metal-organic compounds
Dichlorido(ethanol-κO)[2-(1,3-thiazol-4-yl-κN)-1H-benzimidazole-κN3]copper(II)
aCollege of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bKey Laboratory of Development & Application of Forest Chemicals of Guangxi, Nanning 530006, People's Republic of China
*Correspondence e-mail: 497426630@qq.com
In the title complex, [CuCl2(C10H7N3S)(C2H5OH)], the CuII ion is five-coordinated in a distorted square-pyramidal geometry by two N atoms from a 2-(1,3-thiazol-4-yl)-1H-benzimidazole ligand, one O atom from an ethanol molecule and two Cl atoms. In the crystal, O—H⋯Cl and N—H⋯Cl hydrogen bonds link the complex molecules into a layer parallel to (100). π–π interactions between the thiazole rings are observed [centroid–centroid distance = 3.749 (3) Å].
Related literature
For related thiabendazole complexes, see: Devereux et al. (2007); Umadevi et al. (1995).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536812013037/hy2524sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812013037/hy2524Isup2.hkl
The title compound was prepared by the reaction of thiabendazole (1.5 mol) with cupric chloride (1 mol) in ethanol, with stirring at 343 K for 5 h and then filtered. The filtrate was kept at room temperature and three days later X-ray quality blue block-shaped single crystals were obtained.
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (methylene), 0.96 (methyl) and N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N). H atom of hydroxyl group was found from a difference Fourier map and refined as riding, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).
As we know, thiabendazole, 2-(4-thiazolyl)benzimidazole, is widely used as a kind of anthelmintic. However, the insolubility in water restrict its potential efficacy. Thiabendazole has three N and one S atoms, easy to coordinate with non-toxic metals (Devereux et al., 2007; Umadevi et al., 1995). These metal-organic compounds would be more water soluble, yet retain the biological activity of the base. As part of our studies of researching the properties and effects of metal complexes of thiabendazole, we have synthesized the title compound.
In the title complex (Fig. 1), the CuII ion is five-coordinated in a distorted square-pyramidal geometry by two N atoms from a 1H-2-(4-thiazol-2-yl)benzimidazole ligand, one O atom from an ethanol molecule and two Cl atoms (Table 1). The dihedral angle between the imidazole ring (C5, C6, C7, N2, N3) and the thiazole ring (N1, S1, C8, C9, C12) is 3.8 (1)°. O—H···Cl and N—H···Cl hydrogen bonds link the complex molecules into a layer parallel to (100) (Fig. 2, Table 2). π–π interactions between the thiazole rings are observed [centroid–centroid distance = 3.749 (3) Å].
For related thiabendazole complexes, see: Devereux et al. (2007); Umadevi et al. (1995).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing diagram of the title compound. |
[CuCl2(C10H7N3S)(C2H6O)] | F(000) = 772 |
Mr = 381.75 | Dx = 1.733 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2962 reflections |
a = 13.928 (5) Å | θ = 2.5–28.0° |
b = 7.473 (3) Å | µ = 2.00 mm−1 |
c = 16.653 (4) Å | T = 296 K |
β = 122.43 (2)° | Block, blue |
V = 1463.0 (9) Å3 | 0.35 × 0.33 × 0.32 mm |
Z = 4 |
Bruker APEX CCD diffractometer | 2563 independent reflections |
Radiation source: fine-focus sealed tube | 2139 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
φ and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −16→16 |
Tmin = 0.542, Tmax = 0.567 | k = −8→8 |
7540 measured reflections | l = −19→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0577P)2 + 0.818P] where P = (Fo2 + 2Fc2)/3 |
2563 reflections | (Δ/σ)max = 0.001 |
182 parameters | Δρmax = 0.58 e Å−3 |
1 restraint | Δρmin = −0.32 e Å−3 |
[CuCl2(C10H7N3S)(C2H6O)] | V = 1463.0 (9) Å3 |
Mr = 381.75 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.928 (5) Å | µ = 2.00 mm−1 |
b = 7.473 (3) Å | T = 296 K |
c = 16.653 (4) Å | 0.35 × 0.33 × 0.32 mm |
β = 122.43 (2)° |
Bruker APEX CCD diffractometer | 2563 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2139 reflections with I > 2σ(I) |
Tmin = 0.542, Tmax = 0.567 | Rint = 0.036 |
7540 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 1 restraint |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.58 e Å−3 |
2563 reflections | Δρmin = −0.32 e Å−3 |
182 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.63072 (4) | 0.19084 (6) | −0.14281 (3) | 0.03262 (17) | |
Cl1 | 0.51582 (8) | 0.09392 (13) | −0.29888 (6) | 0.0417 (3) | |
Cl2 | 0.76893 (8) | 0.27324 (14) | −0.16501 (7) | 0.0424 (3) | |
S1 | 0.31736 (8) | 0.12748 (15) | −0.12506 (7) | 0.0451 (3) | |
O1 | 0.6837 (2) | −0.1091 (4) | −0.0919 (2) | 0.0475 (7) | |
H14 | 0.6287 | −0.1424 | −0.1428 | 0.071* | |
N1 | 0.4997 (2) | 0.1642 (4) | −0.1231 (2) | 0.0323 (7) | |
N2 | 0.7045 (2) | 0.2934 (4) | −0.0093 (2) | 0.0305 (6) | |
N3 | 0.6867 (2) | 0.3619 (4) | 0.1119 (2) | 0.0347 (7) | |
H13 | 0.6561 | 0.3739 | 0.1448 | 0.042* | |
C1 | 0.8865 (3) | 0.4787 (5) | 0.2244 (3) | 0.0438 (9) | |
H1 | 0.8786 | 0.5081 | 0.2749 | 0.053* | |
C2 | 0.9871 (3) | 0.5050 (5) | 0.2291 (3) | 0.0467 (10) | |
H2 | 1.0488 | 0.5528 | 0.2844 | 0.056* | |
C3 | 0.9993 (3) | 0.4623 (6) | 0.1540 (3) | 0.0475 (10) | |
H3 | 1.0686 | 0.4837 | 0.1600 | 0.057* | |
C4 | 0.9115 (3) | 0.3892 (6) | 0.0708 (3) | 0.0418 (9) | |
H4 | 0.9206 | 0.3601 | 0.0211 | 0.050* | |
C5 | 0.8079 (3) | 0.3602 (5) | 0.0638 (2) | 0.0333 (8) | |
C6 | 0.7975 (3) | 0.4063 (5) | 0.1408 (2) | 0.0342 (8) | |
C7 | 0.6359 (3) | 0.2965 (4) | 0.0229 (2) | 0.0296 (7) | |
C8 | 0.5201 (3) | 0.2321 (4) | −0.0382 (2) | 0.0302 (7) | |
C9 | 0.3960 (3) | 0.1024 (5) | −0.1753 (3) | 0.0397 (9) | |
H9 | 0.3675 | 0.0496 | −0.2344 | 0.048* | |
C10 | 0.8827 (4) | −0.1291 (9) | 0.0142 (4) | 0.0862 (18) | |
H10A | 0.8844 | −0.0006 | 0.0146 | 0.129* | |
H10B | 0.9524 | −0.1745 | 0.0235 | 0.129* | |
H10C | 0.8741 | −0.1709 | 0.0645 | 0.129* | |
C11 | 0.7867 (4) | −0.1919 (7) | −0.0774 (4) | 0.0655 (13) | |
H11A | 0.7975 | −0.1583 | −0.1283 | 0.079* | |
H11B | 0.7809 | −0.3212 | −0.0770 | 0.079* | |
C12 | 0.4314 (3) | 0.2252 (5) | −0.0274 (3) | 0.0384 (9) | |
H12 | 0.4317 | 0.2673 | 0.0253 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0366 (3) | 0.0378 (3) | 0.0267 (3) | −0.00281 (18) | 0.0191 (2) | −0.00050 (18) |
Cl1 | 0.0483 (6) | 0.0476 (6) | 0.0280 (5) | −0.0005 (4) | 0.0197 (4) | −0.0028 (4) |
Cl2 | 0.0430 (5) | 0.0529 (6) | 0.0393 (5) | −0.0029 (4) | 0.0274 (5) | 0.0034 (4) |
S1 | 0.0340 (5) | 0.0540 (6) | 0.0464 (6) | −0.0062 (4) | 0.0211 (5) | −0.0006 (5) |
O1 | 0.0417 (15) | 0.0473 (17) | 0.0467 (17) | 0.0008 (12) | 0.0193 (14) | 0.0040 (13) |
N1 | 0.0334 (16) | 0.0382 (17) | 0.0231 (15) | −0.0026 (13) | 0.0137 (13) | 0.0001 (12) |
N2 | 0.0326 (15) | 0.0330 (16) | 0.0249 (15) | −0.0019 (12) | 0.0148 (13) | 0.0014 (12) |
N3 | 0.0389 (17) | 0.0408 (17) | 0.0282 (16) | −0.0026 (13) | 0.0205 (14) | −0.0046 (13) |
C1 | 0.054 (2) | 0.036 (2) | 0.036 (2) | −0.0076 (18) | 0.0208 (19) | −0.0076 (17) |
C2 | 0.045 (2) | 0.037 (2) | 0.039 (2) | −0.0134 (17) | 0.0101 (19) | −0.0046 (17) |
C3 | 0.036 (2) | 0.048 (2) | 0.049 (2) | −0.0072 (18) | 0.0173 (19) | 0.005 (2) |
C4 | 0.036 (2) | 0.053 (2) | 0.038 (2) | −0.0038 (17) | 0.0209 (18) | 0.0017 (18) |
C5 | 0.0335 (19) | 0.0355 (19) | 0.027 (2) | −0.0027 (15) | 0.0140 (16) | 0.0004 (15) |
C6 | 0.0348 (19) | 0.0333 (19) | 0.031 (2) | −0.0009 (15) | 0.0156 (16) | −0.0006 (15) |
C7 | 0.0353 (19) | 0.0267 (18) | 0.0276 (19) | 0.0005 (14) | 0.0173 (16) | 0.0008 (14) |
C8 | 0.0369 (19) | 0.0245 (17) | 0.0303 (19) | 0.0007 (14) | 0.0188 (16) | 0.0046 (14) |
C9 | 0.042 (2) | 0.044 (2) | 0.032 (2) | −0.0075 (17) | 0.0193 (18) | −0.0026 (17) |
C10 | 0.056 (3) | 0.086 (4) | 0.088 (4) | 0.008 (3) | 0.019 (3) | 0.006 (3) |
C11 | 0.070 (3) | 0.054 (3) | 0.072 (4) | 0.009 (2) | 0.038 (3) | 0.008 (2) |
C12 | 0.042 (2) | 0.040 (2) | 0.038 (2) | −0.0013 (16) | 0.0257 (19) | −0.0007 (17) |
Cu1—N1 | 2.030 (3) | C1—H1 | 0.9300 |
Cu1—N2 | 2.033 (3) | C2—C3 | 1.387 (6) |
Cu1—Cl1 | 2.3194 (12) | C2—H2 | 0.9300 |
Cu1—Cl2 | 2.2328 (12) | C3—C4 | 1.377 (5) |
Cu1—O1 | 2.370 (3) | C3—H3 | 0.9300 |
S1—C9 | 1.707 (4) | C4—C5 | 1.400 (5) |
S1—C12 | 1.712 (4) | C4—H4 | 0.9300 |
O1—C11 | 1.459 (5) | C5—C6 | 1.408 (5) |
O1—H14 | 0.8200 | C7—C8 | 1.451 (5) |
N1—C9 | 1.308 (5) | C8—C12 | 1.343 (5) |
N1—C8 | 1.379 (5) | C9—H9 | 0.9300 |
N2—C7 | 1.324 (4) | C10—C11 | 1.466 (7) |
N2—C5 | 1.388 (4) | C10—H10A | 0.9600 |
N3—C7 | 1.346 (5) | C10—H10B | 0.9600 |
N3—C6 | 1.389 (4) | C10—H10C | 0.9600 |
N3—H13 | 0.8600 | C11—H11A | 0.9700 |
C1—C2 | 1.375 (6) | C11—H11B | 0.9700 |
C1—C6 | 1.385 (5) | C12—H12 | 0.9300 |
N1—Cu1—N2 | 80.28 (12) | C3—C4—H4 | 121.1 |
N1—Cu1—Cl2 | 169.60 (9) | C5—C4—H4 | 121.1 |
N2—Cu1—Cl2 | 95.86 (9) | N2—C5—C4 | 131.8 (3) |
N1—Cu1—Cl1 | 90.62 (9) | N2—C5—C6 | 108.8 (3) |
N2—Cu1—Cl1 | 169.49 (9) | C4—C5—C6 | 119.4 (3) |
Cl2—Cu1—Cl1 | 92.21 (4) | C1—C6—N3 | 132.1 (3) |
N1—Cu1—O1 | 89.08 (10) | C1—C6—C5 | 122.5 (3) |
N2—Cu1—O1 | 95.01 (11) | N3—C6—C5 | 105.4 (3) |
Cl2—Cu1—O1 | 100.92 (7) | N2—C7—N3 | 112.7 (3) |
Cl1—Cu1—O1 | 90.06 (8) | N2—C7—C8 | 118.8 (3) |
C9—S1—C12 | 90.03 (18) | N3—C7—C8 | 128.5 (3) |
C11—O1—Cu1 | 123.4 (3) | C12—C8—N1 | 115.1 (3) |
C11—O1—H14 | 109.5 | C12—C8—C7 | 132.4 (3) |
Cu1—O1—H14 | 88.7 | N1—C8—C7 | 112.5 (3) |
C9—N1—C8 | 111.0 (3) | N1—C9—S1 | 114.0 (3) |
C9—N1—Cu1 | 134.1 (3) | N1—C9—H9 | 123.0 |
C8—N1—Cu1 | 114.8 (2) | S1—C9—H9 | 123.0 |
C7—N2—C5 | 105.8 (3) | C11—C10—H10A | 109.5 |
C7—N2—Cu1 | 113.5 (2) | C11—C10—H10B | 109.5 |
C5—N2—Cu1 | 140.6 (2) | H10A—C10—H10B | 109.5 |
C7—N3—C6 | 107.3 (3) | C11—C10—H10C | 109.5 |
C7—N3—H13 | 126.3 | H10A—C10—H10C | 109.5 |
C6—N3—H13 | 126.4 | H10B—C10—H10C | 109.5 |
C2—C1—C6 | 116.6 (4) | O1—C11—C10 | 107.6 (4) |
C2—C1—H1 | 121.7 | O1—C11—H11A | 110.2 |
C6—C1—H1 | 121.7 | C10—C11—H11A | 110.2 |
C1—C2—C3 | 122.0 (4) | O1—C11—H11B | 110.2 |
C1—C2—H2 | 119.0 | C10—C11—H11B | 110.2 |
C3—C2—H2 | 119.0 | H11A—C11—H11B | 108.5 |
C4—C3—C2 | 121.7 (4) | C8—C12—S1 | 109.9 (3) |
C4—C3—H3 | 119.1 | C8—C12—H12 | 125.1 |
C2—C3—H3 | 119.1 | S1—C12—H12 | 125.1 |
C3—C4—C5 | 117.7 (4) | ||
N1—Cu1—O1—C11 | −174.0 (3) | C2—C1—C6—N3 | 179.7 (4) |
N2—Cu1—O1—C11 | −93.8 (3) | C2—C1—C6—C5 | 0.3 (6) |
Cl2—Cu1—O1—C11 | 3.1 (3) | C7—N3—C6—C1 | 179.7 (4) |
Cl1—Cu1—O1—C11 | 95.4 (3) | C7—N3—C6—C5 | −0.8 (4) |
N2—Cu1—N1—C9 | 179.9 (4) | N2—C5—C6—C1 | −179.3 (3) |
Cl2—Cu1—N1—C9 | 111.0 (5) | C4—C5—C6—C1 | −0.5 (6) |
Cl1—Cu1—N1—C9 | 5.2 (3) | N2—C5—C6—N3 | 1.1 (4) |
O1—Cu1—N1—C9 | −84.9 (4) | C4—C5—C6—N3 | 180.0 (3) |
N2—Cu1—N1—C8 | 3.3 (2) | C5—N2—C7—N3 | 0.4 (4) |
Cl2—Cu1—N1—C8 | −65.6 (6) | Cu1—N2—C7—N3 | 178.9 (2) |
Cl1—Cu1—N1—C8 | −171.4 (2) | C5—N2—C7—C8 | −179.4 (3) |
O1—Cu1—N1—C8 | 98.5 (2) | Cu1—N2—C7—C8 | −0.9 (4) |
N1—Cu1—N2—C7 | −1.2 (2) | C6—N3—C7—N2 | 0.3 (4) |
Cl2—Cu1—N2—C7 | 169.0 (2) | C6—N3—C7—C8 | −179.9 (3) |
Cl1—Cu1—N2—C7 | 29.1 (6) | C9—N1—C8—C12 | −1.4 (4) |
O1—Cu1—N2—C7 | −89.4 (2) | Cu1—N1—C8—C12 | 175.9 (2) |
N1—Cu1—N2—C5 | 176.5 (4) | C9—N1—C8—C7 | 178.1 (3) |
Cl2—Cu1—N2—C5 | −13.2 (4) | Cu1—N1—C8—C7 | −4.5 (4) |
Cl1—Cu1—N2—C5 | −153.1 (4) | N2—C7—C8—C12 | −177.0 (4) |
O1—Cu1—N2—C5 | 88.3 (4) | N3—C7—C8—C12 | 3.2 (6) |
C6—C1—C2—C3 | 0.3 (6) | N2—C7—C8—N1 | 3.7 (4) |
C1—C2—C3—C4 | −0.8 (7) | N3—C7—C8—N1 | −176.2 (3) |
C2—C3—C4—C5 | 0.6 (6) | C8—N1—C9—S1 | 1.2 (4) |
C7—N2—C5—C4 | −179.6 (4) | Cu1—N1—C9—S1 | −175.49 (19) |
Cu1—N2—C5—C4 | 2.5 (7) | C12—S1—C9—N1 | −0.6 (3) |
C7—N2—C5—C6 | −0.9 (4) | Cu1—O1—C11—C10 | 78.2 (5) |
Cu1—N2—C5—C6 | −178.8 (3) | N1—C8—C12—S1 | 1.0 (4) |
C3—C4—C5—N2 | 178.6 (4) | C7—C8—C12—S1 | −178.4 (3) |
C3—C4—C5—C6 | 0.0 (5) | C9—S1—C12—C8 | −0.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H14···Cl1i | 0.82 | 2.60 | 3.246 (3) | 136 |
N3—H13···Cl1ii | 0.86 | 2.59 | 3.431 (4) | 165 |
Symmetry codes: (i) −x+1, y−1/2, −z−1/2; (ii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [CuCl2(C10H7N3S)(C2H6O)] |
Mr | 381.75 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 13.928 (5), 7.473 (3), 16.653 (4) |
β (°) | 122.43 (2) |
V (Å3) | 1463.0 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.00 |
Crystal size (mm) | 0.35 × 0.33 × 0.32 |
Data collection | |
Diffractometer | Bruker APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.542, 0.567 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7540, 2563, 2139 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.109, 1.12 |
No. of reflections | 2563 |
No. of parameters | 182 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.32 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—N1 | 2.030 (3) | Cu1—Cl2 | 2.2328 (12) |
Cu1—N2 | 2.033 (3) | Cu1—O1 | 2.370 (3) |
Cu1—Cl1 | 2.3194 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H14···Cl1i | 0.82 | 2.60 | 3.246 (3) | 136 |
N3—H13···Cl1ii | 0.86 | 2.59 | 3.431 (4) | 165 |
Symmetry codes: (i) −x+1, y−1/2, −z−1/2; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
This work was supported financially by the Scientific Research Program of the Education Department of Guangxi Zhuang Autonomous Region (project No. 201010LX081) and the Scientific Research Program of Guangxi University for Nationalities (project No. 2010QD019).
References
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Devereux, M., Shea, D. O., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, E., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881–892. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Umadevi, B., Muthiah, P. T., Shui, X. & Eggleston, D. S. (1995). Inorg. Chim. Acta, 234, 149–152. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As we know, thiabendazole, 2-(4-thiazolyl)benzimidazole, is widely used as a kind of anthelmintic. However, the insolubility in water restrict its potential efficacy. Thiabendazole has three N and one S atoms, easy to coordinate with non-toxic metals (Devereux et al., 2007; Umadevi et al., 1995). These metal-organic compounds would be more water soluble, yet retain the biological activity of the base. As part of our studies of researching the properties and effects of metal complexes of thiabendazole, we have synthesized the title compound.
In the title complex (Fig. 1), the CuII ion is five-coordinated in a distorted square-pyramidal geometry by two N atoms from a 1H-2-(4-thiazol-2-yl)benzimidazole ligand, one O atom from an ethanol molecule and two Cl atoms (Table 1). The dihedral angle between the imidazole ring (C5, C6, C7, N2, N3) and the thiazole ring (N1, S1, C8, C9, C12) is 3.8 (1)°. O—H···Cl and N—H···Cl hydrogen bonds link the complex molecules into a layer parallel to (100) (Fig. 2, Table 2). π–π interactions between the thiazole rings are observed [centroid–centroid distance = 3.749 (3) Å].