organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Hy­dr­oxy-3,5-dimeth­­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,5,6,7,9-hexa­hydro-1H-xanthene-1,8(2H)-dione

aDepartment of Chemistry, Annamalai University, Annamalai nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: saisukanyashri@gmail.com

(Received 27 January 2012; accepted 8 March 2012; online 14 March 2012)

In the title compound, C25H30O6, the two fused cyclo­hexa­none rings have envelope conformations, whereas the central pyran ring is roughly planar [mximum deviation = 0.045 (2) Å]. The pyran and benzene rings are almost perpendicular to each other, making a dihedral angle of 86.32 (2)°. In the crystal, molecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For the synthesis of xanthenes, see: Vang & Stankevich (1960[Vang, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287.]); Hilderbrand & Weissleder (2007[Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.]). For their pharmaceutical properties, see: Lambert et al. (1997[Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9 706 178.]); Poupelin et al. (1978[Poupelin, J. P., Rut, G. S., Blanpin, O. F., Narcisse, G., Ernouf, G. U. & Lacroise, R. (1978). Eur. J. Med. Chem. 13, 67-71.]); Hideo (1981[Hideo, T. (1981). Jpn Tokkyo Koho JP 56 005 480.]); Selvanayagam et al. (1996[Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishnan, K., Rao, R. B., Sivaraman, R. E. & Subramanian, K. (1996). J. Nat. Prod. 59, 664-667.]); Jonathan et al. (1988[Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111-117.]). For related structures, see Mehdi et al. (2011[Mehdi, S. H., Hashim, R., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1449.]); Odabasoglu et al. (2008[Odabaşoğlu, M., Kaya, M., Yıldırır, Y. & Büyükgüngör, O. (2008). Acta Cryst. E64, o681.]). For the assignment of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H30O6

  • Mr = 426.49

  • Triclinic, [P \overline 1]

  • a = 9.4268 (9) Å

  • b = 10.2468 (10) Å

  • c = 12.6122 (11) Å

  • α = 84.973 (6)°

  • β = 70.377 (5)°

  • γ = 75.676 (6)°

  • V = 1111.83 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.982

  • 20849 measured reflections

  • 5233 independent reflections

  • 2876 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.157

  • S = 0.98

  • 5233 reflections

  • 288 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.82 2.02 2.762 (2) 151
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Xanthene is the parent compound of a number of naturally occurring substances and some synthetic dyes. Xanthene derivatives are used as dyes (Hilderbrand & Weissleder, 2007) and they possess biological properties like antibacterial, antiviral, anti-inflammatory (Jonathan et al., 1988) activities and are therefore used in medicine. Ehretianone, a quinonoid xanthene was reported to possess antisnake venom activity (Selvanayagam et al., 1996; Lambert et al., 1997; Poupelin et al., 1978; Hideo, 1981).

In the title compound (I), the cyclohexenone rings C1–C6 and C8–C13 both adopt an envelope conformation. In contrast, the pyran ring (O1/C1/C6/C8/C13) is almost planar with a slight deviation of C7 (0.99 Å) from the (C8/C13/O1/C1/C6) plane. The pyran ring and phenyl ring are almost perpendicular to one another making a dihedral angle of 86.32 (2)°. The bond lengths and angles are consistent with the reported structure (Odabasoglu et al., 2008; Mehdi et al., 2011). In the crystal structure, a relatively short intermolecular O5—H5···O2 hydrogen bond leads to the observation of centrosymmetrical dimers.

Related literature top

For the synthesis of xanthenes, see: Vang & Stankevich (1960); Hilderbrand & Weissleder (2007). For their pharmaceutical properties, see: Lambert et al. (1997); Poupelin et al. (1978); Hideo (1981); Selvanayagam et al. (1996); Jonathan et al. (1988). For related structures, see Mehdi et al. (2011); Odabasoglu et al. (2008). For the assignment of ring conformations, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared in two stages (Vang & Stankevich, 1960). In the first stage, a mixture of 4-hydroxy-3,5-dimethoxybenzaldehyde (0.5 g, 8 m mol), 5,5-dimethylcyclohexane-1,3-dione (1.15 g, 1.6 mmol) and 10 ml of ethanol was heated to 70°C for about 10 minutes. The reaction mixture was allowed to cool to room temperature and the resulting solid intermediate 2,2'-((4-hydroxy-3,5-dimethoxyphenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) was filtered and dried. In the second stage, about 0.5 g of this intermediate were dissolved in 25 ml of ethanol. The content was refluxed together with 15 drops of concentrated hydrochloric acid for 30 minutes with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and stirred well. The solid separated was filtered, dried and then recrystallized from ethanol to yield colourless crystals of t he title compound (m.p. 490–492 K; yield: 85%).

Refinement top

All hydrogen atoms of the title compound were identified from the difference electron map and subsequently treated as riding atoms with distances of d(C–H) = 0.96 Å (for CH3) with Uiso(H) = 1.5 Ueq(C), d(C–H) = 0.97 Å (for CH2) with Uiso(H) = 1.2 Ueq(C), d(C–H) = 0.98 Å (for CH) with Uiso(H) = 1.5 Ueq(C) and d(C–H) = 0.93 Å (for aromatic CH) with Uiso(H) = 1.2 Ueq(C). The hydroxyl hydrogen atom was also identified from the difference electron map and was allowed to ride on the parent O atom with d(O–H) = 0.82 Å and Uiso(H) = 1.5 Ueq(O).

Structure description top

Xanthene is the parent compound of a number of naturally occurring substances and some synthetic dyes. Xanthene derivatives are used as dyes (Hilderbrand & Weissleder, 2007) and they possess biological properties like antibacterial, antiviral, anti-inflammatory (Jonathan et al., 1988) activities and are therefore used in medicine. Ehretianone, a quinonoid xanthene was reported to possess antisnake venom activity (Selvanayagam et al., 1996; Lambert et al., 1997; Poupelin et al., 1978; Hideo, 1981).

In the title compound (I), the cyclohexenone rings C1–C6 and C8–C13 both adopt an envelope conformation. In contrast, the pyran ring (O1/C1/C6/C8/C13) is almost planar with a slight deviation of C7 (0.99 Å) from the (C8/C13/O1/C1/C6) plane. The pyran ring and phenyl ring are almost perpendicular to one another making a dihedral angle of 86.32 (2)°. The bond lengths and angles are consistent with the reported structure (Odabasoglu et al., 2008; Mehdi et al., 2011). In the crystal structure, a relatively short intermolecular O5—H5···O2 hydrogen bond leads to the observation of centrosymmetrical dimers.

For the synthesis of xanthenes, see: Vang & Stankevich (1960); Hilderbrand & Weissleder (2007). For their pharmaceutical properties, see: Lambert et al. (1997); Poupelin et al. (1978); Hideo (1981); Selvanayagam et al. (1996); Jonathan et al. (1988). For related structures, see Mehdi et al. (2011); Odabasoglu et al. (2008). For the assignment of ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. : Packing diagram for (I) showing the formation of O—H···O hydrogen bonds between the molecules in the unit cell.
9-(4-Hydroxy-3,5-dimethoxyphenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9- hexahydro-1H-xanthene-1,8(2H)-dione top
Crystal data top
C25H30O6Z = 2
Mr = 426.49F(000) = 456
Triclinic, P1Dx = 1.274 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4268 (9) ÅCell parameters from 5637 reflections
b = 10.2468 (10) Åθ = 2.4–27.5°
c = 12.6122 (11) ŵ = 0.09 mm1
α = 84.973 (6)°T = 295 K
β = 70.377 (5)°Block, colourless
γ = 75.676 (6)°0.30 × 0.25 × 0.20 mm
V = 1111.83 (18) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5233 independent reflections
Radiation source: fine-focus sealed tube2876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω and φ scanθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.924, Tmax = 0.982k = 1313
20849 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.3374P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
5233 reflectionsΔρmax = 0.28 e Å3
288 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C25H30O6γ = 75.676 (6)°
Mr = 426.49V = 1111.83 (18) Å3
Triclinic, P1Z = 2
a = 9.4268 (9) ÅMo Kα radiation
b = 10.2468 (10) ŵ = 0.09 mm1
c = 12.6122 (11) ÅT = 295 K
α = 84.973 (6)°0.30 × 0.25 × 0.20 mm
β = 70.377 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5233 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2876 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.982Rint = 0.052
20849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 0.98Δρmax = 0.28 e Å3
5233 reflectionsΔρmin = 0.21 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2424 (2)0.1023 (2)0.33354 (14)0.0336 (5)
C20.1297 (3)0.0482 (2)0.30200 (15)0.0418 (5)
H2A0.03100.06570.36210.050*
H2B0.16660.04860.29230.050*
C30.1076 (3)0.1131 (2)0.19256 (16)0.0466 (6)
C40.2682 (3)0.0985 (3)0.10508 (16)0.0509 (6)
H4A0.30680.00520.08140.061*
H4B0.25770.15240.03980.061*
C50.3873 (2)0.1383 (2)0.14149 (15)0.0381 (5)
C60.3614 (2)0.1462 (2)0.26230 (14)0.0337 (5)
C70.4681 (2)0.2063 (2)0.29943 (14)0.0354 (5)
H70.57480.15610.26360.042*
C80.4297 (2)0.1905 (2)0.42567 (15)0.0367 (5)
C90.5320 (3)0.2232 (2)0.47906 (17)0.0471 (6)
C100.4874 (3)0.2148 (3)0.60591 (17)0.0525 (6)
H10A0.52320.28330.63150.063*
H10B0.54110.12790.62630.063*
C110.3143 (3)0.2328 (2)0.66833 (16)0.0451 (6)
C120.2551 (3)0.1381 (2)0.61580 (15)0.0427 (5)
H12A0.29150.04640.63830.051*
H12B0.14290.15980.64460.051*
C130.3068 (2)0.1463 (2)0.49008 (14)0.0349 (5)
C140.0234 (3)0.2601 (3)0.2129 (2)0.0638 (7)
H14A0.08340.30680.23750.096*
H14B0.07580.26630.26980.096*
H14C0.00940.30020.14430.096*
C150.0135 (4)0.0391 (3)0.1523 (2)0.0787 (9)
H15A0.08790.04880.20700.118*
H15B0.06440.05470.14290.118*
H15C0.00470.07650.08170.118*
C160.2298 (3)0.3783 (3)0.6599 (2)0.0667 (7)
H16A0.24080.40100.58250.100*
H16B0.27310.43650.68930.100*
H16C0.12200.38950.70260.100*
C170.2863 (3)0.1950 (3)0.79273 (17)0.0620 (7)
H17A0.32180.25490.82710.093*
H17B0.34190.10410.79870.093*
H17C0.17760.20250.83030.093*
C190.4554 (2)0.3532 (2)0.26216 (15)0.0356 (5)
C200.5677 (2)0.3897 (2)0.16956 (15)0.0386 (5)
H200.65740.32590.13430.046*
C210.5475 (2)0.5199 (2)0.12944 (15)0.0395 (5)
C220.4165 (2)0.6183 (2)0.18321 (16)0.0401 (5)
C230.3081 (2)0.5825 (2)0.27940 (16)0.0401 (5)
C240.3262 (2)0.4511 (2)0.31724 (15)0.0402 (5)
H240.25100.42790.38040.048*
C250.7846 (3)0.4710 (3)0.02256 (19)0.0637 (7)
H25A0.84800.44130.02460.096*
H25B0.84120.51230.08940.096*
H25C0.75650.39520.04280.096*
C260.1124 (3)0.6717 (3)0.44614 (19)0.0619 (7)
H26A0.04580.61060.45880.093*
H26B0.05240.75800.47750.093*
H26C0.18990.63710.48150.093*
O10.21042 (15)0.10108 (15)0.44842 (10)0.0387 (4)
O20.50511 (17)0.16061 (16)0.07249 (11)0.0510 (4)
O30.6537 (2)0.2498 (2)0.42231 (14)0.0770 (6)
O40.18392 (19)0.68547 (17)0.33083 (12)0.0575 (5)
O50.39109 (19)0.74774 (16)0.14607 (12)0.0555 (5)
H50.44870.75210.08130.073 (9)*
O60.64868 (18)0.56614 (16)0.03654 (12)0.0530 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0421 (11)0.0337 (13)0.0199 (9)0.0064 (9)0.0053 (8)0.0003 (7)
C20.0538 (13)0.0461 (15)0.0271 (10)0.0215 (11)0.0090 (9)0.0029 (9)
C30.0586 (14)0.0583 (17)0.0297 (11)0.0259 (13)0.0163 (10)0.0083 (9)
C40.0692 (15)0.0593 (17)0.0239 (10)0.0193 (13)0.0115 (10)0.0005 (9)
C50.0487 (12)0.0331 (13)0.0237 (9)0.0060 (10)0.0028 (9)0.0005 (8)
C60.0393 (11)0.0327 (12)0.0232 (9)0.0061 (9)0.0047 (8)0.0018 (7)
C70.0339 (10)0.0413 (13)0.0235 (9)0.0062 (9)0.0024 (8)0.0024 (8)
C80.0402 (11)0.0398 (14)0.0252 (9)0.0066 (10)0.0068 (8)0.0025 (8)
C90.0458 (13)0.0583 (17)0.0372 (11)0.0162 (12)0.0113 (10)0.0029 (10)
C100.0585 (14)0.0681 (18)0.0382 (12)0.0219 (13)0.0209 (11)0.0044 (10)
C110.0577 (14)0.0515 (16)0.0275 (10)0.0153 (12)0.0139 (9)0.0006 (9)
C120.0507 (13)0.0514 (15)0.0238 (9)0.0152 (11)0.0083 (9)0.0050 (9)
C130.0396 (11)0.0395 (13)0.0230 (9)0.0082 (9)0.0081 (8)0.0028 (8)
C140.0564 (15)0.067 (2)0.0646 (16)0.0124 (14)0.0213 (13)0.0180 (13)
C150.103 (2)0.117 (3)0.0458 (14)0.067 (2)0.0367 (15)0.0168 (14)
C160.0893 (19)0.054 (2)0.0497 (14)0.0081 (15)0.0184 (13)0.0075 (12)
C170.0836 (18)0.080 (2)0.0302 (11)0.0318 (16)0.0193 (12)0.0020 (11)
C190.0387 (11)0.0428 (14)0.0248 (9)0.0140 (10)0.0070 (8)0.0025 (8)
C200.0378 (11)0.0470 (15)0.0287 (10)0.0140 (10)0.0055 (8)0.0012 (9)
C210.0462 (12)0.0481 (15)0.0247 (10)0.0206 (11)0.0064 (9)0.0047 (9)
C220.0519 (13)0.0386 (14)0.0315 (10)0.0147 (11)0.0140 (9)0.0054 (9)
C230.0441 (12)0.0416 (15)0.0308 (10)0.0077 (10)0.0088 (9)0.0005 (9)
C240.0423 (12)0.0449 (15)0.0264 (10)0.0136 (10)0.0009 (8)0.0045 (8)
C250.0559 (15)0.077 (2)0.0435 (13)0.0255 (14)0.0073 (11)0.0093 (12)
C260.0513 (14)0.066 (2)0.0489 (14)0.0000 (13)0.0002 (11)0.0063 (12)
O10.0433 (8)0.0533 (10)0.0188 (6)0.0185 (7)0.0048 (6)0.0037 (6)
O20.0561 (9)0.0598 (12)0.0250 (7)0.0165 (8)0.0044 (7)0.0004 (6)
O30.0588 (11)0.1335 (19)0.0502 (10)0.0510 (12)0.0144 (9)0.0094 (10)
O40.0634 (10)0.0447 (11)0.0443 (9)0.0036 (8)0.0047 (8)0.0056 (7)
O50.0733 (11)0.0444 (11)0.0366 (9)0.0133 (9)0.0053 (8)0.0110 (7)
O60.0582 (10)0.0533 (11)0.0370 (8)0.0234 (8)0.0034 (7)0.0084 (7)
Geometric parameters (Å, º) top
C1—C61.330 (2)C14—H14A0.9600
C1—O11.377 (2)C14—H14B0.9600
C1—C21.486 (3)C14—H14C0.9600
C2—C31.534 (3)C15—H15A0.9600
C2—H2A0.9700C15—H15B0.9600
C2—H2B0.9700C15—H15C0.9600
C3—C141.518 (3)C16—H16A0.9600
C3—C151.524 (3)C16—H16B0.9600
C3—C41.525 (3)C16—H16C0.9600
C4—C51.498 (3)C17—H17A0.9600
C4—H4A0.9700C17—H17B0.9600
C4—H4B0.9700C17—H17C0.9600
C5—O21.218 (2)C19—C201.383 (2)
C5—C61.466 (2)C19—C241.386 (3)
C6—C71.511 (3)C20—C211.376 (3)
C7—C81.513 (2)C20—H200.9300
C7—C191.525 (3)C21—O61.373 (2)
C7—H70.9800C21—C221.394 (3)
C8—C131.331 (3)C22—O51.358 (2)
C8—C91.460 (3)C22—C231.388 (3)
C9—O31.213 (2)C23—C241.378 (3)
C9—C101.512 (3)C23—O41.379 (3)
C10—C111.527 (3)C24—H240.9300
C10—H10A0.9700C25—O61.419 (3)
C10—H10B0.9700C25—H25A0.9600
C11—C161.520 (3)C25—H25B0.9600
C11—C121.523 (3)C25—H25C0.9600
C11—C171.532 (3)C26—O41.394 (3)
C12—C131.495 (2)C26—H26A0.9600
C12—H12A0.9700C26—H26B0.9600
C12—H12B0.9700C26—H26C0.9600
C13—O11.374 (2)O5—H50.8200
C6—C1—O1122.65 (17)O1—C13—C12110.98 (15)
C6—C1—C2125.82 (16)C3—C14—H14A109.5
O1—C1—C2111.53 (15)C3—C14—H14B109.5
C1—C2—C3111.07 (16)H14A—C14—H14B109.5
C1—C2—H2A109.4C3—C14—H14C109.5
C3—C2—H2A109.4H14A—C14—H14C109.5
C1—C2—H2B109.4H14B—C14—H14C109.5
C3—C2—H2B109.4C3—C15—H15A109.5
H2A—C2—H2B108.0C3—C15—H15B109.5
C14—C3—C15109.6 (2)H15A—C15—H15B109.5
C14—C3—C4111.30 (18)C3—C15—H15C109.5
C15—C3—C4109.35 (19)H15A—C15—H15C109.5
C14—C3—C2109.76 (18)H15B—C15—H15C109.5
C15—C3—C2109.56 (18)C11—C16—H16A109.5
C4—C3—C2107.25 (18)C11—C16—H16B109.5
C5—C4—C3116.38 (16)H16A—C16—H16B109.5
C5—C4—H4A108.2C11—C16—H16C109.5
C3—C4—H4A108.2H16A—C16—H16C109.5
C5—C4—H4B108.2H16B—C16—H16C109.5
C3—C4—H4B108.2C11—C17—H17A109.5
H4A—C4—H4B107.3C11—C17—H17B109.5
O2—C5—C6120.52 (19)H17A—C17—H17B109.5
O2—C5—C4120.89 (17)C11—C17—H17C109.5
C6—C5—C4118.57 (17)H17A—C17—H17C109.5
C1—C6—C5117.83 (18)H17B—C17—H17C109.5
C1—C6—C7123.52 (16)C20—C19—C24119.02 (19)
C5—C6—C7118.64 (16)C20—C19—C7120.75 (18)
C6—C7—C8109.05 (15)C24—C19—C7120.14 (16)
C6—C7—C19110.37 (15)C21—C20—C19120.34 (19)
C8—C7—C19112.14 (16)C21—C20—H20119.8
C6—C7—H7108.4C19—C20—H20119.8
C8—C7—H7108.4O6—C21—C20125.29 (19)
C19—C7—H7108.4O6—C21—C22113.83 (19)
C13—C8—C9118.53 (17)C20—C21—C22120.88 (18)
C13—C8—C7122.46 (18)O5—C22—C23118.68 (19)
C9—C8—C7119.01 (17)O5—C22—C21122.90 (18)
O3—C9—C8120.50 (19)C23—C22—C21118.42 (19)
O3—C9—C10120.9 (2)C24—C23—O4123.88 (18)
C8—C9—C10118.48 (18)C24—C23—C22120.51 (19)
C9—C10—C11115.06 (18)O4—C23—C22115.60 (19)
C9—C10—H10A108.5C23—C24—C19120.71 (18)
C11—C10—H10A108.5C23—C24—H24119.6
C9—C10—H10B108.5C19—C24—H24119.6
C11—C10—H10B108.5O6—C25—H25A109.5
H10A—C10—H10B107.5O6—C25—H25B109.5
C16—C11—C12110.94 (19)H25A—C25—H25B109.5
C16—C11—C10110.21 (19)O6—C25—H25C109.5
C12—C11—C10107.87 (18)H25A—C25—H25C109.5
C16—C11—C17108.95 (19)H25B—C25—H25C109.5
C12—C11—C17108.65 (18)O4—C26—H26A109.5
C10—C11—C17110.20 (19)O4—C26—H26B109.5
C13—C12—C11112.93 (17)H26A—C26—H26B109.5
C13—C12—H12A109.0O4—C26—H26C109.5
C11—C12—H12A109.0H26A—C26—H26C109.5
C13—C12—H12B109.0H26B—C26—H26C109.5
C11—C12—H12B109.0C13—O1—C1118.10 (14)
H12A—C12—H12B107.8C23—O4—C26116.45 (17)
C8—C13—O1123.71 (16)C22—O5—H5109.5
C8—C13—C12125.31 (18)C21—O6—C25116.86 (18)
C6—C1—C2—C330.4 (3)C10—C11—C12—C1348.2 (2)
O1—C1—C2—C3150.19 (18)C17—C11—C12—C13167.64 (19)
C1—C2—C3—C1469.1 (2)C9—C8—C13—O1173.90 (19)
C1—C2—C3—C15170.5 (2)C7—C8—C13—O15.3 (3)
C1—C2—C3—C451.9 (2)C9—C8—C13—C125.7 (3)
C14—C3—C4—C571.9 (2)C7—C8—C13—C12175.1 (2)
C15—C3—C4—C5166.9 (2)C11—C12—C13—C822.5 (3)
C2—C3—C4—C548.2 (3)C11—C12—C13—O1157.83 (18)
C3—C4—C5—O2162.6 (2)C6—C7—C19—C20102.2 (2)
C3—C4—C5—C619.2 (3)C8—C7—C19—C20136.03 (18)
O1—C1—C6—C5177.92 (18)C6—C7—C19—C2474.3 (2)
C2—C1—C6—C51.4 (3)C8—C7—C19—C2447.5 (2)
O1—C1—C6—C73.6 (3)C24—C19—C20—C213.3 (3)
C2—C1—C6—C7177.01 (19)C7—C19—C20—C21173.18 (18)
O2—C5—C6—C1170.53 (19)C19—C20—C21—O6177.93 (18)
C4—C5—C6—C17.7 (3)C19—C20—C21—C222.2 (3)
O2—C5—C6—C711.0 (3)O6—C21—C22—O50.7 (3)
C4—C5—C6—C7170.83 (19)C20—C21—C22—O5179.44 (18)
C1—C6—C7—C87.4 (3)O6—C21—C22—C23178.83 (17)
C5—C6—C7—C8174.20 (17)C20—C21—C22—C231.1 (3)
C1—C6—C7—C19116.2 (2)O5—C22—C23—C24177.31 (19)
C5—C6—C7—C1962.2 (2)C21—C22—C23—C243.2 (3)
C6—C7—C8—C138.1 (3)O5—C22—C23—O41.7 (3)
C19—C7—C8—C13114.5 (2)C21—C22—C23—O4177.83 (18)
C6—C7—C8—C9171.07 (18)O4—C23—C24—C19179.03 (18)
C19—C7—C8—C966.4 (2)C22—C23—C24—C192.1 (3)
C13—C8—C9—O3172.1 (2)C20—C19—C24—C231.2 (3)
C7—C8—C9—O37.1 (3)C7—C19—C24—C23175.31 (18)
C13—C8—C9—C104.4 (3)C8—C13—O1—C10.4 (3)
C7—C8—C9—C10176.45 (19)C12—C13—O1—C1179.94 (16)
O3—C9—C10—C11158.3 (2)C6—C1—O1—C130.5 (3)
C8—C9—C10—C1125.3 (3)C2—C1—O1—C13178.95 (17)
C9—C10—C11—C1670.9 (3)C24—C23—O4—C2627.8 (3)
C9—C10—C11—C1250.4 (3)C22—C23—O4—C26153.2 (2)
C9—C10—C11—C17168.8 (2)C20—C21—O6—C250.3 (3)
C16—C11—C12—C1372.6 (2)C22—C21—O6—C25179.86 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.822.022.762 (2)151
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H30O6
Mr426.49
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.4268 (9), 10.2468 (10), 12.6122 (11)
α, β, γ (°)84.973 (6), 70.377 (5), 75.676 (6)
V3)1111.83 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.924, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
20849, 5233, 2876
Rint0.052
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.157, 0.98
No. of reflections5233
No. of parameters288
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.822.022.762 (2)150.6
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank Dr Babu Varghese and the SAIF, IIT Madras, for the intensity data collection

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHideo, T. (1981). Jpn Tokkyo Koho JP 56 005 480.  Google Scholar
First citationHilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111–117.  Google Scholar
First citationLambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9 706 178.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMehdi, S. H., Hashim, R., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Kaya, M., Yıldırır, Y. & Büyükgüngör, O. (2008). Acta Cryst. E64, o681.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPoupelin, J. P., Rut, G. S., Blanpin, O. F., Narcisse, G., Ernouf, G. U. & Lacroise, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationSelvanayagam, Z. E., Gnanavendhan, S. G., Balakrishnan, K., Rao, R. B., Sivaraman, R. E. & Subramanian, K. (1996). J. Nat. Prod. 59, 664–667.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVang, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds