metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m360-m361

Aqua­bis­­[2,5-bis­­(pyridin-2-yl)-1,3,4-thia­diazole-κ2N2,N3](tri­fluoro­methane­sulfonato-κO)copper(II) tri­fluoro­methane­sulfonate

aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), CNRS UMR 8181, ENSCL, BP 90108, F-59652 Villeneuve d'Ascq Cedex, France, cUniversité Lille Nord de France, F-59000 Lille, France, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: f_bentiss@yahoo.fr

(Received 7 February 2012; accepted 27 February 2012; online 3 March 2012)

2,5-Bis(pyridin-2-yl)-1,3,4-thia­diazole (denoted L) has been found to act as a bidentate ligand in the monomeric title complex, [Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S). The complex shows a distorted octahedrally coordinated copper(II) cation which is linked to two thia­diazole ligands, one water mol­ecule and one trifluoro­methane­sulfonate anion. The second trifluoro­methane­sulfonate anion does not coordinate the copper(II) cation. Each thia­diazole ligand uses one pyridyl and one thia­diazole N atom for the coordination of copper. The N atom of the second non-coordinating pyridyl substituent is found on the same side of the 1,3,4-thia­diazole ring as the S atom. The trifluoro­methane­sulfonate ions are involved in a three-dimensional network of O—H⋯O hydrogen bonds. C—H⋯N inter­actions also occur.

Related literature

For the synthesis of the ligand, see: Lebrini et al. (2005[Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991-994.]). For background to compounds with the same ligand but other metals and other counter-anions, see: Bentiss et al. (2002[Bentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403—408.], 2004[Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903—1907.], 2011a[Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052-m1053.],b[Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834-m835.]); Keij et al. (1984[Keij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093-2097.]); Zheng et al. (2006[Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr. 221, 543-544.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S)

  • Mr = 860.26

  • Triclinic, [P \overline 1]

  • a = 8.469 (3) Å

  • b = 11.116 (3) Å

  • c = 18.834 (6) Å

  • α = 92.111 (14)°

  • β = 90.823 (14)°

  • γ = 107.352 (14)°

  • V = 1690.6 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 100 K

  • 0.39 × 0.30 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.879, Tmax = 1.000

  • 12380 measured reflections

  • 6517 independent reflections

  • 5421 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.099

  • S = 1.03

  • 6517 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O6 0.78 1.95 2.721 (3) 169
O1—H2W⋯O2i 0.80 1.94 2.732 (3) 167
C6—H6⋯N7 0.95 2.33 3.146 (4) 143
C18—H18⋯N3 0.95 2.36 3.174 (4) 143
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

With ligands containing five-membered nitrogen heterocycles, 3 d transition metals such as Ni(II) and Cu(II) have a tendency to form mono- or polynuclear species (Keij et al., 1984). Dinuclear species are of interest due to the potential magnetic coupling of unpaired 3 d electrons via bridging nitrogen containing ligands. Ligands related to 1,2-diazoles with o-pyridine substitution at position 3 and 5, such as 2,5-bis(2-pyridyl)-1,3,4-oxadiazole and thiadiazole, have been of interest for such applications. Indeed, 2,5-bis(2-pyridyl)-1,3,4-thiadiazole can be used in transition metal complexes in association with additional anionic ligands. In the resulting di- and mononuclear complexes, a variety of coordination modes have been observed, of which the dinuclear (N`N``, N2, N``) bridging, the dinuclear (N`N``, N2, N``)2 double bridging and the mononuclear (N`,N`)2 coordination mode are the most common and most important ones (Scheme 1). The latter mode in octahedral complexes is exclusively observed in trans configuration. For the dimeric mode, we have previously reported the synthesis and characterization of the corresponding complexes of Cu(II) and Ni(II) with the 2,5-bis(2-pyridyl)-thiadiazole derivative (bptd) (Bentiss et al., 2004). There are no other reports of the dimeric structures of solid state complexes of this neutral ligand (bptd).

The structures of monomeric complexes of the neutral 2,5-bis(2-pyridyl)-1,3,4-thiadiazole derivative with divalent Zn (chloride and perchlorate), Co (nitrate, perchlorate and tetrafluoborate), Ni (perchlorate and tetrafluoborate), and Cu (nitrate, perchlorate) have been previously reported (Bentiss et al., 2002; Bentiss et al., 2011a; Zheng et al., 2006; Bentiss et al., 2011b). We report here the synthesis and the single-crystal structure of the new monomeric complex formed by 2,5-bis(2-pyridyl)-1,3,4-thiadiazole with copper trifluoromethanesulfonate.

In the new monomeric title complex, the Cu atom is no longer situated on a center of symmetry: its octahedral coordination sphere is built from two crystallographically independent molecules L and two O atoms of different chemical entities: O1 is from a water molecule with Cu1—O1 = 2.259 (2) Å and O4 from one trifluoromethanesulfonate anion with a very long distance Cu1—O4 = 2.540 (3)Å (Fig.1). The axial distortion of the octahedron corresponds to the Jahn-Teller effect typical for Cu2+. While N—Cu—O1 angles range from 88.18 (9)° (N2—Cu—O1) to 94.74 (9)° (N1—Cu—O1), keeping O1 at the axial position on one side of the distorted equatorial plane, the bonded O4 trifluoromethanesulfonate end is located in the opposite axial position, with N—Cu—O4 angles ranging from 85.90 (9)° (N5—Cu—O4) to 89.47 (9)° (N6—Cu—O4).

In this monomeric complex, a completely different ligand configuration is observed compared to our recently reported Co and Ni monomeric complexes of bptd. In both L ligands the non-complexed pyridyl rings are still coplanar with the central thiadiazole heterocycle, while both complexed pyridyl rings are no longer coplanar with the central thiadiazole. In one of the ligands L, topped with the CF3 end of the Cu bound trifluoromethanesulfonate, a small interplanar angle of 3.7 (2) ° of the pyridyl moiety with the thiadiazole ring is observed. On the other hand, in the second ligand this twist is much more pronounced as indicated by an interplanar angle of 12.8 (2)° of the non-coordinated pyridine witrh respect to the remaining planar part of L. This difference cannot be related to any hydrogen bonding interaction with its neighbouring unbound trifluoromethanesulfonate. The trifluoromethanesulfonate ions are involved in an infinite three-dimensional network of O–H···O hydrogen bonds (see Fig.2).

Related literature top

For the synthesis of the ligand, see: Lebrini et al. (2005). For background to compounds with the same ligand but other metals and other counter-anions, see: Bentiss et al. (2002, 2004, 2011a,b); Keij et al. (1984); Zheng et al. (2006).

Experimental top

2,5-Bis(2-pyridyl)-1,3,4-thiadiazole ligand (noted L) was synthesized as described previously (Lebrini et al., 2005). Cu(O3SCF3)2 (1.5 mmol, 0.54 g) in 8 ml of water was added to (0.42 mmol, 0.1 g) of L (bptd ligand) dissolved in 8 ml of ethanol. The solution was filtered and after 24 h, the blue compound crystallized at room temperature. Yield: 63%. Crystals were washed with water and dried under vacuum. Anal. Calc. for C25H18CuF6N8O7S4: C, 36.27; H, 2.09; N, 13.02; S, 14.91; F, 13.25%. Found: C, 36.32; H, 2.17; N, 12.98; S, 14.88; F, 13.30%.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.95 Å for the aromatic CH, with Uiso(H) = 1.2 Ueq(C). The O-bound H atoms were initially also located in a difference map and refined with O—H distance restraints of 0.86 (1). In a the last cycle they were refined using the riding model approximation with Uiso(H) set to 1.2Ueq(O).

Structure description top

With ligands containing five-membered nitrogen heterocycles, 3 d transition metals such as Ni(II) and Cu(II) have a tendency to form mono- or polynuclear species (Keij et al., 1984). Dinuclear species are of interest due to the potential magnetic coupling of unpaired 3 d electrons via bridging nitrogen containing ligands. Ligands related to 1,2-diazoles with o-pyridine substitution at position 3 and 5, such as 2,5-bis(2-pyridyl)-1,3,4-oxadiazole and thiadiazole, have been of interest for such applications. Indeed, 2,5-bis(2-pyridyl)-1,3,4-thiadiazole can be used in transition metal complexes in association with additional anionic ligands. In the resulting di- and mononuclear complexes, a variety of coordination modes have been observed, of which the dinuclear (N`N``, N2, N``) bridging, the dinuclear (N`N``, N2, N``)2 double bridging and the mononuclear (N`,N`)2 coordination mode are the most common and most important ones (Scheme 1). The latter mode in octahedral complexes is exclusively observed in trans configuration. For the dimeric mode, we have previously reported the synthesis and characterization of the corresponding complexes of Cu(II) and Ni(II) with the 2,5-bis(2-pyridyl)-thiadiazole derivative (bptd) (Bentiss et al., 2004). There are no other reports of the dimeric structures of solid state complexes of this neutral ligand (bptd).

The structures of monomeric complexes of the neutral 2,5-bis(2-pyridyl)-1,3,4-thiadiazole derivative with divalent Zn (chloride and perchlorate), Co (nitrate, perchlorate and tetrafluoborate), Ni (perchlorate and tetrafluoborate), and Cu (nitrate, perchlorate) have been previously reported (Bentiss et al., 2002; Bentiss et al., 2011a; Zheng et al., 2006; Bentiss et al., 2011b). We report here the synthesis and the single-crystal structure of the new monomeric complex formed by 2,5-bis(2-pyridyl)-1,3,4-thiadiazole with copper trifluoromethanesulfonate.

In the new monomeric title complex, the Cu atom is no longer situated on a center of symmetry: its octahedral coordination sphere is built from two crystallographically independent molecules L and two O atoms of different chemical entities: O1 is from a water molecule with Cu1—O1 = 2.259 (2) Å and O4 from one trifluoromethanesulfonate anion with a very long distance Cu1—O4 = 2.540 (3)Å (Fig.1). The axial distortion of the octahedron corresponds to the Jahn-Teller effect typical for Cu2+. While N—Cu—O1 angles range from 88.18 (9)° (N2—Cu—O1) to 94.74 (9)° (N1—Cu—O1), keeping O1 at the axial position on one side of the distorted equatorial plane, the bonded O4 trifluoromethanesulfonate end is located in the opposite axial position, with N—Cu—O4 angles ranging from 85.90 (9)° (N5—Cu—O4) to 89.47 (9)° (N6—Cu—O4).

In this monomeric complex, a completely different ligand configuration is observed compared to our recently reported Co and Ni monomeric complexes of bptd. In both L ligands the non-complexed pyridyl rings are still coplanar with the central thiadiazole heterocycle, while both complexed pyridyl rings are no longer coplanar with the central thiadiazole. In one of the ligands L, topped with the CF3 end of the Cu bound trifluoromethanesulfonate, a small interplanar angle of 3.7 (2) ° of the pyridyl moiety with the thiadiazole ring is observed. On the other hand, in the second ligand this twist is much more pronounced as indicated by an interplanar angle of 12.8 (2)° of the non-coordinated pyridine witrh respect to the remaining planar part of L. This difference cannot be related to any hydrogen bonding interaction with its neighbouring unbound trifluoromethanesulfonate. The trifluoromethanesulfonate ions are involved in an infinite three-dimensional network of O–H···O hydrogen bonds (see Fig.2).

For the synthesis of the ligand, see: Lebrini et al. (2005). For background to compounds with the same ligand but other metals and other counter-anions, see: Bentiss et al. (2002, 2004, 2011a,b); Keij et al. (1984); Zheng et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and ORTEPIII, (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. H atoms are represented as small circles. Hydrogen bonds are depicted as dashed lines.
[Figure 2] Fig. 2. Plot of the unit cell showing a packing diagram. Hydrogen bonds are depicted as dashed lines.
Aquabis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole- κ2N2,N3](trifluoromethanesulfonato-κO)copper(II) trifluoromethanesulfonate top
Crystal data top
[Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S)Z = 2
Mr = 860.26F(000) = 866
Triclinic, P1Dx = 1.690 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.469 (3) ÅCell parameters from 4698 reflections
b = 11.116 (3) Åθ = 2.5–28.2°
c = 18.834 (6) ŵ = 0.98 mm1
α = 92.111 (14)°T = 100 K
β = 90.823 (14)°Irregular parallelepiped, blue
γ = 107.352 (14)°0.39 × 0.30 × 0.17 mm
V = 1690.6 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6517 independent reflections
Radiation source: fine-focus sealed tube5421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 1010
Tmin = 0.879, Tmax = 1.000k = 1213
12380 measured reflectionsl = 1923
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0306P)2 + 2.8618P]
where P = (Fo2 + 2Fc2)/3
6517 reflections(Δ/σ)max = 0.001
469 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S)γ = 107.352 (14)°
Mr = 860.26V = 1690.6 (9) Å3
Triclinic, P1Z = 2
a = 8.469 (3) ÅMo Kα radiation
b = 11.116 (3) ŵ = 0.98 mm1
c = 18.834 (6) ÅT = 100 K
α = 92.111 (14)°0.39 × 0.30 × 0.17 mm
β = 90.823 (14)°
Data collection top
Bruker APEXII CCD
diffractometer
6517 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
5421 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 1.000Rint = 0.031
12380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 1.39 e Å3
6517 reflectionsΔρmin = 0.41 e Å3
469 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7108 (3)0.3893 (3)0.21546 (15)0.0167 (6)
C20.7265 (4)0.3860 (3)0.29290 (15)0.0171 (6)
C30.8424 (4)0.4766 (3)0.33445 (16)0.0215 (6)
H30.92410.54250.31320.026*
C40.8363 (4)0.4688 (3)0.40768 (16)0.0244 (7)
H40.91410.52900.43780.029*
C50.7151 (4)0.3720 (3)0.43558 (16)0.0227 (7)
H50.70620.36570.48560.027*
C60.6052 (4)0.2830 (3)0.39019 (15)0.0214 (6)
H60.52350.21580.41040.026*
C70.6958 (4)0.4195 (3)0.09165 (15)0.0177 (6)
C80.7178 (4)0.4640 (3)0.01825 (15)0.0187 (6)
C90.6216 (4)0.3978 (3)0.03813 (16)0.0230 (7)
H90.53600.32190.03090.028*
C100.6513 (4)0.4437 (3)0.10520 (17)0.0275 (7)
H100.58750.39950.14520.033*
C110.7754 (4)0.5548 (3)0.11309 (16)0.0293 (7)
H110.79870.58870.15870.035*
C120.8654 (5)0.6161 (3)0.05375 (18)0.0358 (9)
H120.95000.69310.06000.043*
C130.2339 (3)0.0673 (3)0.27519 (15)0.0175 (6)
C140.2426 (3)0.0758 (3)0.19841 (15)0.0169 (6)
C150.1621 (4)0.1827 (3)0.15729 (16)0.0213 (6)
H150.10060.25790.17860.026*
C160.1736 (4)0.1772 (3)0.08417 (16)0.0221 (6)
H160.11900.24840.05410.026*
C170.2662 (4)0.0659 (3)0.05565 (16)0.0243 (7)
H170.27400.05940.00560.029*
C180.3478 (4)0.0364 (3)0.10069 (16)0.0225 (6)
H180.41310.11160.08050.027*
C190.1962 (4)0.0710 (3)0.39831 (15)0.0192 (6)
C200.1420 (4)0.0996 (3)0.47119 (15)0.0211 (6)
C210.2257 (4)0.0288 (3)0.52982 (17)0.0256 (7)
H210.32200.04050.52450.031*
C220.1648 (5)0.0620 (3)0.59622 (17)0.0303 (8)
H220.21790.01600.63790.036*
C230.0248 (5)0.1638 (3)0.60030 (17)0.0324 (8)
H230.01990.18930.64520.039*
C240.0505 (4)0.2287 (3)0.53868 (18)0.0295 (8)
H240.14770.29780.54280.035*
C250.7497 (4)0.0999 (3)0.1475 (2)0.0326 (8)
C260.5085 (5)0.6738 (3)0.3395 (2)0.0406 (9)
Cu10.46280 (4)0.16646 (3)0.245633 (17)0.01429 (10)
F10.8341 (3)0.1118 (2)0.09071 (11)0.0517 (6)
F20.5891 (3)0.1337 (2)0.12690 (18)0.0797 (10)
F30.7741 (3)0.18338 (19)0.19345 (14)0.0505 (6)
F40.5915 (3)0.6734 (2)0.40113 (16)0.0634 (8)
F50.5912 (3)0.6359 (3)0.28793 (16)0.0692 (8)
F60.5078 (3)0.7939 (2)0.32673 (17)0.0646 (8)
N10.6097 (3)0.2881 (2)0.31953 (12)0.0167 (5)
N20.5919 (3)0.3016 (2)0.18095 (12)0.0169 (5)
N30.5828 (3)0.3191 (2)0.10989 (12)0.0170 (5)
N40.8406 (4)0.5733 (3)0.01268 (14)0.0305 (7)
N50.3375 (3)0.0327 (2)0.17125 (13)0.0175 (5)
N60.3392 (3)0.0282 (2)0.31048 (12)0.0183 (5)
N70.3180 (3)0.0260 (2)0.38209 (12)0.0183 (5)
N80.0056 (3)0.1997 (3)0.47406 (14)0.0253 (6)
O10.2619 (2)0.26218 (19)0.24674 (11)0.0229 (5)
H1W0.26590.31160.27780.027*
H2W0.17080.21370.24020.027*
O20.9771 (3)0.0724 (2)0.21448 (15)0.0409 (7)
O30.8043 (3)0.1395 (2)0.12360 (13)0.0413 (7)
O40.6920 (3)0.0630 (2)0.23593 (11)0.0261 (5)
O50.2264 (3)0.5841 (2)0.27020 (11)0.0337 (6)
O60.3212 (3)0.4449 (2)0.35242 (12)0.0348 (6)
O70.2270 (3)0.6206 (2)0.39735 (11)0.0320 (6)
S10.82436 (10)0.50206 (7)0.16166 (4)0.02375 (18)
S20.09600 (9)0.16694 (7)0.32694 (4)0.02022 (17)
S30.81271 (9)0.06319 (7)0.18366 (4)0.01879 (16)
S40.29722 (10)0.56968 (7)0.33972 (4)0.02205 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0168 (14)0.0142 (14)0.0171 (14)0.0016 (11)0.0018 (11)0.0011 (11)
C20.0179 (15)0.0169 (14)0.0171 (14)0.0061 (12)0.0003 (11)0.0011 (11)
C30.0207 (15)0.0187 (15)0.0212 (15)0.0002 (12)0.0043 (12)0.0002 (12)
C40.0261 (17)0.0230 (16)0.0214 (16)0.0041 (13)0.0088 (13)0.0055 (13)
C50.0234 (16)0.0270 (16)0.0164 (14)0.0061 (13)0.0014 (12)0.0029 (12)
C60.0224 (16)0.0238 (16)0.0165 (14)0.0048 (13)0.0015 (12)0.0017 (12)
C70.0184 (15)0.0182 (14)0.0157 (14)0.0044 (12)0.0003 (11)0.0016 (11)
C80.0232 (16)0.0176 (14)0.0168 (14)0.0077 (12)0.0061 (12)0.0047 (11)
C90.0223 (16)0.0213 (15)0.0242 (16)0.0052 (13)0.0001 (13)0.0029 (12)
C100.0335 (19)0.0321 (18)0.0189 (15)0.0133 (15)0.0022 (13)0.0009 (13)
C110.040 (2)0.0361 (19)0.0143 (15)0.0137 (16)0.0014 (14)0.0096 (13)
C120.041 (2)0.0284 (18)0.0277 (18)0.0062 (16)0.0045 (15)0.0128 (15)
C130.0165 (14)0.0157 (14)0.0198 (15)0.0033 (12)0.0051 (12)0.0044 (11)
C140.0137 (14)0.0175 (14)0.0190 (14)0.0039 (11)0.0025 (11)0.0010 (11)
C150.0187 (15)0.0179 (15)0.0243 (16)0.0007 (12)0.0020 (12)0.0002 (12)
C160.0199 (15)0.0189 (15)0.0230 (15)0.0002 (12)0.0032 (12)0.0069 (12)
C170.0243 (16)0.0276 (17)0.0180 (15)0.0037 (13)0.0024 (12)0.0014 (13)
C180.0228 (16)0.0224 (16)0.0187 (15)0.0012 (13)0.0012 (12)0.0034 (12)
C190.0218 (15)0.0170 (14)0.0192 (15)0.0060 (12)0.0035 (12)0.0019 (11)
C200.0263 (16)0.0243 (16)0.0176 (15)0.0142 (13)0.0090 (12)0.0075 (12)
C210.0258 (17)0.0215 (16)0.0285 (17)0.0049 (13)0.0047 (14)0.0044 (13)
C220.044 (2)0.0307 (18)0.0189 (16)0.0158 (16)0.0018 (15)0.0017 (13)
C230.046 (2)0.0355 (19)0.0222 (17)0.0198 (17)0.0181 (15)0.0139 (15)
C240.0293 (18)0.0267 (17)0.0341 (19)0.0086 (15)0.0164 (15)0.0119 (14)
C250.0199 (17)0.0327 (19)0.045 (2)0.0097 (14)0.0067 (15)0.0156 (16)
C260.030 (2)0.030 (2)0.065 (3)0.0115 (16)0.0039 (19)0.0100 (18)
Cu10.01451 (18)0.01443 (18)0.01021 (17)0.00137 (13)0.00210 (13)0.00019 (13)
F10.0661 (16)0.0668 (16)0.0353 (12)0.0430 (13)0.0024 (11)0.0231 (11)
F20.0279 (13)0.0601 (17)0.146 (3)0.0165 (12)0.0325 (15)0.0682 (18)
F30.0520 (14)0.0250 (11)0.0757 (17)0.0113 (10)0.0231 (12)0.0097 (11)
F40.0368 (14)0.0513 (15)0.097 (2)0.0078 (12)0.0289 (14)0.0069 (14)
F50.0514 (16)0.0765 (19)0.096 (2)0.0380 (14)0.0465 (15)0.0410 (16)
F60.0356 (13)0.0272 (12)0.128 (3)0.0030 (10)0.0041 (14)0.0199 (14)
N10.0175 (12)0.0163 (12)0.0154 (12)0.0039 (10)0.0006 (10)0.0015 (9)
N20.0166 (12)0.0171 (12)0.0158 (12)0.0033 (10)0.0008 (10)0.0013 (10)
N30.0162 (12)0.0186 (12)0.0154 (12)0.0036 (10)0.0035 (10)0.0036 (10)
N40.0368 (17)0.0254 (15)0.0197 (14)0.0056 (12)0.0015 (12)0.0033 (11)
N50.0138 (12)0.0168 (12)0.0204 (13)0.0022 (10)0.0020 (10)0.0003 (10)
N60.0182 (13)0.0205 (13)0.0149 (12)0.0034 (10)0.0041 (10)0.0016 (10)
N70.0195 (13)0.0208 (13)0.0144 (12)0.0051 (10)0.0056 (10)0.0033 (10)
N80.0257 (14)0.0264 (14)0.0241 (14)0.0078 (12)0.0076 (11)0.0039 (11)
O10.0169 (11)0.0192 (11)0.0298 (12)0.0019 (9)0.0015 (9)0.0042 (9)
O20.0171 (12)0.0361 (14)0.0670 (18)0.0071 (11)0.0103 (12)0.0199 (13)
O30.0530 (17)0.0461 (16)0.0358 (14)0.0286 (13)0.0241 (12)0.0165 (12)
O40.0288 (12)0.0361 (13)0.0177 (11)0.0163 (10)0.0043 (9)0.0006 (9)
O50.0500 (16)0.0384 (14)0.0158 (11)0.0187 (12)0.0012 (10)0.0026 (10)
O60.0509 (16)0.0250 (12)0.0297 (13)0.0135 (11)0.0041 (11)0.0005 (10)
O70.0366 (14)0.0455 (15)0.0162 (11)0.0165 (12)0.0027 (10)0.0048 (10)
S10.0251 (4)0.0207 (4)0.0170 (4)0.0060 (3)0.0001 (3)0.0026 (3)
S20.0211 (4)0.0172 (4)0.0192 (4)0.0004 (3)0.0049 (3)0.0025 (3)
S30.0135 (3)0.0188 (4)0.0229 (4)0.0035 (3)0.0007 (3)0.0032 (3)
S40.0304 (4)0.0206 (4)0.0154 (4)0.0085 (3)0.0008 (3)0.0021 (3)
Geometric parameters (Å, º) top
C1—N21.317 (4)C18—H180.9500
C1—C21.465 (4)C19—N71.300 (4)
C1—S11.711 (3)C19—C201.469 (4)
C2—N11.352 (4)C19—S21.728 (3)
C2—C31.386 (4)C20—N81.348 (4)
C3—C41.386 (4)C20—C211.386 (4)
C3—H30.9500C21—C221.380 (4)
C4—C51.374 (4)C21—H210.9500
C4—H40.9500C22—C231.379 (5)
C5—C61.393 (4)C22—H220.9500
C5—H50.9500C23—C241.384 (5)
C6—N11.335 (4)C23—H230.9500
C6—H60.9500C24—N81.328 (4)
C7—N31.296 (4)C24—H240.9500
C7—C81.481 (4)C25—F11.319 (4)
C7—S11.743 (3)C25—F21.346 (4)
C8—N41.352 (4)C25—F31.350 (4)
C8—C91.376 (4)C25—S31.832 (3)
C9—C101.378 (4)C26—F51.333 (5)
C9—H90.9500C26—F41.349 (5)
C10—C111.377 (5)C26—F61.367 (4)
C10—H100.9500C26—S41.818 (4)
C11—C121.380 (5)Cu1—N12.030 (2)
C11—H110.9500Cu1—N22.032 (2)
C12—N41.352 (4)Cu1—N52.040 (2)
C12—H120.9500Cu1—N62.041 (2)
C13—N61.315 (4)Cu1—O12.259 (2)
C13—C141.450 (4)N2—N31.364 (3)
C13—S21.698 (3)N6—N71.363 (3)
C14—N51.357 (4)O1—H1W0.7805
C14—C151.382 (4)O1—H2W0.8032
C15—C161.385 (4)O2—S31.474 (2)
C15—H150.9500O3—S31.452 (3)
C16—C171.384 (4)O4—S31.429 (2)
C16—H160.9500O5—S41.466 (2)
C17—C181.390 (4)O6—S41.487 (2)
C17—H170.9500O7—S41.424 (2)
C18—N51.334 (4)
N2—C1—C2119.3 (3)C23—C22—H22121.0
N2—C1—S1113.2 (2)C21—C22—H22121.0
C2—C1—S1127.4 (2)C22—C23—C24119.7 (3)
N1—C2—C3123.8 (3)C22—C23—H23120.1
N1—C2—C1112.3 (2)C24—C23—H23120.1
C3—C2—C1123.9 (3)N8—C24—C23123.7 (3)
C2—C3—C4118.5 (3)N8—C24—H24118.2
C2—C3—H3120.8C23—C24—H24118.2
C4—C3—H3120.8F1—C25—F2106.9 (3)
C5—C4—C3118.4 (3)F1—C25—F3105.8 (3)
C5—C4—H4120.8F2—C25—F3109.4 (3)
C3—C4—H4120.8F1—C25—S3111.3 (3)
C4—C5—C6119.7 (3)F2—C25—S3109.5 (2)
C4—C5—H5120.1F3—C25—S3113.6 (2)
C6—C5—H5120.1F5—C26—F4107.1 (3)
N1—C6—C5122.9 (3)F5—C26—F6108.1 (3)
N1—C6—H6118.6F4—C26—F6109.7 (3)
C5—C6—H6118.6F5—C26—S4109.7 (3)
N3—C7—C8124.4 (3)F4—C26—S4112.2 (3)
N3—C7—S1114.4 (2)F6—C26—S4109.8 (2)
C8—C7—S1121.2 (2)N1—Cu1—N280.50 (10)
N4—C8—C9124.2 (3)N1—Cu1—N5172.75 (10)
N4—C8—C7113.7 (3)N2—Cu1—N599.89 (10)
C9—C8—C7122.1 (3)N1—Cu1—N699.32 (10)
C8—C9—C10118.9 (3)N2—Cu1—N6178.16 (10)
C8—C9—H9120.6N5—Cu1—N680.05 (10)
C10—C9—H9120.6N1—Cu1—O194.74 (9)
C11—C10—C9118.6 (3)N2—Cu1—O188.18 (9)
C11—C10—H10120.7N5—Cu1—O192.51 (9)
C9—C10—H10120.7N6—Cu1—O193.66 (9)
C10—C11—C12119.0 (3)C6—N1—C2116.7 (2)
C10—C11—H11120.5C6—N1—Cu1128.3 (2)
C12—C11—H11120.5C2—N1—Cu1115.00 (18)
N4—C12—C11123.9 (3)C1—N2—N3114.0 (2)
N4—C12—H12118.0C1—N2—Cu1112.38 (19)
C11—C12—H12118.0N3—N2—Cu1133.64 (18)
N6—C13—C14118.8 (2)C7—N3—N2111.5 (2)
N6—C13—S2114.3 (2)C8—N4—C12115.3 (3)
C14—C13—S2126.9 (2)C18—N5—C14117.4 (2)
N5—C14—C15123.6 (3)C18—N5—Cu1127.9 (2)
N5—C14—C13112.7 (2)C14—N5—Cu1114.52 (19)
C15—C14—C13123.6 (3)C13—N6—N7113.2 (2)
C14—C15—C16118.2 (3)C13—N6—Cu1112.52 (19)
C14—C15—H15120.9N7—N6—Cu1132.57 (19)
C16—C15—H15120.9C19—N7—N6110.9 (2)
C17—C16—C15118.8 (3)C24—N8—C20115.7 (3)
C17—C16—H16120.6Cu1—O1—H1W116.9
C15—C16—H16120.6Cu1—O1—H2W113.1
C16—C17—C18119.6 (3)H1W—O1—H2W112.6
C16—C17—H17120.2C1—S1—C786.88 (14)
C18—C17—H17120.2C13—S2—C1986.41 (14)
N5—C18—C17122.3 (3)O4—S3—O3113.60 (14)
N5—C18—H18118.8O4—S3—O2113.34 (15)
C17—C18—H18118.8O3—S3—O2118.12 (17)
N7—C19—C20124.1 (3)O4—S3—C25103.53 (15)
N7—C19—S2115.2 (2)O3—S3—C25105.14 (17)
C20—C19—S2120.7 (2)O2—S3—C25100.60 (15)
N8—C20—C21124.8 (3)O7—S4—O5113.30 (14)
N8—C20—C19113.1 (3)O7—S4—O6114.47 (15)
C21—C20—C19122.1 (3)O5—S4—O6116.62 (14)
C22—C21—C20118.0 (3)O7—S4—C26103.02 (17)
C22—C21—H21121.0O5—S4—C26104.58 (18)
C20—C21—H21121.0O6—S4—C26102.59 (16)
C23—C22—C21118.1 (3)
N2—C1—C2—N10.2 (4)C1—N2—N3—C70.4 (3)
S1—C1—C2—N1175.6 (2)Cu1—N2—N3—C7178.3 (2)
N2—C1—C2—C3177.1 (3)C9—C8—N4—C120.1 (5)
S1—C1—C2—C31.2 (4)C7—C8—N4—C12179.3 (3)
N1—C2—C3—C41.7 (5)C11—C12—N4—C80.6 (6)
C1—C2—C3—C4174.8 (3)C17—C18—N5—C140.3 (4)
C2—C3—C4—C50.3 (5)C17—C18—N5—Cu1174.3 (2)
C3—C4—C5—C61.7 (5)C15—C14—N5—C182.4 (4)
C4—C5—C6—N11.2 (5)C13—C14—N5—C18177.2 (3)
N3—C7—C8—N4177.9 (3)C15—C14—N5—Cu1172.9 (2)
S1—C7—C8—N41.8 (4)C13—C14—N5—Cu17.5 (3)
N3—C7—C8—C92.6 (5)N2—Cu1—N5—C182.3 (3)
S1—C7—C8—C9177.6 (2)N6—Cu1—N5—C18175.8 (3)
N4—C8—C9—C100.7 (5)O1—Cu1—N5—C1890.9 (3)
C7—C8—C9—C10178.7 (3)N2—Cu1—N5—C14177.03 (19)
C8—C9—C10—C110.6 (5)N6—Cu1—N5—C141.1 (2)
C9—C10—C11—C120.0 (5)O1—Cu1—N5—C1494.4 (2)
C10—C11—C12—N40.6 (6)C14—C13—N6—N7179.7 (2)
N6—C13—C14—N513.6 (4)S2—C13—N6—N71.2 (3)
S2—C13—C14—N5164.6 (2)C14—C13—N6—Cu112.6 (3)
N6—C13—C14—C15166.7 (3)S2—C13—N6—Cu1165.88 (14)
S2—C13—C14—C1515.0 (4)N1—Cu1—N6—C13178.8 (2)
N5—C14—C15—C162.7 (5)N5—Cu1—N6—C136.2 (2)
C13—C14—C15—C16176.9 (3)O1—Cu1—N6—C1385.7 (2)
C14—C15—C16—C170.7 (4)N1—Cu1—N6—N717.3 (3)
C15—C16—C17—C181.3 (5)N5—Cu1—N6—N7170.0 (3)
C16—C17—C18—N51.5 (5)O1—Cu1—N6—N778.1 (3)
N7—C19—C20—N8175.3 (3)C20—C19—N7—N6179.8 (3)
S2—C19—C20—N83.7 (4)S2—C19—N7—N60.7 (3)
N7—C19—C20—C214.8 (5)C13—N6—N7—C190.4 (3)
S2—C19—C20—C21176.1 (2)Cu1—N6—N7—C19163.4 (2)
N8—C20—C21—C220.6 (5)C23—C24—N8—C201.2 (5)
C19—C20—C21—C22179.5 (3)C21—C20—N8—C241.1 (5)
C20—C21—C22—C230.2 (5)C19—C20—N8—C24179.0 (3)
C21—C22—C23—C240.3 (5)N2—C1—S1—C70.4 (2)
C22—C23—C24—N80.9 (5)C2—C1—S1—C7175.7 (3)
C5—C6—N1—C20.8 (4)N3—C7—S1—C10.1 (2)
C5—C6—N1—Cu1179.1 (2)C8—C7—S1—C1179.6 (3)
C3—C2—N1—C62.3 (4)N6—C13—S2—C191.3 (2)
C1—C2—N1—C6174.6 (3)C14—C13—S2—C19179.6 (3)
C3—C2—N1—Cu1177.6 (2)N7—C19—S2—C131.1 (2)
C1—C2—N1—Cu15.5 (3)C20—C19—S2—C13179.8 (3)
N2—Cu1—N1—C6173.7 (3)F1—C25—S3—O4170.5 (2)
N6—Cu1—N1—C68.2 (3)F2—C25—S3—O452.5 (3)
O1—Cu1—N1—C686.3 (3)F3—C25—S3—O470.1 (3)
N2—Cu1—N1—C26.5 (2)F1—C25—S3—O351.1 (3)
N6—Cu1—N1—C2171.7 (2)F2—C25—S3—O366.9 (3)
O1—Cu1—N1—C293.8 (2)F3—C25—S3—O3170.4 (2)
C2—C1—N2—N3175.9 (2)F1—C25—S3—O272.1 (3)
S1—C1—N2—N30.5 (3)F2—C25—S3—O2169.9 (3)
C2—C1—N2—Cu15.1 (3)F3—C25—S3—O247.2 (3)
S1—C1—N2—Cu1178.51 (13)F5—C26—S4—O7179.2 (3)
N1—Cu1—N2—C16.1 (2)F4—C26—S4—O760.3 (3)
N5—Cu1—N2—C1166.6 (2)F6—C26—S4—O762.1 (3)
O1—Cu1—N2—C1101.2 (2)F5—C26—S4—O562.1 (3)
N1—Cu1—N2—N3175.2 (3)F4—C26—S4—O5178.9 (3)
N5—Cu1—N2—N312.2 (3)F6—C26—S4—O556.5 (3)
O1—Cu1—N2—N380.0 (3)F5—C26—S4—O660.0 (3)
C8—C7—N3—N2179.9 (3)F4—C26—S4—O658.9 (3)
S1—C7—N3—N20.1 (3)F6—C26—S4—O6178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O60.781.952.721 (3)169
O1—H2W···O2i0.801.942.732 (3)167
C6—H6···N70.952.333.146 (4)143
C18—H18···N30.952.363.174 (4)143
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S)
Mr860.26
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.469 (3), 11.116 (3), 18.834 (6)
α, β, γ (°)92.111 (14), 90.823 (14), 107.352 (14)
V3)1690.6 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.39 × 0.30 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.879, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12380, 6517, 5421
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 1.03
No. of reflections6517
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.39, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and ORTEPIII, (Burnett & Johnson, 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O60.781.952.721 (3)169.1
O1—H2W···O2i0.801.942.732 (3)167.1
C6—H6···N70.952.333.146 (4)143.1
C18—H18···N30.952.363.174 (4)142.9
Symmetry code: (i) x1, y, z.
 

References

First citationBentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052–m1053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834–m835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903—1907.  Web of Science CSD CrossRef Google Scholar
First citationBentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403—408.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKeij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093–2097.  CSD CrossRef Web of Science Google Scholar
First citationLebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr. 221, 543–544.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m360-m361
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds