369 | 0.5950 | 0.2088 | 0.053* | |
O3W | −0.1196 (7) | 0.3125 (5) | −0.0081 (2) | 0.0296 (10) | |
H5W | −0.1447 | 0.3960 | −0.0200 | 0.044* | |
H6W | −0.1567 | 0.2530 | −0.0404 | 0.044* | |
O4W | −0.3828 (6) | 0.3679 (5) | 0.0986 (2) | 0.0303 (10) | |
H7W | −0.4443 | 0.4093 | 0.1304 | 0.045* | |
H8W | −0.4120 | 0.3834 | 0.0513 | 0.045* | |
C1 | 0.1907 (7) | 0.4536 (6) | 0.1341 (4) | 0.0214 (13) | |
C2 | 0.0597 (7) | 0.5610 (6) | 0.1160 (3) | 0.0196 (12) | |
C3 | 0.6393 (7) | 0.9949 (6) | 0.1035 (3) | 0.0160 (12) | |
C4 | 0.5861 (6) | 1.0398 (6) | 0.1870 (3) | 0.0169 (12) | |
C5 | 0.1355 (7) | 0.0127 (5) | 0.1057 (3) | 0.0164 (11) | |
C6 | 0.0863 (6) | −0.0190 (6) | 0.1925 (3) | 0.0166 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pr1 | 0.01379 (15) | 0.00894 (14) | 0.01370 (14) | −0.00143 (13) | 0.00092 (11) | 0.00098 (9) |
Pr2 | 0.01324 (15) | 0.00861 (13) | 0.01371 (14) | −0.00137 (13) | 0.00076 (12) | −0.00112 (9) |
O1 | 0.025 (2) | 0.013 (2) | 0.035 (2) | −0.0023 (16) | −0.001 (2) | 0.0004 (18) |
O2 | 0.019 (2) | 0.019 (2) | 0.028 (2) | −0.0007 (18) | −0.0038 (19) | 0.0043 (16) |
O3 | 0.018 (2) | 0.0103 (19) | 0.086 (4) | −0.0033 (18) | −0.005 (2) | 0.009 (2) |
O4 | 0.022 (2) | 0.018 (2) | 0.031 (2) | −0.0029 (16) | −0.0023 (19) | 0.0017 (18) |
O5 | 0.030 (2) | 0.015 (2) | 0.020 (2) | −0.0103 (17) | 0.0063 (18) | −0.0088 (17) |
O6 | 0.025 (2) | 0.025 (2) | 0.0165 (18) | −0.0139 (18) | 0.0081 (18) | −0.0051 (18) |
O7 | 0.028 (2) | 0.0162 (19) | 0.0188 (18) | −0.0058 (17) | 0.0033 (19) | −0.0052 (15) |
O8 | 0.030 (2) | 0.022 (3) | 0.024 (2) | −0.0126 (19) | 0.010 (2) | −0.0098 (19) |
O9 | 0.025 (2) | 0.020 (2) | 0.0162 (19) | 0.0110 (18) | 0.0016 (18) | 0.0036 (17) |
O10 | 0.027 (2) | 0.024 (2) | 0.019 (2) | 0.0093 (18) | 0.0056 (19) | 0.0051 (19) |
O11 | 0.021 (2) | 0.019 (2) | 0.0155 (18) | 0.0023 (16) | −0.0005 (17) | 0.0045 (15) |
O12 | 0.027 (2) | 0.017 (2) | 0.022 (2) | 0.0088 (18) | 0.0093 (18) | 0.0092 (18) |
O1W | 0.056 (4) | 0.027 (3) | 0.025 (2) | −0.023 (2) | 0.016 (2) | −0.0094 (17) |
O2W | 0.030 (3) | 0.030 (3) | 0.046 (3) | 0.008 (2) | 0.003 (3) | 0.006 (2) |
O3W | 0.046 (3) | 0.020 (2) | 0.024 (2) | 0.007 (3) | 0.002 (2) | 0.0062 (15) |
O4W | 0.027 (2) | 0.038 (3) | 0.027 (2) | 0.008 (2) | −0.001 (2) | 0.0004 (17) |
C1 | 0.022 (3) | 0.013 (3) | 0.029 (3) | −0.003 (2) | 0.002 (3) | 0.000 (3) |
C2 | 0.027 (3) | 0.018 (3) | 0.014 (3) | −0.001 (2) | 0.000 (2) | −0.001 (2) |
C3 | 0.016 (3) | 0.015 (3) | 0.017 (3) | 0.002 (3) | 0.004 (3) | −0.0010 (18) |
C4 | 0.021 (3) | 0.014 (3) | 0.015 (3) | −0.001 (2) | −0.001 (2) | −0.002 (2) |
C5 | 0.022 (3) | 0.009 (3) | 0.018 (3) | 0.000 (3) | 0.000 (3) | 0.0023 (18) |
C6 | 0.020 (3) | 0.016 (3) | 0.014 (2) | −0.001 (2) | −0.002 (2) | 0.002 (2) |
Pr1—O12i | 2.419 (4) | O4—C2 | 1.253 (7) |
Pr1—O5 | 2.449 (4) | O5—C3 | 1.241 (6) |
Pr1—O1W | 2.458 (4) | O6—C4 | 1.242 (7) |
Pr1—O1 | 2.478 (4) | O7—C4 | 1.281 (7) |
Pr1—O2 | 2.516 (4) | O8—C3 | 1.261 (7) |
Pr1—O2W | 2.527 (5) | O9—C5 | 1.244 (7) |
Pr1—O7ii | 2.570 (4) | O10—C6 | 1.247 (7) |
Pr1—O6 | 2.578 (4) | O11—C6 | 1.275 (7) |
Pr1—O11i | 2.666 (4) | O12—C5 | 1.247 (7) |
Pr2—O8iii | 2.442 (4) | O1W—H1W | 0.8500 |
Pr2—O3 | 2.460 (4) | O1W—H2W | 0.8501 |
Pr2—O9 | 2.494 (4) | O2W—H3W | 0.8500 |
Pr2—O3W | 2.501 (4) | O2W—H4W | 0.8500 |
Pr2—O4 | 2.508 (4) | O3W—H5W | 0.8500 |
Pr2—O4W | 2.526 (5) | O3W—H6W | 0.8499 |
Pr2—O11iv | 2.565 (4) | O4W—H7W | 0.8511 |
Pr2—O10 | 2.566 (4) | O4W—H8W | 0.8513 |
Pr2—O7iii | 2.598 (4) | C1—C2 | 1.556 (9) |
O1—C1 | 1.247 (7) | C3—C4 | 1.544 (7) |
O2—C2 | 1.247 (7) | C5—C6 | 1.555 (8) |
O3—C1 | 1.252 (7) | ||
O12i—Pr1—O5 | 71.23 (15) | O9—Pr2—O10 | 63.55 (13) |
O12i—Pr1—O1W | 81.93 (16) | O3W—Pr2—O10 | 132.08 (14) |
O5—Pr1—O1W | 67.89 (15) | O4—Pr2—O10 | 140.82 (14) |
O12i—Pr1—O1 | 131.49 (15) | O4W—Pr2—O10 | 139.42 (14) |
O5—Pr1—O1 | 127.89 (14) | O11iv—Pr2—O10 | 85.07 (13) |
O1W—Pr1—O1 | 70.66 (15) | O8iii—Pr2—O7iii | 65.29 (13) |
O12i—Pr1—O2 | 71.72 (14) | O3—Pr2—O7iii | 142.48 (15) |
O5—Pr1—O2 | 133.05 (13) | O9—Pr2—O7iii | 117.55 (13) |
O1W—Pr1—O2 | 79.30 (16) | O3W—Pr2—O7iii | 127.34 (15) |
O1—Pr1—O2 | 64.51 (14) | O4—Pr2—O7iii | 128.43 (13) |
O12i—Pr1—O2W | 140.37 (15) | O4W—Pr2—O7iii | 69.05 (14) |
O5—Pr1—O2W | 69.61 (15) | O11iv—Pr2—O7iii | 69.21 (11) |
O1W—Pr1—O2W | 88.94 (17) | O10—Pr2—O7iii | 70.88 (13) |
O1—Pr1—O2W | 79.57 (15) | C1—O1—Pr1 | 119.7 (4) |
O2—Pr1—O2W | 144.08 (15) | C2—O2—Pr1 | 119.9 (4) |
O12i—Pr1—O7ii | 132.68 (13) | C1—O3—Pr2 | 121.5 (4) |
O5—Pr1—O7ii | 134.42 (14) | C2—O4—Pr2 | 118.6 (4) |
O1W—Pr1—O7ii | 139.87 (15) | C3—O5—Pr1 | 123.9 (4) |
O1—Pr1—O7ii | 70.32 (14) | C4—O6—Pr1 | 119.1 (3) |
O2—Pr1—O7ii | 92.21 (13) | C4—O7—Pr1v | 130.3 (3) |
O2W—Pr1—O7ii | 75.20 (14) | C4—O7—Pr2vi | 116.5 (3) |
O12i—Pr1—O6 | 76.29 (15) | Pr1v—O7—Pr2vi | 112.19 (14) |
O5—Pr1—O6 | 63.73 (12) | C3—O8—Pr2vi | 122.8 (3) |
O1W—Pr1—O6 | 131.05 (14) | C5—O9—Pr2 | 121.3 (4) |
O1—Pr1—O6 | 150.63 (14) | C6—O10—Pr2 | 120.4 (3) |
O2—Pr1—O6 | 131.37 (13) | C6—O11—Pr2vii | 134.4 (3) |
O2W—Pr1—O6 | 81.29 (14) | C6—O11—Pr1viii | 114.9 (3) |
O7ii—Pr1—O6 | 83.38 (13) | Pr2vii—O11—Pr1viii | 110.13 (14) |
O12i—Pr1—O11i | 64.69 (12) | C5—O12—Pr1viii | 123.9 (3) |
O5—Pr1—O11i | 119.72 (13) | Pr1—O1W—H1W | 115.2 |
O1W—Pr1—O11i | 137.50 (16) | Pr1—O1W—H2W | 124.0 |
O1—Pr1—O11i | 112.07 (13) | H1W—O1W—H2W | 120.6 |
O2—Pr1—O11i | 66.14 (12) | Pr1—O2W—H3W | 112.4 |
O2W—Pr1—O11i | 133.55 (12) | Pr1—O2W—H4W | 110.8 |
O7ii—Pr1—O11i | 68.09 (12) | H3W—O2W—H4W | 125.4 |
O6—Pr1—O11i | 67.40 (12) | Pr2—O3W—H5W | 114.3 |
O8iii—Pr2—O3 | 132.12 (15) | Pr2—O3W—H6W | 119.4 |
O8iii—Pr2—O9 | 66.40 (15) | H5W—O3W—H6W | 112.1 |
O3—Pr2—O9 | 65.72 (15) | Pr2—O4W—H7W | 124.9 |
O8iii—Pr2—O3W | 73.46 (15) | Pr2—O4W—H8W | 124.9 |
O3—Pr2—O3W | 89.72 (18) | H7W—O4W—H8W | 109.1 |
O9—Pr2—O3W | 69.50 (14) | O1—C1—O3 | 126.9 (6) |
O8iii—Pr2—O4 | 137.69 (15) | O1—C1—C2 | 117.2 (5) |
O3—Pr2—O4 | 65.69 (14) | O3—C1—C2 | 116.0 (5) |
O9—Pr2—O4 | 113.85 (14) | O2—C2—O4 | 126.4 (6) |
O3W—Pr2—O4 | 68.22 (15) | O2—C2—C1 | 115.6 (5) |
O8iii—Pr2—O4W | 78.30 (16) | O4—C2—C1 | 118.0 (5) |
O3—Pr2—O4W | 138.94 (15) | O5—C3—O8 | 125.9 (5) |
O9—Pr2—O4W | 133.26 (13) | O5—C3—C4 | 116.5 (5) |
O3W—Pr2—O4W | 71.82 (15) | O8—C3—C4 | 117.6 (5) |
O4—Pr2—O4W | 73.38 (14) | O6—C4—O7 | 125.7 (5) |
O8iii—Pr2—O11iv | 134.49 (13) | O6—C4—C3 | 116.7 (5) |
O3—Pr2—O11iv | 85.69 (15) | O7—C4—C3 | 117.6 (5) |
O9—Pr2—O11iv | 139.96 (13) | O9—C5—O12 | 124.6 (5) |
O3W—Pr2—O11iv | 141.03 (13) | O9—C5—C6 | 117.4 (5) |
O4—Pr2—O11iv | 74.70 (14) | O12—C5—C6 | 118.0 (5) |
O4W—Pr2—O11iv | 86.72 (13) | O10—C6—O11 | 127.2 (5) |
O8iii—Pr2—O10 | 79.57 (15) | O10—C6—C5 | 115.4 (5) |
O3—Pr2—O10 | 79.85 (14) | O11—C6—C5 | 117.3 (5) |
O12i—Pr1—O1—C1 | −43.6 (5) | O4W—Pr2—O9—C5 | −146.9 (4) |
O5—Pr1—O1—C1 | −141.8 (4) | O11iv—Pr2—O9—C5 | 29.4 (5) |
O1W—Pr1—O1—C1 | −103.0 (5) | O10—Pr2—O9—C5 | −12.7 (4) |
O2—Pr1—O1—C1 | −15.9 (4) | O7iii—Pr2—O9—C5 | −60.5 (5) |
O2W—Pr1—O1—C1 | 164.5 (5) | O8iii—Pr2—O10—C6 | 77.6 (4) |
O7ii—Pr1—O1—C1 | 86.6 (5) | O3—Pr2—O10—C6 | −58.9 (4) |
O6—Pr1—O1—C1 | 114.3 (5) | O9—Pr2—O10—C6 | 8.9 (4) |
O11i—Pr1—O1—C1 | 31.5 (5) | O3W—Pr2—O10—C6 | 21.4 (5) |
O12i—Pr1—O2—C2 | 171.5 (4) | O4—Pr2—O10—C6 | −87.1 (5) |
O5—Pr1—O2—C2 | 132.1 (4) | O4W—Pr2—O10—C6 | 135.4 (4) |
O1W—Pr1—O2—C2 | 86.6 (4) | O11iv—Pr2—O10—C6 | −145.4 (4) |
O1—Pr1—O2—C2 | 13.0 (4) | O7iii—Pr2—O10—C6 | 144.9 (5) |
O2W—Pr1—O2—C2 | 13.6 (5) | Pr1—O1—C1—O3 | −163.0 (6) |
O7ii—Pr1—O2—C2 | −53.9 (4) | Pr1—O1—C1—C2 | 17.5 (7) |
O6—Pr1—O2—C2 | −137.1 (4) | Pr2—O3—C1—O1 | −176.1 (5) |
O11i—Pr1—O2—C2 | −118.8 (4) | Pr2—O3—C1—C2 | 3.5 (8) |
O8iii—Pr2—O3—C1 | 132.1 (5) | Pr1—O2—C2—O4 | 170.7 (5) |
O9—Pr2—O3—C1 | 132.4 (6) | Pr1—O2—C2—C1 | −9.8 (7) |
O3W—Pr2—O3—C1 | 64.9 (5) | Pr2—O4—C2—O2 | −176.5 (5) |
O4—Pr2—O3—C1 | −1.2 (5) | Pr2—O4—C2—C1 | 4.0 (7) |
O4W—Pr2—O3—C1 | 3.6 (6) | O1—C1—C2—O2 | −5.0 (8) |
O11iv—Pr2—O3—C1 | −76.4 (5) | O3—C1—C2—O2 | 175.4 (6) |
O10—Pr2—O3—C1 | −162.1 (5) | O1—C1—C2—O4 | 174.6 (5) |
O7iii—Pr2—O3—C1 | −123.3 (5) | O3—C1—C2—O4 | −5.0 (9) |
O8iii—Pr2—O4—C2 | −128.4 (4) | Pr1—O5—C3—O8 | 176.5 (5) |
O3—Pr2—O4—C2 | −1.8 (4) | Pr1—O5—C3—C4 | −2.1 (7) |
O9—Pr2—O4—C2 | −47.9 (5) | Pr2vi—O8—C3—O5 | −177.6 (5) |
O3W—Pr2—O4—C2 | −101.8 (5) | Pr2vi—O8—C3—C4 | 1.0 (7) |
O4W—Pr2—O4—C2 | −178.4 (5) | Pr1—O6—C4—O7 | 179.3 (4) |
O11iv—Pr2—O4—C2 | 90.4 (4) | Pr1—O6—C4—C3 | 0.9 (6) |
O10—Pr2—O4—C2 | 28.9 (5) | Pr1v—O7—C4—O6 | 8.5 (9) |
O7iii—Pr2—O4—C2 | 137.0 (4) | Pr2vi—O7—C4—O6 | 175.9 (5) |
O12i—Pr1—O5—C3 | 85.5 (5) | Pr1v—O7—C4—C3 | −173.1 (3) |
O1W—Pr1—O5—C3 | 174.2 (5) | Pr2vi—O7—C4—C3 | −5.7 (6) |
O1—Pr1—O5—C3 | −146.1 (4) | O5—C3—C4—O6 | 0.7 (8) |
O2—Pr1—O5—C3 | 125.0 (4) | O8—C3—C4—O6 | −178.0 (6) |
O2W—Pr1—O5—C3 | −88.3 (5) | O5—C3—C4—O7 | −177.8 (6) |
O7ii—Pr1—O5—C3 | −46.6 (5) | O8—C3—C4—O7 | 3.4 (8) |
O6—Pr1—O5—C3 | 1.8 (4) | Pr2—O9—C5—O12 | −163.2 (4) |
O11i—Pr1—O5—C3 | 41.0 (5) | Pr2—O9—C5—C6 | 15.3 (7) |
O12i—Pr1—O6—C4 | −76.9 (4) | Pr1viii—O12—C5—O9 | −168.6 (4) |
O5—Pr1—O6—C4 | −1.3 (4) | Pr1viii—O12—C5—C6 | 12.9 (7) |
O1W—Pr1—O6—C4 | −10.7 (5) | Pr2—O10—C6—O11 | 173.1 (4) |
O1—Pr1—O6—C4 | 120.0 (4) | Pr2—O10—C6—C5 | −5.4 (7) |
O2—Pr1—O6—C4 | −126.7 (4) | Pr2vii—O11—C6—O10 | 9.0 (9) |
O2W—Pr1—O6—C4 | 70.2 (4) | Pr1viii—O11—C6—O10 | 179.4 (5) |
O7ii—Pr1—O6—C4 | 146.1 (4) | Pr2vii—O11—C6—C5 | −172.6 (3) |
O11i—Pr1—O6—C4 | −144.9 (4) | Pr1viii—O11—C6—C5 | −2.2 (6) |
O8iii—Pr2—O9—C5 | −102.6 (5) | O9—C5—C6—O10 | −6.3 (8) |
O3—Pr2—O9—C5 | 77.7 (4) | O12—C5—C6—O10 | 172.3 (5) |
O3W—Pr2—O9—C5 | 177.1 (5) | O9—C5—C6—O11 | 175.1 (5) |
O4—Pr2—O9—C5 | 123.9 (4) | O12—C5—C6—O11 | −6.4 (8) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1/2, −z+1/2; (iii) x−1, y−1, z; (iv) −x, y+1/2, −z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x+1, y+1, z; (vii) −x, y−1/2, −z+1/2; (viii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O2ix | 0.85 | 2.02 | 2.852 (6) | 166 |
O1W—H2W···O8x | 0.85 | 2.15 | 2.998 (6) | 173 |
O2W—H3W···O4xi | 0.85 | 2.40 | 2.998 (6) | 128 |
O2W—H4W···O6ii | 0.85 | 2.01 | 2.792 (6) | 152 |
O3W—H5W···O12xii | 0.85 | 1.97 | 2.780 (6) | 158 |
O3W—H6W···O3xii | 0.85 | 2.60 | 3.379 (7) | 154 |
O4W—H7W···O1xiii | 0.85 | 2.16 | 2.865 (6) | 140 |
O4W—H8W···O9xii | 0.85 | 2.04 | 2.882 (6) | 169 |
Symmetry codes: (ii) −x+1, y−1/2, −z+1/2; (ix) x+1/2, −y+3/2, −z; (x) x−1/2, −y+3/2, −z; (xi) x+1, y, z; (xii) x−1/2, −y+1/2, −z; (xiii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Pr2(C2O4)3(H2O)4] |
Mr | 617.94 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 8.6358 (17), 9.5356 (19), 16.885 (3) |
V (Å3) | 1390.4 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.02 |
Crystal size (mm) | 0.23 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury CCD |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2002) |
Tmin, Tmax | 0.295, 0.334 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13654, 3181, 2826 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.072, 1.04 |
No. of reflections | 3181 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.34, −1.44 |
Absolute structure | Flack (1983), 1344 Friedel pairs |
Absolute structure parameter | 0.49 (3) |
Computer programs: CrystalClear (Rigaku, 2002), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O2i | 0.85 | 2.02 | 2.852 (6) | 166 |
O1W—H2W···O8ii | 0.85 | 2.15 | 2.998 (6) | 173 |
O2W—H3W···O4iii | 0.85 | 2.40 | 2.998 (6) | 128 |
O2W—H4W···O6iv | 0.85 | 2.01 | 2.792 (6) | 152 |
O3W—H5W···O12v | 0.85 | 1.97 | 2.780 (6) | 158 |
O3W—H6W···O3v | 0.85 | 2.60 | 3.379 (7) | 154 |
O4W—H7W···O1vi | 0.85 | 2.16 | 2.865 (6) | 140 |
O4W—H8W···O9v | 0.85 | 2.04 | 2.882 (6) | 169 |
Symmetry codes: (i) x+1/2, −y+3/2, −z; (ii) x−1/2, −y+3/2, −z; (iii) x+1, y, z; (iv) −x+1, y−1/2, −z+1/2; (v) x−1/2, −y+1/2, −z; (vi) x−1, y, z. |
Acknowledgements
The authors acknowledge Pingdingshan University for supporting this work.
References
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Ma, B.-Q., Gao, S., Su, G. & Xu, G.-X. (2001). Angew. Chem. Int. Ed. 40, 434–437. Web of Science CrossRef CAS Google Scholar
Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187–2209. Web of Science CrossRef PubMed CAS Google Scholar
Song, W. D., Li, S. J., Miao, D. L., Ji, L. L., Ng, S. W., Tiekink, E. R. R. & Ma, D. Y. (2012). Inorg. Chem. Commun. 17, 91–94. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the past decade, considerable efforts have been devoted to the design and construction of new lanthanide coordination polymers due to their intriguing structural diversity and potential applications in many areas (Ma et al., 2001; Shibasaki & Yoshikawa, 2002; Song et al., 2012). Oxalate owning four carboxylate O atoms is highly accessible to lanthanide ions to form novel structures.
As shown in Fig. 1, in the asymmetric unit of the title complex, there are two independent PrIII ions with a similar coordination environment. Each PrIII ion is nine-coordinated by seven O atoms from four oxalate ligands and two O atoms from two terminal water molecules. The Pr1 and Pr2 atoms are bridged by two carboxylate O atoms, forming a Pr2O2 subunit with a Pr···Pr distance of 4.2893 (7) Å. Such subunits are connected by the oxalate ligands, generating a layer parallel to (0 0 1). It is noted that the oxalate ligands exhibit two kinds of coordination modes: one adopts a bisbidentate coordination mode bridging two PrIII ions; the other adopts a chelating and bridging coordination mode connecting three PrIII ions. The adjacent layers are further linked into a three-dimensional network via intermolecular O—H···O hydrogen bonds (Table 1).