metal-organic compounds
Dibromido(di-2-pyridylamine-κ2N2,N2′)platinum(II)
aSchool of Applied Chemical Engineering, Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr
The PtII ion in the title complex, [PtBr2(C10H9N3)], is four-coordinated in an essentially square-planar environment by two N atoms from a chelating di-2-pyridylamine (dpa) ligand and two Br− anions. The dpa ligand is not planar, with the dihedral angle between the pyridine rings being 40.8 (2)°. The complex molecules are stacked in columns along [001] through π–π interactions between the pyridine rings [centroid–centroid distances = 3.437 (3) and 3.520 (3) Å]. Intermolecular N—H⋯Br hydrogen bonds connect the molecules into chains running along [010]. Intramolecular C—H⋯Br interactions are also observed.
Related literature
For the structure of a related chlorido PtII complex [PtCl2(dpa)], see: Li & Liu (2004); Tu et al. (2004); Zhang et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
To a solution of K2PtBr4 (0.2326 g, 0.392 mmol) in H2O (20 ml) and MeOH (10 ml) was added di-2-pyridylamine (0.0722 g, 0.422 mmol) and stirred for 7 h at room temperature. The formed precipitate was separated by filtration, washed with H2O and acetone and dried at 50°C to give a yellow powder (0.1502 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.
C-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. N-bound H atom was located from a difference Fourier map and allowed to ride on its parent atom in the final cycles of
with N—H = 0.92 Å and Uiso(H) = 1.5Ueq(N). The highest peak (1.41 e Å-3) and the deepest hole (-2.22 e Å-3) in the difference Fourier map are located 0.73 and 0.79 Å from Pt1 atom, respectively.The title complex, [PtBr2(dpa)] (dpa = di-2-pyridylamine), crystallizes in the orthorhombic
Pbcn, whereas the analogous chlorido PtII complex [PtCl2(dpa)] crystallizes in the monoclinic P21/n (Li & Liu, 2004; Tu et al., 2004; Zhang et al., 2006).The PtII ion is four-coordinated in an essentially square-planar environment by two N atoms from a chelating dpa ligand and two Br- anions (Fig. 1). The Pt—N and Pt—Br bond lengths are nearly equivalent, respectively (Table 1). The dpa ligand is not planar. The dihedral angle between the least-squares planes of the pyridine rings is 40.8 (2)°. In the crystal, the complex molecules are stacked in columns along [001] through π–π interactions between the pyridine rings [centroid–centroid distances = 3.437 (3) and 3.520 (3) Å]. Intermolecular N—H···Br hydrogen bonds connect the molecules into chains running along [010] (Fig. 2, Table 2). Intramolecular C—H···Br hydrogen bonds are also observed.
For the structure of a related chlorido PtII complex [PtCl2(dpa)], see: Li & Liu (2004); Tu et al. (2004); Zhang et al. (2006).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[PtBr2(C10H9N3)] | F(000) = 1904 |
Mr = 526.08 | Dx = 2.878 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 8242 reflections |
a = 12.900 (2) Å | θ = 2.6–28.3° |
b = 14.004 (3) Å | µ = 18.12 mm−1 |
c = 13.440 (3) Å | T = 200 K |
V = 2428.0 (8) Å3 | Block, yellow |
Z = 8 | 0.27 × 0.25 × 0.24 mm |
Bruker SMART 1000 CCD diffractometer | 2973 independent reflections |
Radiation source: fine-focus sealed tube | 2424 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
φ and ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −17→17 |
Tmin = 0.700, Tmax = 1.000 | k = −18→9 |
15922 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0344P)2 + 3.6402P] where P = (Fo2 + 2Fc2)/3 |
2973 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 1.41 e Å−3 |
0 restraints | Δρmin = −2.22 e Å−3 |
[PtBr2(C10H9N3)] | V = 2428.0 (8) Å3 |
Mr = 526.08 | Z = 8 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 12.900 (2) Å | µ = 18.12 mm−1 |
b = 14.004 (3) Å | T = 200 K |
c = 13.440 (3) Å | 0.27 × 0.25 × 0.24 mm |
Bruker SMART 1000 CCD diffractometer | 2973 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2424 reflections with I > 2σ(I) |
Tmin = 0.700, Tmax = 1.000 | Rint = 0.049 |
15922 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.10 | Δρmax = 1.41 e Å−3 |
2973 reflections | Δρmin = −2.22 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.239801 (16) | 0.136089 (17) | 0.383005 (17) | 0.01923 (9) | |
Br1 | 0.41607 (4) | 0.19255 (5) | 0.40120 (5) | 0.02934 (16) | |
Br2 | 0.18330 (4) | 0.25482 (4) | 0.50297 (5) | 0.03000 (16) | |
N1 | 0.2859 (3) | 0.0336 (4) | 0.2856 (3) | 0.0225 (10) | |
N2 | 0.1654 (3) | −0.0719 (3) | 0.3584 (4) | 0.0234 (10) | |
H2N | 0.1425 | −0.1331 | 0.3701 | 0.035* | |
N3 | 0.0943 (3) | 0.0824 (4) | 0.3727 (3) | 0.0212 (10) | |
C1 | 0.3579 (4) | 0.0513 (5) | 0.2139 (4) | 0.0290 (14) | |
H1 | 0.3817 | 0.1149 | 0.2048 | 0.035* | |
C2 | 0.3966 (5) | −0.0185 (5) | 0.1551 (5) | 0.0318 (14) | |
H2 | 0.4464 | −0.0038 | 0.1053 | 0.038* | |
C3 | 0.3631 (5) | −0.1113 (5) | 0.1683 (5) | 0.0311 (15) | |
H3 | 0.3913 | −0.1615 | 0.1291 | 0.037* | |
C4 | 0.2886 (5) | −0.1303 (4) | 0.2386 (5) | 0.0286 (13) | |
H4 | 0.2652 | −0.1937 | 0.2496 | 0.034* | |
C5 | 0.2478 (4) | −0.0546 (4) | 0.2936 (4) | 0.0223 (12) | |
C6 | 0.0806 (4) | −0.0123 (4) | 0.3698 (4) | 0.0226 (12) | |
C7 | −0.0175 (5) | −0.0530 (5) | 0.3824 (4) | 0.0240 (12) | |
H7 | −0.0258 | −0.1205 | 0.3824 | 0.029* | |
C8 | −0.1017 (4) | 0.0057 (5) | 0.3946 (4) | 0.0274 (14) | |
H8 | −0.1684 | −0.0205 | 0.4071 | 0.033* | |
C9 | −0.0884 (5) | 0.1041 (5) | 0.3886 (4) | 0.0275 (14) | |
H9 | −0.1464 | 0.1458 | 0.3924 | 0.033* | |
C10 | 0.0089 (5) | 0.1399 (4) | 0.3773 (4) | 0.0243 (13) | |
H10 | 0.0178 | 0.2071 | 0.3724 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01844 (13) | 0.01519 (14) | 0.02405 (15) | −0.00108 (8) | 0.00116 (8) | −0.00043 (8) |
Br1 | 0.0201 (3) | 0.0234 (3) | 0.0445 (4) | −0.0034 (2) | 0.0014 (2) | −0.0063 (3) |
Br2 | 0.0264 (3) | 0.0252 (3) | 0.0384 (4) | −0.0022 (2) | 0.0051 (2) | −0.0104 (3) |
N1 | 0.018 (2) | 0.023 (3) | 0.026 (3) | 0.002 (2) | 0.0022 (19) | −0.002 (2) |
N2 | 0.022 (2) | 0.015 (2) | 0.033 (3) | −0.0045 (19) | 0.002 (2) | 0.001 (2) |
N3 | 0.016 (2) | 0.023 (3) | 0.024 (2) | 0.0040 (19) | −0.0032 (18) | −0.003 (2) |
C1 | 0.026 (3) | 0.030 (4) | 0.031 (3) | −0.007 (3) | 0.000 (2) | −0.002 (3) |
C2 | 0.028 (3) | 0.036 (4) | 0.032 (3) | −0.005 (3) | 0.007 (3) | −0.005 (3) |
C3 | 0.031 (3) | 0.028 (4) | 0.034 (4) | 0.009 (3) | 0.003 (3) | −0.009 (3) |
C4 | 0.030 (3) | 0.018 (3) | 0.037 (4) | 0.004 (2) | 0.001 (3) | 0.000 (3) |
C5 | 0.021 (3) | 0.018 (3) | 0.029 (3) | 0.001 (2) | −0.002 (2) | −0.001 (2) |
C6 | 0.026 (3) | 0.021 (3) | 0.022 (3) | 0.000 (2) | 0.001 (2) | 0.000 (2) |
C7 | 0.030 (3) | 0.022 (3) | 0.020 (3) | −0.008 (2) | −0.002 (2) | 0.002 (2) |
C8 | 0.015 (2) | 0.040 (4) | 0.027 (3) | −0.004 (3) | −0.003 (2) | −0.002 (3) |
C9 | 0.022 (3) | 0.031 (4) | 0.030 (3) | 0.004 (3) | −0.005 (2) | −0.006 (3) |
C10 | 0.031 (3) | 0.018 (3) | 0.025 (3) | 0.010 (2) | −0.003 (2) | 0.003 (2) |
Pt1—N1 | 2.031 (5) | C2—H2 | 0.9500 |
Pt1—N3 | 2.026 (5) | C3—C4 | 1.375 (9) |
Pt1—Br1 | 2.4198 (7) | C3—H3 | 0.9500 |
Pt1—Br2 | 2.4282 (7) | C4—C5 | 1.394 (8) |
N1—C5 | 1.334 (8) | C4—H4 | 0.9500 |
N1—C1 | 1.362 (7) | C6—C7 | 1.399 (8) |
N2—C6 | 1.384 (7) | C7—C8 | 1.372 (9) |
N2—C5 | 1.396 (7) | C7—H7 | 0.9500 |
N2—H2N | 0.9200 | C8—C9 | 1.392 (9) |
N3—C6 | 1.338 (8) | C8—H8 | 0.9500 |
N3—C10 | 1.366 (7) | C9—C10 | 1.360 (9) |
C1—C2 | 1.352 (9) | C9—H9 | 0.9500 |
C1—H1 | 0.9500 | C10—H10 | 0.9500 |
C2—C3 | 1.382 (9) | ||
N3—Pt1—N1 | 87.97 (19) | C2—C3—H3 | 120.4 |
N3—Pt1—Br1 | 176.75 (14) | C3—C4—C5 | 118.8 (6) |
N1—Pt1—Br1 | 91.20 (13) | C3—C4—H4 | 120.6 |
N3—Pt1—Br2 | 91.24 (14) | C5—C4—H4 | 120.6 |
N1—Pt1—Br2 | 178.26 (14) | N1—C5—C4 | 121.5 (5) |
Br1—Pt1—Br2 | 89.50 (2) | N1—C5—N2 | 119.4 (5) |
C5—N1—C1 | 118.4 (5) | C4—C5—N2 | 119.1 (5) |
C5—N1—Pt1 | 119.7 (4) | N3—C6—N2 | 119.7 (5) |
C1—N1—Pt1 | 121.8 (4) | N3—C6—C7 | 121.4 (5) |
C6—N2—C5 | 124.6 (5) | N2—C6—C7 | 118.8 (5) |
C6—N2—H2N | 106.9 | C8—C7—C6 | 119.1 (6) |
C5—N2—H2N | 120.8 | C8—C7—H7 | 120.5 |
C6—N3—C10 | 118.6 (5) | C6—C7—H7 | 120.5 |
C6—N3—Pt1 | 119.5 (4) | C7—C8—C9 | 119.3 (6) |
C10—N3—Pt1 | 121.7 (4) | C7—C8—H8 | 120.4 |
C2—C1—N1 | 122.3 (6) | C9—C8—H8 | 120.4 |
C2—C1—H1 | 118.8 | C10—C9—C8 | 119.0 (6) |
N1—C1—H1 | 118.8 | C10—C9—H9 | 120.5 |
C1—C2—C3 | 119.3 (6) | C8—C9—H9 | 120.5 |
C1—C2—H2 | 120.3 | C9—C10—N3 | 122.2 (6) |
C3—C2—H2 | 120.3 | C9—C10—H10 | 118.9 |
C4—C3—C2 | 119.2 (6) | N3—C10—H10 | 118.9 |
C4—C3—H3 | 120.4 | ||
N3—Pt1—N1—C5 | −40.4 (4) | C3—C4—C5—N1 | −6.0 (9) |
Br1—Pt1—N1—C5 | 136.5 (4) | C3—C4—C5—N2 | 174.0 (6) |
N3—Pt1—N1—C1 | 142.0 (5) | C6—N2—C5—N1 | 41.5 (8) |
Br1—Pt1—N1—C1 | −41.1 (4) | C6—N2—C5—C4 | −138.5 (6) |
N1—Pt1—N3—C6 | 40.4 (4) | C10—N3—C6—N2 | 175.6 (5) |
Br2—Pt1—N3—C6 | −138.0 (4) | Pt1—N3—C6—N2 | −10.0 (7) |
N1—Pt1—N3—C10 | −145.4 (4) | C10—N3—C6—C7 | −7.1 (8) |
Br2—Pt1—N3—C10 | 36.1 (4) | Pt1—N3—C6—C7 | 167.3 (4) |
C5—N1—C1—C2 | −4.3 (9) | C5—N2—C6—N3 | −41.5 (8) |
Pt1—N1—C1—C2 | 173.3 (5) | C5—N2—C6—C7 | 141.2 (6) |
N1—C1—C2—C3 | −0.6 (10) | N3—C6—C7—C8 | 2.1 (8) |
C1—C2—C3—C4 | 2.2 (10) | N2—C6—C7—C8 | 179.5 (5) |
C2—C3—C4—C5 | 1.0 (10) | C6—C7—C8—C9 | 3.6 (8) |
C1—N1—C5—C4 | 7.6 (8) | C7—C8—C9—C10 | −4.3 (9) |
Pt1—N1—C5—C4 | −170.1 (4) | C8—C9—C10—N3 | −0.7 (9) |
C1—N1—C5—N2 | −172.4 (5) | C6—N3—C10—C9 | 6.4 (8) |
Pt1—N1—C5—N2 | 9.9 (7) | Pt1—N3—C10—C9 | −167.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···Br1i | 0.92 | 2.59 | 3.510 (4) | 178 |
C1—H1···Br1 | 0.95 | 2.89 | 3.288 (6) | 107 |
C10—H10···Br2 | 0.95 | 2.84 | 3.241 (6) | 106 |
Symmetry code: (i) −x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [PtBr2(C10H9N3)] |
Mr | 526.08 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 200 |
a, b, c (Å) | 12.900 (2), 14.004 (3), 13.440 (3) |
V (Å3) | 2428.0 (8) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 18.12 |
Crystal size (mm) | 0.27 × 0.25 × 0.24 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.700, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15922, 2973, 2424 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.079, 1.10 |
No. of reflections | 2973 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.41, −2.22 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···Br1i | 0.92 | 2.59 | 3.510 (4) | 178 |
C1—H1···Br1 | 0.95 | 2.89 | 3.288 (6) | 107 |
C10—H10···Br2 | 0.95 | 2.84 | 3.241 (6) | 106 |
Symmetry code: (i) −x+1/2, y−1/2, z. |
Acknowledgements
This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2011-0030747).
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Li, D. & Liu, D. (2004). Cryst. Res. Technol. 39, 359–362. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tu, C., Wu, X., Liu, Q., Wang, X., Xu, Q. & Guo, Z. (2004). Inorg. Chim. Acta, 357, 95–102. Web of Science CSD CrossRef CAS Google Scholar
Zhang, F., Prokopchuk, E. M., Broczkowski, M. E., Jennings, M. C. & Puddephatt, R. J. (2006). Organometallics, 25, 1583–1591. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title complex, [PtBr2(dpa)] (dpa = di-2-pyridylamine), crystallizes in the orthorhombic space group Pbcn, whereas the analogous chlorido PtII complex [PtCl2(dpa)] crystallizes in the monoclinic space group P21/n (Li & Liu, 2004; Tu et al., 2004; Zhang et al., 2006).
The PtII ion is four-coordinated in an essentially square-planar environment by two N atoms from a chelating dpa ligand and two Br- anions (Fig. 1). The Pt—N and Pt—Br bond lengths are nearly equivalent, respectively (Table 1). The dpa ligand is not planar. The dihedral angle between the least-squares planes of the pyridine rings is 40.8 (2)°. In the crystal, the complex molecules are stacked in columns along [001] through π–π interactions between the pyridine rings [centroid–centroid distances = 3.437 (3) and 3.520 (3) Å]. Intermolecular N—H···Br hydrogen bonds connect the molecules into chains running along [010] (Fig. 2, Table 2). Intramolecular C—H···Br hydrogen bonds are also observed.