metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(chloridozinc)-μ-5-(1-methyl-1H-benzimidazol-2-yl-κN3)-1,2,3-triazol-1-ido-κ2N1:N3]

aSchool of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: ssccgg2005@163.com

(Received 13 March 2012; accepted 23 March 2012; online 31 March 2012)

In the title complex, [Zn(C10H8N5)Cl]n, the ZnII ion is four-coordinated by one Cl atom and three N atoms from two in situ-generated deprotonated 5-(1-methyl-1H-benzimidazol-2-yl-κN3)-1,2,3-triazol-1-ide ligands in a slightly distorted tetra­hedral geometry. The ZnII ions are bridged by the ligands, forming a helical chain along [001]. C—H⋯N and C—H⋯Cl hydrogen bonds and ππ inter­actions between the imidazole rings [centroid–centroid distance = 3.4244 (10) Å] assemble the chains into a three-dimensional supra­molecular network.

Related literature

For general background to hydro­thermal in situ reactions, see: Chen & Tong (2007[Chen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162-170.]); Zheng et al. (2009[Zheng, Y.-Z., Zhang, Y.-B., Tong, M.-L., Xue, W. & Chen, X.-M. (2009). Dalton Trans. pp. 1396-1406.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H8N5)Cl]

  • Mr = 299.03

  • Tetragonal, P 42 /n

  • a = 16.0822 (1) Å

  • c = 9.0114 (2) Å

  • V = 2330.68 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 153 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.595, Tmax = 0.801

  • 6487 measured reflections

  • 2511 independent reflections

  • 2242 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.05

  • 2511 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N5i 0.93 2.49 3.274 (2) 142
C10—H10B⋯Cl1ii 0.96 2.81 3.744 (2) 165
Symmetry codes: (i) [-y+1, x-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Hydro(solvo)thermal in situ metal-ligand reactions, as a new bridge between coordination chemistry and organic synthetic chemistry, with advantages over conventional synthetic routes have attracted intensive interest in recent years (Chen & Tong, 2007). Some hydrothermal in situ metal-ligand decarboxylation reactions have been reported in the past (Zheng et al., 2009). According to our research, we found the 5-(1-methyl-1H-benzo[d]imidazol-2-yl)-3H-1,2,3-triazole- 4-carboxylic acid ligand is unstable, when the reaction temperature is high at 160°C. The title compound was obtained by in situ decarboxylation reaction. The ZnII atom in the title compound is coordinated by one Cl atom and three N atoms from two deprotonated ligands in a distorted tetrahedral geometry (Fig. 1). The ligands bridge Zn atoms in a µ-κ3N,N':N' mode, forming a helical chain structure (Fig. 2). C—H···N and C—H···Cl hydrogen bonds (Table 1) and ππ interactions between the imidazole rings [centroid–centroid distance = 3.4244 (10) Å] assemble the chains into a three-dimensional supramolecular network (Fig. 3).

Related literature top

For general background to hydrothermal in situ reactions, see: Chen & Tong (2007); Zheng et al. (2009).

Experimental top

ZnCl2 (0.5 mmol), 5-(1-methyl-1H-benzo[d]imidazol-2-yl)-3H- 1,2,3-triazole-4-carboxylic acid (0.25 mmol) and water (9 ml) were placed in a 15 ml Teflon-lined autoclave. The autoclave was heated at 433 K for 48 h. After the autoclave was cooled to room temperature, yellow block crystals were obtained (yield: ca 41.2% based on ligand). The initial ligand 5-(1-methyl-1H-benzo[d]imidazol-2-yl)-3H-1,2,3-triazole- 4-carboxylic acid was sythesized by refluxing N-methyl-1,2-benzenediamine dihydrochloride and 1H-1,2,3-triazole-4,5-dicarboxylic acid in a 1:1 ratio in HCl (4 mol/L).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

Hydro(solvo)thermal in situ metal-ligand reactions, as a new bridge between coordination chemistry and organic synthetic chemistry, with advantages over conventional synthetic routes have attracted intensive interest in recent years (Chen & Tong, 2007). Some hydrothermal in situ metal-ligand decarboxylation reactions have been reported in the past (Zheng et al., 2009). According to our research, we found the 5-(1-methyl-1H-benzo[d]imidazol-2-yl)-3H-1,2,3-triazole- 4-carboxylic acid ligand is unstable, when the reaction temperature is high at 160°C. The title compound was obtained by in situ decarboxylation reaction. The ZnII atom in the title compound is coordinated by one Cl atom and three N atoms from two deprotonated ligands in a distorted tetrahedral geometry (Fig. 1). The ligands bridge Zn atoms in a µ-κ3N,N':N' mode, forming a helical chain structure (Fig. 2). C—H···N and C—H···Cl hydrogen bonds (Table 1) and ππ interactions between the imidazole rings [centroid–centroid distance = 3.4244 (10) Å] assemble the chains into a three-dimensional supramolecular network (Fig. 3).

For general background to hydrothermal in situ reactions, see: Chen & Tong (2007); Zheng et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) 1-y, -1/2+x, -1/2+z.]
[Figure 2] Fig. 2. The helical chain in the title complex along the c axis.
[Figure 3] Fig. 3. The three-dimensional supramolecular structure connected by hydrogen bonds (C—H···N: blue dashed lines; C—H···Cl: yellow dashed lines).
catena-Poly[(chloridozinc)-µ-5-(1-methyl-1H-benzimidazol- 2-yl-κN3)-1,2,3-triazol-1-ido-κ2N1:N3] top
Crystal data top
[Zn(C10H8N5)Cl]Dx = 1.704 Mg m3
Mr = 299.03Melting point: 178 K
Tetragonal, P42/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 4bcCell parameters from 3164 reflections
a = 16.0822 (1) Åθ = 2.8–27.6°
c = 9.0114 (2) ŵ = 2.32 mm1
V = 2330.68 (6) Å3T = 153 K
Z = 8Block, yellow
F(000) = 12000.25 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2511 independent reflections
Radiation source: fine-focus sealed tube2242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2019
Tmin = 0.595, Tmax = 0.801k = 2011
6487 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0248P)2 + 1.2538P]
where P = (Fo2 + 2Fc2)/3
2511 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn(C10H8N5)Cl]Z = 8
Mr = 299.03Mo Kα radiation
Tetragonal, P42/nµ = 2.32 mm1
a = 16.0822 (1) ÅT = 153 K
c = 9.0114 (2) Å0.25 × 0.20 × 0.10 mm
V = 2330.68 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2511 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2242 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.801Rint = 0.022
6487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
2511 reflectionsΔρmin = 0.32 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.885173 (13)0.359714 (13)0.23661 (2)0.01485 (8)
Cl10.98564 (3)0.32498 (3)0.08256 (5)0.02279 (12)
N40.86431 (9)0.22361 (10)0.63125 (16)0.0164 (3)
N10.89656 (9)0.46000 (9)0.37457 (16)0.0150 (3)
N30.87375 (10)0.29967 (9)0.43575 (16)0.0158 (3)
C30.88790 (11)0.43874 (11)0.51738 (19)0.0143 (4)
N20.88891 (9)0.50546 (9)0.60836 (16)0.0156 (3)
N50.86571 (10)0.22235 (10)0.48211 (16)0.0174 (3)
C90.89630 (11)0.57556 (11)0.5191 (2)0.0171 (4)
C100.87849 (13)0.50517 (12)0.7694 (2)0.0224 (4)
H10A0.82030.50440.79310.034*
H10B0.90350.55420.81060.034*
H10C0.90480.45670.81020.034*
C20.87783 (11)0.35173 (11)0.5545 (2)0.0146 (4)
C40.90207 (11)0.54619 (11)0.3728 (2)0.0164 (4)
C80.89762 (13)0.65991 (12)0.5530 (2)0.0242 (4)
H80.89370.67900.65010.029*
C10.87145 (12)0.30313 (11)0.6796 (2)0.0175 (4)
H10.87190.32120.77760.021*
C70.90506 (14)0.71385 (13)0.4342 (2)0.0294 (5)
H70.90490.77080.45190.035*
C60.91287 (14)0.68529 (13)0.2877 (2)0.0269 (5)
H60.91870.72370.21130.032*
C50.91205 (12)0.60159 (12)0.2543 (2)0.0207 (4)
H50.91790.58280.15730.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01681 (12)0.01827 (12)0.00945 (12)0.00095 (8)0.00090 (8)0.00094 (8)
Cl10.0229 (2)0.0266 (2)0.0189 (2)0.0002 (2)0.00538 (18)0.00207 (19)
N40.0217 (8)0.0182 (8)0.0093 (7)0.0009 (7)0.0008 (6)0.0005 (6)
N10.0151 (7)0.0163 (7)0.0136 (7)0.0006 (6)0.0009 (6)0.0009 (6)
N30.0202 (8)0.0158 (8)0.0115 (7)0.0012 (6)0.0002 (6)0.0006 (6)
C30.0120 (8)0.0170 (9)0.0139 (8)0.0010 (7)0.0004 (7)0.0008 (7)
N20.0168 (7)0.0164 (7)0.0137 (8)0.0026 (6)0.0004 (6)0.0006 (6)
N50.0232 (8)0.0181 (8)0.0108 (7)0.0002 (7)0.0002 (6)0.0029 (6)
C90.0143 (9)0.0185 (9)0.0185 (9)0.0004 (7)0.0013 (7)0.0023 (7)
C100.0319 (11)0.0227 (10)0.0126 (9)0.0054 (9)0.0021 (8)0.0028 (7)
C20.0142 (8)0.0177 (9)0.0119 (9)0.0005 (7)0.0002 (7)0.0022 (7)
C40.0127 (8)0.0177 (9)0.0187 (9)0.0018 (7)0.0018 (7)0.0013 (7)
C80.0301 (11)0.0202 (10)0.0222 (10)0.0013 (9)0.0004 (9)0.0028 (8)
C10.0222 (9)0.0181 (9)0.0121 (8)0.0004 (8)0.0011 (7)0.0018 (7)
C70.0396 (13)0.0161 (10)0.0325 (12)0.0029 (9)0.0025 (10)0.0010 (9)
C60.0338 (12)0.0214 (10)0.0253 (11)0.0045 (9)0.0019 (9)0.0084 (9)
C50.0210 (10)0.0228 (10)0.0184 (10)0.0022 (8)0.0020 (8)0.0040 (8)
Geometric parameters (Å, º) top
Zn1—N4i1.9920 (15)C9—C81.391 (3)
Zn1—N12.0445 (15)C9—C41.404 (3)
Zn1—N32.0461 (15)C10—H10A0.9600
Zn1—Cl12.2022 (5)C10—H10B0.9600
N4—N51.344 (2)C10—H10C0.9600
N4—C11.356 (2)C2—C11.376 (3)
N4—Zn1ii1.9920 (15)C4—C51.400 (3)
N1—C31.339 (2)C8—C71.383 (3)
N1—C41.389 (2)C8—H80.9300
N3—N51.318 (2)C1—H10.9300
N3—C21.360 (2)C7—C61.403 (3)
C3—N21.351 (2)C7—H70.9300
C3—C21.448 (2)C6—C51.380 (3)
N2—C91.390 (2)C6—H60.9300
N2—C101.461 (2)C5—H50.9300
N4i—Zn1—N1109.83 (6)N2—C10—H10B109.5
N4i—Zn1—N3110.90 (6)H10A—C10—H10B109.5
N1—Zn1—N381.20 (6)N2—C10—H10C109.5
N4i—Zn1—Cl1110.69 (5)H10A—C10—H10C109.5
N1—Zn1—Cl1121.17 (4)H10B—C10—H10C109.5
N3—Zn1—Cl1119.94 (5)N3—C2—C1106.92 (16)
N5—N4—C1109.51 (15)N3—C2—C3114.77 (16)
N5—N4—Zn1ii117.63 (12)C1—C2—C3138.31 (17)
C1—N4—Zn1ii132.73 (12)N1—C4—C5130.65 (18)
C3—N1—C4105.82 (15)N1—C4—C9108.71 (16)
C3—N1—Zn1111.95 (12)C5—C4—C9120.64 (17)
C4—N1—Zn1141.79 (12)C7—C8—C9116.31 (18)
N5—N3—C2109.65 (14)C7—C8—H8121.8
N5—N3—Zn1137.05 (12)C9—C8—H8121.8
C2—N3—Zn1113.26 (12)N4—C1—C2106.21 (16)
N1—C3—N2112.29 (16)N4—C1—H1126.9
N1—C3—C2118.70 (16)C2—C1—H1126.9
N2—C3—C2128.99 (16)C8—C7—C6122.04 (19)
C3—N2—C9107.11 (15)C8—C7—H7119.0
C3—N2—C10126.80 (16)C6—C7—H7119.0
C9—N2—C10125.97 (16)C5—C6—C7121.60 (19)
N3—N5—N4107.71 (14)C5—C6—H6119.2
N2—C9—C8131.72 (17)C7—C6—H6119.2
N2—C9—C4106.03 (16)C6—C5—C4117.12 (18)
C8—C9—C4122.24 (17)C6—C5—H5121.4
N2—C10—H10A109.5C4—C5—H5121.4
Symmetry codes: (i) y+1, x1/2, z1/2; (ii) y+1/2, x+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N5iii0.932.493.274 (2)142
C10—H10B···Cl1iv0.962.813.744 (2)165
Symmetry codes: (iii) y+1, x1/2, z+1/2; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C10H8N5)Cl]
Mr299.03
Crystal system, space groupTetragonal, P42/n
Temperature (K)153
a, c (Å)16.0822 (1), 9.0114 (2)
V3)2330.68 (6)
Z8
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.595, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
6487, 2511, 2242
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.05
No. of reflections2511
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N5i0.932.493.274 (2)142
C10—H10B···Cl1ii0.962.813.744 (2)165
Symmetry codes: (i) y+1, x1/2, z+1/2; (ii) x+2, y+1, z+1.
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant No. 20803058) for generously supporting this study.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162–170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y.-Z., Zhang, Y.-B., Tong, M.-L., Xue, W. & Chen, X.-M. (2009). Dalton Trans. pp. 1396–1406.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds