metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(ethanol-κO)[2-(1,3-thia­zol-4-yl-κN)-1H-benzimidazole-κN3]copper(II)

aCollege of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bKey Laboratory of Development & Application of Forest Chemicals of Guangxi, Nanning 530006, People's Republic of China
*Correspondence e-mail: 497426630@qq.com

(Received 10 March 2012; accepted 25 March 2012; online 31 March 2012)

In the title complex, [CuCl2(C10H7N3S)(C2H5OH)], the CuII ion is five-coordinated in a distorted square-pyramidal geometry by two N atoms from a 2-(1,3-thia­zol-4-yl)-1H-benzimidazole ligand, one O atom from an ethanol mol­ecule and two Cl atoms. In the crystal, O—H⋯Cl and N—H⋯Cl hydrogen bonds link the complex mol­ecules into a layer parallel to (100). ππ inter­actions between the thia­zole rings are observed [centroid–centroid distance = 3.749 (3) Å].

Related literature

For related thia­bendazole complexes, see: Devereux et al. (2007[Devereux, M., Shea, D. O., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, E., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881-892.]); Umadevi et al. (1995[Umadevi, B., Muthiah, P. T., Shui, X. & Eggleston, D. S. (1995). Inorg. Chim. Acta, 234, 149-152.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C10H7N3S)(C2H6O)]

  • Mr = 381.75

  • Monoclinic, P 21 /c

  • a = 13.928 (5) Å

  • b = 7.473 (3) Å

  • c = 16.653 (4) Å

  • β = 122.43 (2)°

  • V = 1463.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 296 K

  • 0.35 × 0.33 × 0.32 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.542, Tmax = 0.567

  • 7540 measured reflections

  • 2563 independent reflections

  • 2139 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.109

  • S = 1.12

  • 2563 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.030 (3)
Cu1—N2 2.033 (3)
Cu1—Cl1 2.3194 (12)
Cu1—Cl2 2.2328 (12)
Cu1—O1 2.370 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H14⋯Cl1i 0.82 2.60 3.246 (3) 136
N3—H13⋯Cl1ii 0.86 2.59 3.431 (4) 165
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As we know, thiabendazole, 2-(4-thiazolyl)benzimidazole, is widely used as a kind of anthelmintic. However, the insolubility in water restrict its potential efficacy. Thiabendazole has three N and one S atoms, easy to coordinate with non-toxic metals (Devereux et al., 2007; Umadevi et al., 1995). These metal-organic compounds would be more water soluble, yet retain the biological activity of the base. As part of our studies of researching the properties and effects of metal complexes of thiabendazole, we have synthesized the title compound.

In the title complex (Fig. 1), the CuII ion is five-coordinated in a distorted square-pyramidal geometry by two N atoms from a 1H-2-(4-thiazol-2-yl)benzimidazole ligand, one O atom from an ethanol molecule and two Cl atoms (Table 1). The dihedral angle between the imidazole ring (C5, C6, C7, N2, N3) and the thiazole ring (N1, S1, C8, C9, C12) is 3.8 (1)°. O—H···Cl and N—H···Cl hydrogen bonds link the complex molecules into a layer parallel to (100) (Fig. 2, Table 2). ππ interactions between the thiazole rings are observed [centroid–centroid distance = 3.749 (3) Å].

Related literature top

For related thiabendazole complexes, see: Devereux et al. (2007); Umadevi et al. (1995).

Experimental top

The title compound was prepared by the reaction of thiabendazole (1.5 mol) with cupric chloride (1 mol) in ethanol, with stirring at 343 K for 5 h and then filtered. The filtrate was kept at room temperature and three days later X-ray quality blue block-shaped single crystals were obtained.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (methylene), 0.96 (methyl) and N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N). H atom of hydroxyl group was found from a difference Fourier map and refined as riding, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

As we know, thiabendazole, 2-(4-thiazolyl)benzimidazole, is widely used as a kind of anthelmintic. However, the insolubility in water restrict its potential efficacy. Thiabendazole has three N and one S atoms, easy to coordinate with non-toxic metals (Devereux et al., 2007; Umadevi et al., 1995). These metal-organic compounds would be more water soluble, yet retain the biological activity of the base. As part of our studies of researching the properties and effects of metal complexes of thiabendazole, we have synthesized the title compound.

In the title complex (Fig. 1), the CuII ion is five-coordinated in a distorted square-pyramidal geometry by two N atoms from a 1H-2-(4-thiazol-2-yl)benzimidazole ligand, one O atom from an ethanol molecule and two Cl atoms (Table 1). The dihedral angle between the imidazole ring (C5, C6, C7, N2, N3) and the thiazole ring (N1, S1, C8, C9, C12) is 3.8 (1)°. O—H···Cl and N—H···Cl hydrogen bonds link the complex molecules into a layer parallel to (100) (Fig. 2, Table 2). ππ interactions between the thiazole rings are observed [centroid–centroid distance = 3.749 (3) Å].

For related thiabendazole complexes, see: Devereux et al. (2007); Umadevi et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound.
Dichlorido(ethanol-κO)[2-(1,3-thiazol-4-yl-κN)-1H- benzimidazole-κN3]copper(II) top
Crystal data top
[CuCl2(C10H7N3S)(C2H6O)]F(000) = 772
Mr = 381.75Dx = 1.733 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2962 reflections
a = 13.928 (5) Åθ = 2.5–28.0°
b = 7.473 (3) ŵ = 2.00 mm1
c = 16.653 (4) ÅT = 296 K
β = 122.43 (2)°Block, blue
V = 1463.0 (9) Å30.35 × 0.33 × 0.32 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
2563 independent reflections
Radiation source: fine-focus sealed tube2139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.542, Tmax = 0.567k = 88
7540 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.818P]
where P = (Fo2 + 2Fc2)/3
2563 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.58 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
[CuCl2(C10H7N3S)(C2H6O)]V = 1463.0 (9) Å3
Mr = 381.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.928 (5) ŵ = 2.00 mm1
b = 7.473 (3) ÅT = 296 K
c = 16.653 (4) Å0.35 × 0.33 × 0.32 mm
β = 122.43 (2)°
Data collection top
Bruker APEX CCD
diffractometer
2563 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2139 reflections with I > 2σ(I)
Tmin = 0.542, Tmax = 0.567Rint = 0.036
7540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.109H-atom parameters constrained
S = 1.12Δρmax = 0.58 e Å3
2563 reflectionsΔρmin = 0.32 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.63072 (4)0.19084 (6)0.14281 (3)0.03262 (17)
Cl10.51582 (8)0.09392 (13)0.29888 (6)0.0417 (3)
Cl20.76893 (8)0.27324 (14)0.16501 (7)0.0424 (3)
S10.31736 (8)0.12748 (15)0.12506 (7)0.0451 (3)
O10.6837 (2)0.1091 (4)0.0919 (2)0.0475 (7)
H140.62870.14240.14280.071*
N10.4997 (2)0.1642 (4)0.1231 (2)0.0323 (7)
N20.7045 (2)0.2934 (4)0.0093 (2)0.0305 (6)
N30.6867 (2)0.3619 (4)0.1119 (2)0.0347 (7)
H130.65610.37390.14480.042*
C10.8865 (3)0.4787 (5)0.2244 (3)0.0438 (9)
H10.87860.50810.27490.053*
C20.9871 (3)0.5050 (5)0.2291 (3)0.0467 (10)
H21.04880.55280.28440.056*
C30.9993 (3)0.4623 (6)0.1540 (3)0.0475 (10)
H31.06860.48370.16000.057*
C40.9115 (3)0.3892 (6)0.0708 (3)0.0418 (9)
H40.92060.36010.02110.050*
C50.8079 (3)0.3602 (5)0.0638 (2)0.0333 (8)
C60.7975 (3)0.4063 (5)0.1408 (2)0.0342 (8)
C70.6359 (3)0.2965 (4)0.0229 (2)0.0296 (7)
C80.5201 (3)0.2321 (4)0.0382 (2)0.0302 (7)
C90.3960 (3)0.1024 (5)0.1753 (3)0.0397 (9)
H90.36750.04960.23440.048*
C100.8827 (4)0.1291 (9)0.0142 (4)0.0862 (18)
H10A0.88440.00060.01460.129*
H10B0.95240.17450.02350.129*
H10C0.87410.17090.06450.129*
C110.7867 (4)0.1919 (7)0.0774 (4)0.0655 (13)
H11A0.79750.15830.12830.079*
H11B0.78090.32120.07700.079*
C120.4314 (3)0.2252 (5)0.0274 (3)0.0384 (9)
H120.43170.26730.02530.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0366 (3)0.0378 (3)0.0267 (3)0.00281 (18)0.0191 (2)0.00050 (18)
Cl10.0483 (6)0.0476 (6)0.0280 (5)0.0005 (4)0.0197 (4)0.0028 (4)
Cl20.0430 (5)0.0529 (6)0.0393 (5)0.0029 (4)0.0274 (5)0.0034 (4)
S10.0340 (5)0.0540 (6)0.0464 (6)0.0062 (4)0.0211 (5)0.0006 (5)
O10.0417 (15)0.0473 (17)0.0467 (17)0.0008 (12)0.0193 (14)0.0040 (13)
N10.0334 (16)0.0382 (17)0.0231 (15)0.0026 (13)0.0137 (13)0.0001 (12)
N20.0326 (15)0.0330 (16)0.0249 (15)0.0019 (12)0.0148 (13)0.0014 (12)
N30.0389 (17)0.0408 (17)0.0282 (16)0.0026 (13)0.0205 (14)0.0046 (13)
C10.054 (2)0.036 (2)0.036 (2)0.0076 (18)0.0208 (19)0.0076 (17)
C20.045 (2)0.037 (2)0.039 (2)0.0134 (17)0.0101 (19)0.0046 (17)
C30.036 (2)0.048 (2)0.049 (2)0.0072 (18)0.0173 (19)0.005 (2)
C40.036 (2)0.053 (2)0.038 (2)0.0038 (17)0.0209 (18)0.0017 (18)
C50.0335 (19)0.0355 (19)0.027 (2)0.0027 (15)0.0140 (16)0.0004 (15)
C60.0348 (19)0.0333 (19)0.031 (2)0.0009 (15)0.0156 (16)0.0006 (15)
C70.0353 (19)0.0267 (18)0.0276 (19)0.0005 (14)0.0173 (16)0.0008 (14)
C80.0369 (19)0.0245 (17)0.0303 (19)0.0007 (14)0.0188 (16)0.0046 (14)
C90.042 (2)0.044 (2)0.032 (2)0.0075 (17)0.0193 (18)0.0026 (17)
C100.056 (3)0.086 (4)0.088 (4)0.008 (3)0.019 (3)0.006 (3)
C110.070 (3)0.054 (3)0.072 (4)0.009 (2)0.038 (3)0.008 (2)
C120.042 (2)0.040 (2)0.038 (2)0.0013 (16)0.0257 (19)0.0007 (17)
Geometric parameters (Å, º) top
Cu1—N12.030 (3)C1—H10.9300
Cu1—N22.033 (3)C2—C31.387 (6)
Cu1—Cl12.3194 (12)C2—H20.9300
Cu1—Cl22.2328 (12)C3—C41.377 (5)
Cu1—O12.370 (3)C3—H30.9300
S1—C91.707 (4)C4—C51.400 (5)
S1—C121.712 (4)C4—H40.9300
O1—C111.459 (5)C5—C61.408 (5)
O1—H140.8200C7—C81.451 (5)
N1—C91.308 (5)C8—C121.343 (5)
N1—C81.379 (5)C9—H90.9300
N2—C71.324 (4)C10—C111.466 (7)
N2—C51.388 (4)C10—H10A0.9600
N3—C71.346 (5)C10—H10B0.9600
N3—C61.389 (4)C10—H10C0.9600
N3—H130.8600C11—H11A0.9700
C1—C21.375 (6)C11—H11B0.9700
C1—C61.385 (5)C12—H120.9300
N1—Cu1—N280.28 (12)C3—C4—H4121.1
N1—Cu1—Cl2169.60 (9)C5—C4—H4121.1
N2—Cu1—Cl295.86 (9)N2—C5—C4131.8 (3)
N1—Cu1—Cl190.62 (9)N2—C5—C6108.8 (3)
N2—Cu1—Cl1169.49 (9)C4—C5—C6119.4 (3)
Cl2—Cu1—Cl192.21 (4)C1—C6—N3132.1 (3)
N1—Cu1—O189.08 (10)C1—C6—C5122.5 (3)
N2—Cu1—O195.01 (11)N3—C6—C5105.4 (3)
Cl2—Cu1—O1100.92 (7)N2—C7—N3112.7 (3)
Cl1—Cu1—O190.06 (8)N2—C7—C8118.8 (3)
C9—S1—C1290.03 (18)N3—C7—C8128.5 (3)
C11—O1—Cu1123.4 (3)C12—C8—N1115.1 (3)
C11—O1—H14109.5C12—C8—C7132.4 (3)
Cu1—O1—H1488.7N1—C8—C7112.5 (3)
C9—N1—C8111.0 (3)N1—C9—S1114.0 (3)
C9—N1—Cu1134.1 (3)N1—C9—H9123.0
C8—N1—Cu1114.8 (2)S1—C9—H9123.0
C7—N2—C5105.8 (3)C11—C10—H10A109.5
C7—N2—Cu1113.5 (2)C11—C10—H10B109.5
C5—N2—Cu1140.6 (2)H10A—C10—H10B109.5
C7—N3—C6107.3 (3)C11—C10—H10C109.5
C7—N3—H13126.3H10A—C10—H10C109.5
C6—N3—H13126.4H10B—C10—H10C109.5
C2—C1—C6116.6 (4)O1—C11—C10107.6 (4)
C2—C1—H1121.7O1—C11—H11A110.2
C6—C1—H1121.7C10—C11—H11A110.2
C1—C2—C3122.0 (4)O1—C11—H11B110.2
C1—C2—H2119.0C10—C11—H11B110.2
C3—C2—H2119.0H11A—C11—H11B108.5
C4—C3—C2121.7 (4)C8—C12—S1109.9 (3)
C4—C3—H3119.1C8—C12—H12125.1
C2—C3—H3119.1S1—C12—H12125.1
C3—C4—C5117.7 (4)
N1—Cu1—O1—C11174.0 (3)C2—C1—C6—N3179.7 (4)
N2—Cu1—O1—C1193.8 (3)C2—C1—C6—C50.3 (6)
Cl2—Cu1—O1—C113.1 (3)C7—N3—C6—C1179.7 (4)
Cl1—Cu1—O1—C1195.4 (3)C7—N3—C6—C50.8 (4)
N2—Cu1—N1—C9179.9 (4)N2—C5—C6—C1179.3 (3)
Cl2—Cu1—N1—C9111.0 (5)C4—C5—C6—C10.5 (6)
Cl1—Cu1—N1—C95.2 (3)N2—C5—C6—N31.1 (4)
O1—Cu1—N1—C984.9 (4)C4—C5—C6—N3180.0 (3)
N2—Cu1—N1—C83.3 (2)C5—N2—C7—N30.4 (4)
Cl2—Cu1—N1—C865.6 (6)Cu1—N2—C7—N3178.9 (2)
Cl1—Cu1—N1—C8171.4 (2)C5—N2—C7—C8179.4 (3)
O1—Cu1—N1—C898.5 (2)Cu1—N2—C7—C80.9 (4)
N1—Cu1—N2—C71.2 (2)C6—N3—C7—N20.3 (4)
Cl2—Cu1—N2—C7169.0 (2)C6—N3—C7—C8179.9 (3)
Cl1—Cu1—N2—C729.1 (6)C9—N1—C8—C121.4 (4)
O1—Cu1—N2—C789.4 (2)Cu1—N1—C8—C12175.9 (2)
N1—Cu1—N2—C5176.5 (4)C9—N1—C8—C7178.1 (3)
Cl2—Cu1—N2—C513.2 (4)Cu1—N1—C8—C74.5 (4)
Cl1—Cu1—N2—C5153.1 (4)N2—C7—C8—C12177.0 (4)
O1—Cu1—N2—C588.3 (4)N3—C7—C8—C123.2 (6)
C6—C1—C2—C30.3 (6)N2—C7—C8—N13.7 (4)
C1—C2—C3—C40.8 (7)N3—C7—C8—N1176.2 (3)
C2—C3—C4—C50.6 (6)C8—N1—C9—S11.2 (4)
C7—N2—C5—C4179.6 (4)Cu1—N1—C9—S1175.49 (19)
Cu1—N2—C5—C42.5 (7)C12—S1—C9—N10.6 (3)
C7—N2—C5—C60.9 (4)Cu1—O1—C11—C1078.2 (5)
Cu1—N2—C5—C6178.8 (3)N1—C8—C12—S11.0 (4)
C3—C4—C5—N2178.6 (4)C7—C8—C12—S1178.4 (3)
C3—C4—C5—C60.0 (5)C9—S1—C12—C80.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H14···Cl1i0.822.603.246 (3)136
N3—H13···Cl1ii0.862.593.431 (4)165
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuCl2(C10H7N3S)(C2H6O)]
Mr381.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.928 (5), 7.473 (3), 16.653 (4)
β (°) 122.43 (2)
V3)1463.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.35 × 0.33 × 0.32
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.542, 0.567
No. of measured, independent and
observed [I > 2σ(I)] reflections
7540, 2563, 2139
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.109, 1.12
No. of reflections2563
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.32

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.030 (3)Cu1—Cl22.2328 (12)
Cu1—N22.033 (3)Cu1—O12.370 (3)
Cu1—Cl12.3194 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H14···Cl1i0.822.603.246 (3)136
N3—H13···Cl1ii0.862.593.431 (4)165
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Scientific Research Program of the Education Department of Guangxi Zhuang Autonomous Region (project No. 201010LX081) and the Scientific Research Program of Guangxi University for Nationalities (project No. 2010QD019).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevereux, M., Shea, D. O., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, E., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881–892.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUmadevi, B., Muthiah, P. T., Shui, X. & Eggleston, D. S. (1995). Inorg. Chim. Acta, 234, 149–152.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds