metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(di-2-pyridyl­amine-κ2N2,N2′)platinum(II)

aSchool of Applied Chemical Engineering, Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 9 March 2012; accepted 15 March 2012; online 21 March 2012)

The PtII ion in the title complex, [PtBr2(C10H9N3)], is four-coordinated in an essentially square-planar environment by two N atoms from a chelating di-2-pyridyl­amine (dpa) ligand and two Br anions. The dpa ligand is not planar, with the dihedral angle between the pyridine rings being 40.8 (2)°. The complex mol­ecules are stacked in columns along [001] through ππ inter­actions between the pyridine rings [centroid–centroid distances = 3.437 (3) and 3.520 (3) Å]. Inter­molecular N—H⋯Br hydrogen bonds connect the mol­ecules into chains running along [010]. Intra­molecular C—H⋯Br interactions are also observed.

Related literature

For the structure of a related chlorido PtII complex [PtCl2(dpa)], see: Li & Liu (2004[Li, D. & Liu, D. (2004). Cryst. Res. Technol. 39, 359-362.]); Tu et al. (2004[Tu, C., Wu, X., Liu, Q., Wang, X., Xu, Q. & Guo, Z. (2004). Inorg. Chim. Acta, 357, 95-102.]); Zhang et al. (2006[Zhang, F., Prokopchuk, E. M., Broczkowski, M. E., Jennings, M. C. & Puddephatt, R. J. (2006). Organometallics, 25, 1583-1591.]).

[Scheme 1]

Experimental

Crystal data
  • [PtBr2(C10H9N3)]

  • Mr = 526.08

  • Orthorhombic, P b c n

  • a = 12.900 (2) Å

  • b = 14.004 (3) Å

  • c = 13.440 (3) Å

  • V = 2428.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 18.12 mm−1

  • T = 200 K

  • 0.27 × 0.25 × 0.24 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.700, Tmax = 1.000

  • 15922 measured reflections

  • 2973 independent reflections

  • 2424 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.10

  • 2973 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.41 e Å−3

  • Δρmin = −2.22 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N1 2.031 (5)
Pt1—N3 2.026 (5)
Pt1—Br1 2.4198 (7)
Pt1—Br2 2.4282 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Br1i 0.92 2.59 3.510 (4) 178
C1—H1⋯Br1 0.95 2.89 3.288 (6) 107
C10—H10⋯Br2 0.95 2.84 3.241 (6) 106
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PtBr2(dpa)] (dpa = di-2-pyridylamine), crystallizes in the orthorhombic space group Pbcn, whereas the analogous chlorido PtII complex [PtCl2(dpa)] crystallizes in the monoclinic space group P21/n (Li & Liu, 2004; Tu et al., 2004; Zhang et al., 2006).

The PtII ion is four-coordinated in an essentially square-planar environment by two N atoms from a chelating dpa ligand and two Br- anions (Fig. 1). The Pt—N and Pt—Br bond lengths are nearly equivalent, respectively (Table 1). The dpa ligand is not planar. The dihedral angle between the least-squares planes of the pyridine rings is 40.8 (2)°. In the crystal, the complex molecules are stacked in columns along [001] through ππ interactions between the pyridine rings [centroid–centroid distances = 3.437 (3) and 3.520 (3) Å]. Intermolecular N—H···Br hydrogen bonds connect the molecules into chains running along [010] (Fig. 2, Table 2). Intramolecular C—H···Br hydrogen bonds are also observed.

Related literature top

For the structure of a related chlorido PtII complex [PtCl2(dpa)], see: Li & Liu (2004); Tu et al. (2004); Zhang et al. (2006).

Experimental top

To a solution of K2PtBr4 (0.2326 g, 0.392 mmol) in H2O (20 ml) and MeOH (10 ml) was added di-2-pyridylamine (0.0722 g, 0.422 mmol) and stirred for 7 h at room temperature. The formed precipitate was separated by filtration, washed with H2O and acetone and dried at 50°C to give a yellow powder (0.1502 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.

Refinement top

C-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. N-bound H atom was located from a difference Fourier map and allowed to ride on its parent atom in the final cycles of refinement, with N—H = 0.92 Å and Uiso(H) = 1.5Ueq(N). The highest peak (1.41 e Å-3) and the deepest hole (-2.22 e Å-3) in the difference Fourier map are located 0.73 and 0.79 Å from Pt1 atom, respectively.

Structure description top

The title complex, [PtBr2(dpa)] (dpa = di-2-pyridylamine), crystallizes in the orthorhombic space group Pbcn, whereas the analogous chlorido PtII complex [PtCl2(dpa)] crystallizes in the monoclinic space group P21/n (Li & Liu, 2004; Tu et al., 2004; Zhang et al., 2006).

The PtII ion is four-coordinated in an essentially square-planar environment by two N atoms from a chelating dpa ligand and two Br- anions (Fig. 1). The Pt—N and Pt—Br bond lengths are nearly equivalent, respectively (Table 1). The dpa ligand is not planar. The dihedral angle between the least-squares planes of the pyridine rings is 40.8 (2)°. In the crystal, the complex molecules are stacked in columns along [001] through ππ interactions between the pyridine rings [centroid–centroid distances = 3.437 (3) and 3.520 (3) Å]. Intermolecular N—H···Br hydrogen bonds connect the molecules into chains running along [010] (Fig. 2, Table 2). Intramolecular C—H···Br hydrogen bonds are also observed.

For the structure of a related chlorido PtII complex [PtCl2(dpa)], see: Li & Liu (2004); Tu et al. (2004); Zhang et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the unit-cell contents of the title complex. Intermolecular N—H···Br hydrogen bonds are drawn as dashed lines.
Dibromido(di-2-pyridylamine-κ2N2,N2')platinum(II) top
Crystal data top
[PtBr2(C10H9N3)]F(000) = 1904
Mr = 526.08Dx = 2.878 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 8242 reflections
a = 12.900 (2) Åθ = 2.6–28.3°
b = 14.004 (3) ŵ = 18.12 mm1
c = 13.440 (3) ÅT = 200 K
V = 2428.0 (8) Å3Block, yellow
Z = 80.27 × 0.25 × 0.24 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2973 independent reflections
Radiation source: fine-focus sealed tube2424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1717
Tmin = 0.700, Tmax = 1.000k = 189
15922 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0344P)2 + 3.6402P]
where P = (Fo2 + 2Fc2)/3
2973 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = 2.22 e Å3
Crystal data top
[PtBr2(C10H9N3)]V = 2428.0 (8) Å3
Mr = 526.08Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 12.900 (2) ŵ = 18.12 mm1
b = 14.004 (3) ÅT = 200 K
c = 13.440 (3) Å0.27 × 0.25 × 0.24 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2973 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2424 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 1.000Rint = 0.049
15922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.10Δρmax = 1.41 e Å3
2973 reflectionsΔρmin = 2.22 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.239801 (16)0.136089 (17)0.383005 (17)0.01923 (9)
Br10.41607 (4)0.19255 (5)0.40120 (5)0.02934 (16)
Br20.18330 (4)0.25482 (4)0.50297 (5)0.03000 (16)
N10.2859 (3)0.0336 (4)0.2856 (3)0.0225 (10)
N20.1654 (3)0.0719 (3)0.3584 (4)0.0234 (10)
H2N0.14250.13310.37010.035*
N30.0943 (3)0.0824 (4)0.3727 (3)0.0212 (10)
C10.3579 (4)0.0513 (5)0.2139 (4)0.0290 (14)
H10.38170.11490.20480.035*
C20.3966 (5)0.0185 (5)0.1551 (5)0.0318 (14)
H20.44640.00380.10530.038*
C30.3631 (5)0.1113 (5)0.1683 (5)0.0311 (15)
H30.39130.16150.12910.037*
C40.2886 (5)0.1303 (4)0.2386 (5)0.0286 (13)
H40.26520.19370.24960.034*
C50.2478 (4)0.0546 (4)0.2936 (4)0.0223 (12)
C60.0806 (4)0.0123 (4)0.3698 (4)0.0226 (12)
C70.0175 (5)0.0530 (5)0.3824 (4)0.0240 (12)
H70.02580.12050.38240.029*
C80.1017 (4)0.0057 (5)0.3946 (4)0.0274 (14)
H80.16840.02050.40710.033*
C90.0884 (5)0.1041 (5)0.3886 (4)0.0275 (14)
H90.14640.14580.39240.033*
C100.0089 (5)0.1399 (4)0.3773 (4)0.0243 (13)
H100.01780.20710.37240.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01844 (13)0.01519 (14)0.02405 (15)0.00108 (8)0.00116 (8)0.00043 (8)
Br10.0201 (3)0.0234 (3)0.0445 (4)0.0034 (2)0.0014 (2)0.0063 (3)
Br20.0264 (3)0.0252 (3)0.0384 (4)0.0022 (2)0.0051 (2)0.0104 (3)
N10.018 (2)0.023 (3)0.026 (3)0.002 (2)0.0022 (19)0.002 (2)
N20.022 (2)0.015 (2)0.033 (3)0.0045 (19)0.002 (2)0.001 (2)
N30.016 (2)0.023 (3)0.024 (2)0.0040 (19)0.0032 (18)0.003 (2)
C10.026 (3)0.030 (4)0.031 (3)0.007 (3)0.000 (2)0.002 (3)
C20.028 (3)0.036 (4)0.032 (3)0.005 (3)0.007 (3)0.005 (3)
C30.031 (3)0.028 (4)0.034 (4)0.009 (3)0.003 (3)0.009 (3)
C40.030 (3)0.018 (3)0.037 (4)0.004 (2)0.001 (3)0.000 (3)
C50.021 (3)0.018 (3)0.029 (3)0.001 (2)0.002 (2)0.001 (2)
C60.026 (3)0.021 (3)0.022 (3)0.000 (2)0.001 (2)0.000 (2)
C70.030 (3)0.022 (3)0.020 (3)0.008 (2)0.002 (2)0.002 (2)
C80.015 (2)0.040 (4)0.027 (3)0.004 (3)0.003 (2)0.002 (3)
C90.022 (3)0.031 (4)0.030 (3)0.004 (3)0.005 (2)0.006 (3)
C100.031 (3)0.018 (3)0.025 (3)0.010 (2)0.003 (2)0.003 (2)
Geometric parameters (Å, º) top
Pt1—N12.031 (5)C2—H20.9500
Pt1—N32.026 (5)C3—C41.375 (9)
Pt1—Br12.4198 (7)C3—H30.9500
Pt1—Br22.4282 (7)C4—C51.394 (8)
N1—C51.334 (8)C4—H40.9500
N1—C11.362 (7)C6—C71.399 (8)
N2—C61.384 (7)C7—C81.372 (9)
N2—C51.396 (7)C7—H70.9500
N2—H2N0.9200C8—C91.392 (9)
N3—C61.338 (8)C8—H80.9500
N3—C101.366 (7)C9—C101.360 (9)
C1—C21.352 (9)C9—H90.9500
C1—H10.9500C10—H100.9500
C2—C31.382 (9)
N3—Pt1—N187.97 (19)C2—C3—H3120.4
N3—Pt1—Br1176.75 (14)C3—C4—C5118.8 (6)
N1—Pt1—Br191.20 (13)C3—C4—H4120.6
N3—Pt1—Br291.24 (14)C5—C4—H4120.6
N1—Pt1—Br2178.26 (14)N1—C5—C4121.5 (5)
Br1—Pt1—Br289.50 (2)N1—C5—N2119.4 (5)
C5—N1—C1118.4 (5)C4—C5—N2119.1 (5)
C5—N1—Pt1119.7 (4)N3—C6—N2119.7 (5)
C1—N1—Pt1121.8 (4)N3—C6—C7121.4 (5)
C6—N2—C5124.6 (5)N2—C6—C7118.8 (5)
C6—N2—H2N106.9C8—C7—C6119.1 (6)
C5—N2—H2N120.8C8—C7—H7120.5
C6—N3—C10118.6 (5)C6—C7—H7120.5
C6—N3—Pt1119.5 (4)C7—C8—C9119.3 (6)
C10—N3—Pt1121.7 (4)C7—C8—H8120.4
C2—C1—N1122.3 (6)C9—C8—H8120.4
C2—C1—H1118.8C10—C9—C8119.0 (6)
N1—C1—H1118.8C10—C9—H9120.5
C1—C2—C3119.3 (6)C8—C9—H9120.5
C1—C2—H2120.3C9—C10—N3122.2 (6)
C3—C2—H2120.3C9—C10—H10118.9
C4—C3—C2119.2 (6)N3—C10—H10118.9
C4—C3—H3120.4
N3—Pt1—N1—C540.4 (4)C3—C4—C5—N16.0 (9)
Br1—Pt1—N1—C5136.5 (4)C3—C4—C5—N2174.0 (6)
N3—Pt1—N1—C1142.0 (5)C6—N2—C5—N141.5 (8)
Br1—Pt1—N1—C141.1 (4)C6—N2—C5—C4138.5 (6)
N1—Pt1—N3—C640.4 (4)C10—N3—C6—N2175.6 (5)
Br2—Pt1—N3—C6138.0 (4)Pt1—N3—C6—N210.0 (7)
N1—Pt1—N3—C10145.4 (4)C10—N3—C6—C77.1 (8)
Br2—Pt1—N3—C1036.1 (4)Pt1—N3—C6—C7167.3 (4)
C5—N1—C1—C24.3 (9)C5—N2—C6—N341.5 (8)
Pt1—N1—C1—C2173.3 (5)C5—N2—C6—C7141.2 (6)
N1—C1—C2—C30.6 (10)N3—C6—C7—C82.1 (8)
C1—C2—C3—C42.2 (10)N2—C6—C7—C8179.5 (5)
C2—C3—C4—C51.0 (10)C6—C7—C8—C93.6 (8)
C1—N1—C5—C47.6 (8)C7—C8—C9—C104.3 (9)
Pt1—N1—C5—C4170.1 (4)C8—C9—C10—N30.7 (9)
C1—N1—C5—N2172.4 (5)C6—N3—C10—C96.4 (8)
Pt1—N1—C5—N29.9 (7)Pt1—N3—C10—C9167.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Br1i0.922.593.510 (4)178
C1—H1···Br10.952.893.288 (6)107
C10—H10···Br20.952.843.241 (6)106
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[PtBr2(C10H9N3)]
Mr526.08
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)200
a, b, c (Å)12.900 (2), 14.004 (3), 13.440 (3)
V3)2428.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)18.12
Crystal size (mm)0.27 × 0.25 × 0.24
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.700, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15922, 2973, 2424
Rint0.049
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.10
No. of reflections2973
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.41, 2.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—N12.031 (5)Pt1—Br12.4198 (7)
Pt1—N32.026 (5)Pt1—Br22.4282 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Br1i0.922.593.510 (4)178
C1—H1···Br10.952.893.288 (6)107
C10—H10···Br20.952.843.241 (6)106
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2011-0030747).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, D. & Liu, D. (2004). Cryst. Res. Technol. 39, 359–362.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, C., Wu, X., Liu, Q., Wang, X., Xu, Q. & Guo, Z. (2004). Inorg. Chim. Acta, 357, 95–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, F., Prokopchuk, E. M., Broczkowski, M. E., Jennings, M. C. & Puddephatt, R. J. (2006). Organometallics, 25, 1583–1591.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds