metal-organic compounds
Aquabis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2N2,N3](trifluoromethanesulfonato-κO)copper(II) trifluoromethanesulfonate
aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), CNRS UMR 8181, ENSCL, BP 90108, F-59652 Villeneuve d'Ascq Cedex, France, cUniversité Lille Nord de France, F-59000 Lille, France, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: f_bentiss@yahoo.fr
2,5-Bis(pyridin-2-yl)-1,3,4-thiadiazole (denoted L) has been found to act as a bidentate ligand in the monomeric title complex, [Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S). The complex shows a distorted octahedrally coordinated copper(II) cation which is linked to two thiadiazole ligands, one water molecule and one trifluoromethanesulfonate anion. The second trifluoromethanesulfonate anion does not coordinate the copper(II) cation. Each thiadiazole ligand uses one pyridyl and one thiadiazole N atom for the coordination of copper. The N atom of the second non-coordinating pyridyl substituent is found on the same side of the 1,3,4-thiadiazole ring as the S atom. The trifluoromethanesulfonate ions are involved in a three-dimensional network of O—H⋯O hydrogen bonds. C—H⋯N interactions also occur.
Related literature
For the synthesis of the ligand, see: Lebrini et al. (2005). For background to compounds with the same ligand but other metals and other counter-anions, see: Bentiss et al. (2002, 2004, 2011a,b); Keij et al. (1984); Zheng et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812008732/im2358sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812008732/im2358Isup2.hkl
2,5-Bis(2-pyridyl)-1,3,4-thiadiazole ligand (noted L) was synthesized as described previously (Lebrini et al., 2005). Cu(O3SCF3)2 (1.5 mmol, 0.54 g) in 8 ml of water was added to (0.42 mmol, 0.1 g) of L (bptd ligand) dissolved in 8 ml of ethanol. The solution was filtered and after 24 h, the blue compound crystallized at room temperature. Yield: 63%. Crystals were washed with water and dried under vacuum. Anal. Calc. for C25H18CuF6N8O7S4: C, 36.27; H, 2.09; N, 13.02; S, 14.91; F, 13.25%. Found: C, 36.32; H, 2.17; N, 12.98; S, 14.88; F, 13.30%.
H atoms were located in a difference map and treated as riding with C—H = 0.95 Å for the aromatic CH, with Uiso(H) = 1.2 Ueq(C). The O-bound H atoms were initially also located in a difference map and refined with O—H distance restraints of 0.86 (1). In a the last cycle they were refined using the riding model approximation with Uiso(H) set to 1.2Ueq(O).
With ligands containing five-membered nitrogen heterocycles, 3 d transition metals such as Ni(II) and Cu(II) have a tendency to form mono- or polynuclear species (Keij et al., 1984). Dinuclear species are of interest due to the potential magnetic coupling of unpaired 3 d electrons via bridging nitrogen containing ligands. Ligands related to 1,2-diazoles with o-pyridine substitution at position 3 and 5, such as 2,5-bis(2-pyridyl)-1,3,4-oxadiazole and thiadiazole, have been of interest for such applications. Indeed, 2,5-bis(2-pyridyl)-1,3,4-thiadiazole can be used in transition metal complexes in association with additional anionic ligands. In the resulting di- and mononuclear complexes, a variety of coordination modes have been observed, of which the dinuclear (N`N``, N2, N``) bridging, the dinuclear (N`N``, N2, N``)2 double bridging and the mononuclear (N`,N`)2 coordination mode are the most common and most important ones (Scheme 1). The latter mode in octahedral complexes is exclusively observed in trans configuration. For the dimeric mode, we have previously reported the synthesis and characterization of the corresponding complexes of Cu(II) and Ni(II) with the 2,5-bis(2-pyridyl)-thiadiazole derivative (bptd) (Bentiss et al., 2004). There are no other reports of the dimeric structures of solid state complexes of this neutral ligand (bptd).
The structures of monomeric complexes of the neutral 2,5-bis(2-pyridyl)-1,3,4-thiadiazole derivative with divalent Zn (chloride and perchlorate), Co (nitrate, perchlorate and tetrafluoborate), Ni (perchlorate and tetrafluoborate), and Cu (nitrate, perchlorate) have been previously reported (Bentiss et al., 2002; Bentiss et al., 2011a; Zheng et al., 2006; Bentiss et al., 2011b). We report here the synthesis and the single-crystal structure of the new monomeric complex formed by 2,5-bis(2-pyridyl)-1,3,4-thiadiazole with copper trifluoromethanesulfonate.
In the new monomeric title complex, the Cu atom is no longer situated on a center of symmetry: its octahedral coordination sphere is built from two crystallographically independent molecules L and two O atoms of different chemical entities: O1 is from a water molecule with Cu1—O1 = 2.259 (2) Å and O4 from one trifluoromethanesulfonate anion with a very long distance Cu1—O4 = 2.540 (3)Å (Fig.1). The axial distortion of the octahedron corresponds to the Jahn-Teller effect typical for Cu2+. While N—Cu—O1 angles range from 88.18 (9)° (N2—Cu—O1) to 94.74 (9)° (N1—Cu—O1), keeping O1 at the axial position on one side of the distorted equatorial plane, the bonded O4 trifluoromethanesulfonate end is located in the opposite axial position, with N—Cu—O4 angles ranging from 85.90 (9)° (N5—Cu—O4) to 89.47 (9)° (N6—Cu—O4).
In this monomeric complex, a completely different ligand configuration is observed compared to our recently reported Co and Ni monomeric complexes of bptd. In both L ligands the non-complexed pyridyl rings are still coplanar with the central thiadiazole heterocycle, while both complexed pyridyl rings are no longer coplanar with the central thiadiazole. In one of the ligands L, topped with the CF3 end of the Cu bound trifluoromethanesulfonate, a small interplanar angle of 3.7 (2) ° of the pyridyl moiety with the thiadiazole ring is observed. On the other hand, in the second ligand this twist is much more pronounced as indicated by an interplanar angle of 12.8 (2)° of the non-coordinated pyridine witrh respect to the remaining planar part of L. This difference cannot be related to any hydrogen bonding interaction with its neighbouring unbound trifluoromethanesulfonate. The trifluoromethanesulfonate ions are involved in an infinite three-dimensional network of O–H···O hydrogen bonds (see Fig.2).
For the synthesis of the ligand, see: Lebrini et al. (2005). For background to compounds with the same ligand but other metals and other counter-anions, see: Bentiss et al. (2002, 2004, 2011a,b); Keij et al. (1984); Zheng et al. (2006).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and ORTEPIII, (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S) | Z = 2 |
Mr = 860.26 | F(000) = 866 |
Triclinic, P1 | Dx = 1.690 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.469 (3) Å | Cell parameters from 4698 reflections |
b = 11.116 (3) Å | θ = 2.5–28.2° |
c = 18.834 (6) Å | µ = 0.98 mm−1 |
α = 92.111 (14)° | T = 100 K |
β = 90.823 (14)° | Irregular parallelepiped, blue |
γ = 107.352 (14)° | 0.39 × 0.30 × 0.17 mm |
V = 1690.6 (9) Å3 |
Bruker APEXII CCD diffractometer | 6517 independent reflections |
Radiation source: fine-focus sealed tube | 5421 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
φ and ω scans | θmax = 26.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) | h = −10→10 |
Tmin = 0.879, Tmax = 1.000 | k = −12→13 |
12380 measured reflections | l = −19→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0306P)2 + 2.8618P] where P = (Fo2 + 2Fc2)/3 |
6517 reflections | (Δ/σ)max = 0.001 |
469 parameters | Δρmax = 1.39 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
[Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S) | γ = 107.352 (14)° |
Mr = 860.26 | V = 1690.6 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.469 (3) Å | Mo Kα radiation |
b = 11.116 (3) Å | µ = 0.98 mm−1 |
c = 18.834 (6) Å | T = 100 K |
α = 92.111 (14)° | 0.39 × 0.30 × 0.17 mm |
β = 90.823 (14)° |
Bruker APEXII CCD diffractometer | 6517 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) | 5421 reflections with I > 2σ(I) |
Tmin = 0.879, Tmax = 1.000 | Rint = 0.031 |
12380 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.39 e Å−3 |
6517 reflections | Δρmin = −0.41 e Å−3 |
469 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7108 (3) | 0.3893 (3) | 0.21546 (15) | 0.0167 (6) | |
C2 | 0.7265 (4) | 0.3860 (3) | 0.29290 (15) | 0.0171 (6) | |
C3 | 0.8424 (4) | 0.4766 (3) | 0.33445 (16) | 0.0215 (6) | |
H3 | 0.9241 | 0.5425 | 0.3132 | 0.026* | |
C4 | 0.8363 (4) | 0.4688 (3) | 0.40768 (16) | 0.0244 (7) | |
H4 | 0.9141 | 0.5290 | 0.4378 | 0.029* | |
C5 | 0.7151 (4) | 0.3720 (3) | 0.43558 (16) | 0.0227 (7) | |
H5 | 0.7062 | 0.3657 | 0.4856 | 0.027* | |
C6 | 0.6052 (4) | 0.2830 (3) | 0.39019 (15) | 0.0214 (6) | |
H6 | 0.5235 | 0.2158 | 0.4104 | 0.026* | |
C7 | 0.6958 (4) | 0.4195 (3) | 0.09165 (15) | 0.0177 (6) | |
C8 | 0.7178 (4) | 0.4640 (3) | 0.01825 (15) | 0.0187 (6) | |
C9 | 0.6216 (4) | 0.3978 (3) | −0.03813 (16) | 0.0230 (7) | |
H9 | 0.5360 | 0.3219 | −0.0309 | 0.028* | |
C10 | 0.6513 (4) | 0.4437 (3) | −0.10520 (17) | 0.0275 (7) | |
H10 | 0.5875 | 0.3995 | −0.1452 | 0.033* | |
C11 | 0.7754 (4) | 0.5548 (3) | −0.11309 (16) | 0.0293 (7) | |
H11 | 0.7987 | 0.5887 | −0.1587 | 0.035* | |
C12 | 0.8654 (5) | 0.6161 (3) | −0.05375 (18) | 0.0358 (9) | |
H12 | 0.9500 | 0.6931 | −0.0600 | 0.043* | |
C13 | 0.2339 (3) | −0.0673 (3) | 0.27519 (15) | 0.0175 (6) | |
C14 | 0.2426 (3) | −0.0758 (3) | 0.19841 (15) | 0.0169 (6) | |
C15 | 0.1621 (4) | −0.1827 (3) | 0.15729 (16) | 0.0213 (6) | |
H15 | 0.1006 | −0.2579 | 0.1786 | 0.026* | |
C16 | 0.1736 (4) | −0.1772 (3) | 0.08417 (16) | 0.0221 (6) | |
H16 | 0.1190 | −0.2484 | 0.0541 | 0.026* | |
C17 | 0.2662 (4) | −0.0659 (3) | 0.05565 (16) | 0.0243 (7) | |
H17 | 0.2740 | −0.0594 | 0.0056 | 0.029* | |
C18 | 0.3478 (4) | 0.0364 (3) | 0.10069 (16) | 0.0225 (6) | |
H18 | 0.4131 | 0.1116 | 0.0805 | 0.027* | |
C19 | 0.1962 (4) | −0.0710 (3) | 0.39831 (15) | 0.0192 (6) | |
C20 | 0.1420 (4) | −0.0996 (3) | 0.47119 (15) | 0.0211 (6) | |
C21 | 0.2257 (4) | −0.0288 (3) | 0.52982 (17) | 0.0256 (7) | |
H21 | 0.3220 | 0.0405 | 0.5245 | 0.031* | |
C22 | 0.1648 (5) | −0.0620 (3) | 0.59622 (17) | 0.0303 (8) | |
H22 | 0.2179 | −0.0160 | 0.6379 | 0.036* | |
C23 | 0.0248 (5) | −0.1638 (3) | 0.60030 (17) | 0.0324 (8) | |
H23 | −0.0199 | −0.1893 | 0.6452 | 0.039* | |
C24 | −0.0505 (4) | −0.2287 (3) | 0.53868 (18) | 0.0295 (8) | |
H24 | −0.1477 | −0.2978 | 0.5428 | 0.035* | |
C25 | 0.7497 (4) | −0.0999 (3) | 0.1475 (2) | 0.0326 (8) | |
C26 | 0.5085 (5) | 0.6738 (3) | 0.3395 (2) | 0.0406 (9) | |
Cu1 | 0.46280 (4) | 0.16646 (3) | 0.245633 (17) | 0.01429 (10) | |
F1 | 0.8341 (3) | −0.1118 (2) | 0.09071 (11) | 0.0517 (6) | |
F2 | 0.5891 (3) | −0.1337 (2) | 0.12690 (18) | 0.0797 (10) | |
F3 | 0.7741 (3) | −0.18338 (19) | 0.19345 (14) | 0.0505 (6) | |
F4 | 0.5915 (3) | 0.6734 (2) | 0.40113 (16) | 0.0634 (8) | |
F5 | 0.5912 (3) | 0.6359 (3) | 0.28793 (16) | 0.0692 (8) | |
F6 | 0.5078 (3) | 0.7939 (2) | 0.32673 (17) | 0.0646 (8) | |
N1 | 0.6097 (3) | 0.2881 (2) | 0.31953 (12) | 0.0167 (5) | |
N2 | 0.5919 (3) | 0.3016 (2) | 0.18095 (12) | 0.0169 (5) | |
N3 | 0.5828 (3) | 0.3191 (2) | 0.10989 (12) | 0.0170 (5) | |
N4 | 0.8406 (4) | 0.5733 (3) | 0.01268 (14) | 0.0305 (7) | |
N5 | 0.3375 (3) | 0.0327 (2) | 0.17125 (13) | 0.0175 (5) | |
N6 | 0.3392 (3) | 0.0282 (2) | 0.31048 (12) | 0.0183 (5) | |
N7 | 0.3180 (3) | 0.0260 (2) | 0.38209 (12) | 0.0183 (5) | |
N8 | 0.0056 (3) | −0.1997 (3) | 0.47406 (14) | 0.0253 (6) | |
O1 | 0.2619 (2) | 0.26218 (19) | 0.24674 (11) | 0.0229 (5) | |
H1W | 0.2659 | 0.3116 | 0.2778 | 0.027* | |
H2W | 0.1708 | 0.2137 | 0.2402 | 0.027* | |
O2 | 0.9771 (3) | 0.0724 (2) | 0.21448 (15) | 0.0409 (7) | |
O3 | 0.8043 (3) | 0.1395 (2) | 0.12360 (13) | 0.0413 (7) | |
O4 | 0.6920 (3) | 0.0630 (2) | 0.23593 (11) | 0.0261 (5) | |
O5 | 0.2264 (3) | 0.5841 (2) | 0.27020 (11) | 0.0337 (6) | |
O6 | 0.3212 (3) | 0.4449 (2) | 0.35242 (12) | 0.0348 (6) | |
O7 | 0.2270 (3) | 0.6206 (2) | 0.39735 (11) | 0.0320 (6) | |
S1 | 0.82436 (10) | 0.50206 (7) | 0.16166 (4) | 0.02375 (18) | |
S2 | 0.09600 (9) | −0.16694 (7) | 0.32694 (4) | 0.02022 (17) | |
S3 | 0.81271 (9) | 0.06319 (7) | 0.18366 (4) | 0.01879 (16) | |
S4 | 0.29722 (10) | 0.56968 (7) | 0.33972 (4) | 0.02205 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0168 (14) | 0.0142 (14) | 0.0171 (14) | 0.0016 (11) | 0.0018 (11) | 0.0011 (11) |
C2 | 0.0179 (15) | 0.0169 (14) | 0.0171 (14) | 0.0061 (12) | −0.0003 (11) | 0.0011 (11) |
C3 | 0.0207 (15) | 0.0187 (15) | 0.0212 (15) | 0.0002 (12) | −0.0043 (12) | −0.0002 (12) |
C4 | 0.0261 (17) | 0.0230 (16) | 0.0214 (16) | 0.0041 (13) | −0.0088 (13) | −0.0055 (13) |
C5 | 0.0234 (16) | 0.0270 (16) | 0.0164 (14) | 0.0061 (13) | −0.0014 (12) | −0.0029 (12) |
C6 | 0.0224 (16) | 0.0238 (16) | 0.0165 (14) | 0.0048 (13) | 0.0015 (12) | −0.0017 (12) |
C7 | 0.0184 (15) | 0.0182 (14) | 0.0157 (14) | 0.0044 (12) | −0.0003 (11) | −0.0016 (11) |
C8 | 0.0232 (16) | 0.0176 (14) | 0.0168 (14) | 0.0077 (12) | 0.0061 (12) | 0.0047 (11) |
C9 | 0.0223 (16) | 0.0213 (15) | 0.0242 (16) | 0.0052 (13) | 0.0001 (13) | −0.0029 (12) |
C10 | 0.0335 (19) | 0.0321 (18) | 0.0189 (15) | 0.0133 (15) | −0.0022 (13) | −0.0009 (13) |
C11 | 0.040 (2) | 0.0361 (19) | 0.0143 (15) | 0.0137 (16) | 0.0014 (14) | 0.0096 (13) |
C12 | 0.041 (2) | 0.0284 (18) | 0.0277 (18) | −0.0062 (16) | 0.0045 (15) | 0.0128 (15) |
C13 | 0.0165 (14) | 0.0157 (14) | 0.0198 (15) | 0.0033 (12) | 0.0051 (12) | 0.0044 (11) |
C14 | 0.0137 (14) | 0.0175 (14) | 0.0190 (14) | 0.0039 (11) | 0.0025 (11) | −0.0010 (11) |
C15 | 0.0187 (15) | 0.0179 (15) | 0.0243 (16) | 0.0007 (12) | 0.0020 (12) | −0.0002 (12) |
C16 | 0.0199 (15) | 0.0189 (15) | 0.0230 (15) | 0.0002 (12) | −0.0032 (12) | −0.0069 (12) |
C17 | 0.0243 (16) | 0.0276 (17) | 0.0180 (15) | 0.0037 (13) | −0.0024 (12) | −0.0014 (13) |
C18 | 0.0228 (16) | 0.0224 (16) | 0.0187 (15) | 0.0012 (13) | −0.0012 (12) | 0.0034 (12) |
C19 | 0.0218 (15) | 0.0170 (14) | 0.0192 (15) | 0.0060 (12) | 0.0035 (12) | 0.0019 (11) |
C20 | 0.0263 (16) | 0.0243 (16) | 0.0176 (15) | 0.0142 (13) | 0.0090 (12) | 0.0075 (12) |
C21 | 0.0258 (17) | 0.0215 (16) | 0.0285 (17) | 0.0049 (13) | 0.0047 (14) | 0.0044 (13) |
C22 | 0.044 (2) | 0.0307 (18) | 0.0189 (16) | 0.0158 (16) | 0.0018 (15) | −0.0017 (13) |
C23 | 0.046 (2) | 0.0355 (19) | 0.0222 (17) | 0.0198 (17) | 0.0181 (15) | 0.0139 (15) |
C24 | 0.0293 (18) | 0.0267 (17) | 0.0341 (19) | 0.0086 (15) | 0.0164 (15) | 0.0119 (14) |
C25 | 0.0199 (17) | 0.0327 (19) | 0.045 (2) | 0.0097 (14) | −0.0067 (15) | −0.0156 (16) |
C26 | 0.030 (2) | 0.030 (2) | 0.065 (3) | 0.0115 (16) | 0.0039 (19) | 0.0100 (18) |
Cu1 | 0.01451 (18) | 0.01443 (18) | 0.01021 (17) | −0.00137 (13) | 0.00210 (13) | 0.00019 (13) |
F1 | 0.0661 (16) | 0.0668 (16) | 0.0353 (12) | 0.0430 (13) | −0.0024 (11) | −0.0231 (11) |
F2 | 0.0279 (13) | 0.0601 (17) | 0.146 (3) | 0.0165 (12) | −0.0325 (15) | −0.0682 (18) |
F3 | 0.0520 (14) | 0.0250 (11) | 0.0757 (17) | 0.0113 (10) | 0.0231 (12) | 0.0097 (11) |
F4 | 0.0368 (14) | 0.0513 (15) | 0.097 (2) | 0.0078 (12) | −0.0289 (14) | −0.0069 (14) |
F5 | 0.0514 (16) | 0.0765 (19) | 0.096 (2) | 0.0380 (14) | 0.0465 (15) | 0.0410 (16) |
F6 | 0.0356 (13) | 0.0272 (12) | 0.128 (3) | 0.0030 (10) | 0.0041 (14) | 0.0199 (14) |
N1 | 0.0175 (12) | 0.0163 (12) | 0.0154 (12) | 0.0039 (10) | 0.0006 (10) | −0.0015 (9) |
N2 | 0.0166 (12) | 0.0171 (12) | 0.0158 (12) | 0.0033 (10) | 0.0008 (10) | 0.0013 (10) |
N3 | 0.0162 (12) | 0.0186 (12) | 0.0154 (12) | 0.0036 (10) | 0.0035 (10) | 0.0036 (10) |
N4 | 0.0368 (17) | 0.0254 (15) | 0.0197 (14) | −0.0056 (12) | −0.0015 (12) | 0.0033 (11) |
N5 | 0.0138 (12) | 0.0168 (12) | 0.0204 (13) | 0.0022 (10) | 0.0020 (10) | 0.0003 (10) |
N6 | 0.0182 (13) | 0.0205 (13) | 0.0149 (12) | 0.0034 (10) | 0.0041 (10) | 0.0016 (10) |
N7 | 0.0195 (13) | 0.0208 (13) | 0.0144 (12) | 0.0051 (10) | 0.0056 (10) | 0.0033 (10) |
N8 | 0.0257 (14) | 0.0264 (14) | 0.0241 (14) | 0.0078 (12) | 0.0076 (11) | 0.0039 (11) |
O1 | 0.0169 (11) | 0.0192 (11) | 0.0298 (12) | 0.0019 (9) | 0.0015 (9) | −0.0042 (9) |
O2 | 0.0171 (12) | 0.0361 (14) | 0.0670 (18) | 0.0071 (11) | −0.0103 (12) | −0.0199 (13) |
O3 | 0.0530 (17) | 0.0461 (16) | 0.0358 (14) | 0.0286 (13) | 0.0241 (12) | 0.0165 (12) |
O4 | 0.0288 (12) | 0.0361 (13) | 0.0177 (11) | 0.0163 (10) | 0.0043 (9) | 0.0006 (9) |
O5 | 0.0500 (16) | 0.0384 (14) | 0.0158 (11) | 0.0187 (12) | −0.0012 (10) | −0.0026 (10) |
O6 | 0.0509 (16) | 0.0250 (12) | 0.0297 (13) | 0.0135 (11) | −0.0041 (11) | 0.0005 (10) |
O7 | 0.0366 (14) | 0.0455 (15) | 0.0162 (11) | 0.0165 (12) | 0.0027 (10) | −0.0048 (10) |
S1 | 0.0251 (4) | 0.0207 (4) | 0.0170 (4) | −0.0060 (3) | 0.0001 (3) | 0.0026 (3) |
S2 | 0.0211 (4) | 0.0172 (4) | 0.0192 (4) | 0.0004 (3) | 0.0049 (3) | 0.0025 (3) |
S3 | 0.0135 (3) | 0.0188 (4) | 0.0229 (4) | 0.0035 (3) | 0.0007 (3) | −0.0032 (3) |
S4 | 0.0304 (4) | 0.0206 (4) | 0.0154 (4) | 0.0085 (3) | −0.0008 (3) | −0.0021 (3) |
C1—N2 | 1.317 (4) | C18—H18 | 0.9500 |
C1—C2 | 1.465 (4) | C19—N7 | 1.300 (4) |
C1—S1 | 1.711 (3) | C19—C20 | 1.469 (4) |
C2—N1 | 1.352 (4) | C19—S2 | 1.728 (3) |
C2—C3 | 1.386 (4) | C20—N8 | 1.348 (4) |
C3—C4 | 1.386 (4) | C20—C21 | 1.386 (4) |
C3—H3 | 0.9500 | C21—C22 | 1.380 (4) |
C4—C5 | 1.374 (4) | C21—H21 | 0.9500 |
C4—H4 | 0.9500 | C22—C23 | 1.379 (5) |
C5—C6 | 1.393 (4) | C22—H22 | 0.9500 |
C5—H5 | 0.9500 | C23—C24 | 1.384 (5) |
C6—N1 | 1.335 (4) | C23—H23 | 0.9500 |
C6—H6 | 0.9500 | C24—N8 | 1.328 (4) |
C7—N3 | 1.296 (4) | C24—H24 | 0.9500 |
C7—C8 | 1.481 (4) | C25—F1 | 1.319 (4) |
C7—S1 | 1.743 (3) | C25—F2 | 1.346 (4) |
C8—N4 | 1.352 (4) | C25—F3 | 1.350 (4) |
C8—C9 | 1.376 (4) | C25—S3 | 1.832 (3) |
C9—C10 | 1.378 (4) | C26—F5 | 1.333 (5) |
C9—H9 | 0.9500 | C26—F4 | 1.349 (5) |
C10—C11 | 1.377 (5) | C26—F6 | 1.367 (4) |
C10—H10 | 0.9500 | C26—S4 | 1.818 (4) |
C11—C12 | 1.380 (5) | Cu1—N1 | 2.030 (2) |
C11—H11 | 0.9500 | Cu1—N2 | 2.032 (2) |
C12—N4 | 1.352 (4) | Cu1—N5 | 2.040 (2) |
C12—H12 | 0.9500 | Cu1—N6 | 2.041 (2) |
C13—N6 | 1.315 (4) | Cu1—O1 | 2.259 (2) |
C13—C14 | 1.450 (4) | N2—N3 | 1.364 (3) |
C13—S2 | 1.698 (3) | N6—N7 | 1.363 (3) |
C14—N5 | 1.357 (4) | O1—H1W | 0.7805 |
C14—C15 | 1.382 (4) | O1—H2W | 0.8032 |
C15—C16 | 1.385 (4) | O2—S3 | 1.474 (2) |
C15—H15 | 0.9500 | O3—S3 | 1.452 (3) |
C16—C17 | 1.384 (4) | O4—S3 | 1.429 (2) |
C16—H16 | 0.9500 | O5—S4 | 1.466 (2) |
C17—C18 | 1.390 (4) | O6—S4 | 1.487 (2) |
C17—H17 | 0.9500 | O7—S4 | 1.424 (2) |
C18—N5 | 1.334 (4) | ||
N2—C1—C2 | 119.3 (3) | C23—C22—H22 | 121.0 |
N2—C1—S1 | 113.2 (2) | C21—C22—H22 | 121.0 |
C2—C1—S1 | 127.4 (2) | C22—C23—C24 | 119.7 (3) |
N1—C2—C3 | 123.8 (3) | C22—C23—H23 | 120.1 |
N1—C2—C1 | 112.3 (2) | C24—C23—H23 | 120.1 |
C3—C2—C1 | 123.9 (3) | N8—C24—C23 | 123.7 (3) |
C2—C3—C4 | 118.5 (3) | N8—C24—H24 | 118.2 |
C2—C3—H3 | 120.8 | C23—C24—H24 | 118.2 |
C4—C3—H3 | 120.8 | F1—C25—F2 | 106.9 (3) |
C5—C4—C3 | 118.4 (3) | F1—C25—F3 | 105.8 (3) |
C5—C4—H4 | 120.8 | F2—C25—F3 | 109.4 (3) |
C3—C4—H4 | 120.8 | F1—C25—S3 | 111.3 (3) |
C4—C5—C6 | 119.7 (3) | F2—C25—S3 | 109.5 (2) |
C4—C5—H5 | 120.1 | F3—C25—S3 | 113.6 (2) |
C6—C5—H5 | 120.1 | F5—C26—F4 | 107.1 (3) |
N1—C6—C5 | 122.9 (3) | F5—C26—F6 | 108.1 (3) |
N1—C6—H6 | 118.6 | F4—C26—F6 | 109.7 (3) |
C5—C6—H6 | 118.6 | F5—C26—S4 | 109.7 (3) |
N3—C7—C8 | 124.4 (3) | F4—C26—S4 | 112.2 (3) |
N3—C7—S1 | 114.4 (2) | F6—C26—S4 | 109.8 (2) |
C8—C7—S1 | 121.2 (2) | N1—Cu1—N2 | 80.50 (10) |
N4—C8—C9 | 124.2 (3) | N1—Cu1—N5 | 172.75 (10) |
N4—C8—C7 | 113.7 (3) | N2—Cu1—N5 | 99.89 (10) |
C9—C8—C7 | 122.1 (3) | N1—Cu1—N6 | 99.32 (10) |
C8—C9—C10 | 118.9 (3) | N2—Cu1—N6 | 178.16 (10) |
C8—C9—H9 | 120.6 | N5—Cu1—N6 | 80.05 (10) |
C10—C9—H9 | 120.6 | N1—Cu1—O1 | 94.74 (9) |
C11—C10—C9 | 118.6 (3) | N2—Cu1—O1 | 88.18 (9) |
C11—C10—H10 | 120.7 | N5—Cu1—O1 | 92.51 (9) |
C9—C10—H10 | 120.7 | N6—Cu1—O1 | 93.66 (9) |
C10—C11—C12 | 119.0 (3) | C6—N1—C2 | 116.7 (2) |
C10—C11—H11 | 120.5 | C6—N1—Cu1 | 128.3 (2) |
C12—C11—H11 | 120.5 | C2—N1—Cu1 | 115.00 (18) |
N4—C12—C11 | 123.9 (3) | C1—N2—N3 | 114.0 (2) |
N4—C12—H12 | 118.0 | C1—N2—Cu1 | 112.38 (19) |
C11—C12—H12 | 118.0 | N3—N2—Cu1 | 133.64 (18) |
N6—C13—C14 | 118.8 (2) | C7—N3—N2 | 111.5 (2) |
N6—C13—S2 | 114.3 (2) | C8—N4—C12 | 115.3 (3) |
C14—C13—S2 | 126.9 (2) | C18—N5—C14 | 117.4 (2) |
N5—C14—C15 | 123.6 (3) | C18—N5—Cu1 | 127.9 (2) |
N5—C14—C13 | 112.7 (2) | C14—N5—Cu1 | 114.52 (19) |
C15—C14—C13 | 123.6 (3) | C13—N6—N7 | 113.2 (2) |
C14—C15—C16 | 118.2 (3) | C13—N6—Cu1 | 112.52 (19) |
C14—C15—H15 | 120.9 | N7—N6—Cu1 | 132.57 (19) |
C16—C15—H15 | 120.9 | C19—N7—N6 | 110.9 (2) |
C17—C16—C15 | 118.8 (3) | C24—N8—C20 | 115.7 (3) |
C17—C16—H16 | 120.6 | Cu1—O1—H1W | 116.9 |
C15—C16—H16 | 120.6 | Cu1—O1—H2W | 113.1 |
C16—C17—C18 | 119.6 (3) | H1W—O1—H2W | 112.6 |
C16—C17—H17 | 120.2 | C1—S1—C7 | 86.88 (14) |
C18—C17—H17 | 120.2 | C13—S2—C19 | 86.41 (14) |
N5—C18—C17 | 122.3 (3) | O4—S3—O3 | 113.60 (14) |
N5—C18—H18 | 118.8 | O4—S3—O2 | 113.34 (15) |
C17—C18—H18 | 118.8 | O3—S3—O2 | 118.12 (17) |
N7—C19—C20 | 124.1 (3) | O4—S3—C25 | 103.53 (15) |
N7—C19—S2 | 115.2 (2) | O3—S3—C25 | 105.14 (17) |
C20—C19—S2 | 120.7 (2) | O2—S3—C25 | 100.60 (15) |
N8—C20—C21 | 124.8 (3) | O7—S4—O5 | 113.30 (14) |
N8—C20—C19 | 113.1 (3) | O7—S4—O6 | 114.47 (15) |
C21—C20—C19 | 122.1 (3) | O5—S4—O6 | 116.62 (14) |
C22—C21—C20 | 118.0 (3) | O7—S4—C26 | 103.02 (17) |
C22—C21—H21 | 121.0 | O5—S4—C26 | 104.58 (18) |
C20—C21—H21 | 121.0 | O6—S4—C26 | 102.59 (16) |
C23—C22—C21 | 118.1 (3) | ||
N2—C1—C2—N1 | −0.2 (4) | C1—N2—N3—C7 | 0.4 (3) |
S1—C1—C2—N1 | 175.6 (2) | Cu1—N2—N3—C7 | −178.3 (2) |
N2—C1—C2—C3 | −177.1 (3) | C9—C8—N4—C12 | −0.1 (5) |
S1—C1—C2—C3 | −1.2 (4) | C7—C8—N4—C12 | 179.3 (3) |
N1—C2—C3—C4 | −1.7 (5) | C11—C12—N4—C8 | −0.6 (6) |
C1—C2—C3—C4 | 174.8 (3) | C17—C18—N5—C14 | −0.3 (4) |
C2—C3—C4—C5 | −0.3 (5) | C17—C18—N5—Cu1 | 174.3 (2) |
C3—C4—C5—C6 | 1.7 (5) | C15—C14—N5—C18 | 2.4 (4) |
C4—C5—C6—N1 | −1.2 (5) | C13—C14—N5—C18 | −177.2 (3) |
N3—C7—C8—N4 | 177.9 (3) | C15—C14—N5—Cu1 | −172.9 (2) |
S1—C7—C8—N4 | −1.8 (4) | C13—C14—N5—Cu1 | 7.5 (3) |
N3—C7—C8—C9 | −2.6 (5) | N2—Cu1—N5—C18 | 2.3 (3) |
S1—C7—C8—C9 | 177.6 (2) | N6—Cu1—N5—C18 | −175.8 (3) |
N4—C8—C9—C10 | 0.7 (5) | O1—Cu1—N5—C18 | 90.9 (3) |
C7—C8—C9—C10 | −178.7 (3) | N2—Cu1—N5—C14 | 177.03 (19) |
C8—C9—C10—C11 | −0.6 (5) | N6—Cu1—N5—C14 | −1.1 (2) |
C9—C10—C11—C12 | 0.0 (5) | O1—Cu1—N5—C14 | −94.4 (2) |
C10—C11—C12—N4 | 0.6 (6) | C14—C13—N6—N7 | 179.7 (2) |
N6—C13—C14—N5 | −13.6 (4) | S2—C13—N6—N7 | 1.2 (3) |
S2—C13—C14—N5 | 164.6 (2) | C14—C13—N6—Cu1 | 12.6 (3) |
N6—C13—C14—C15 | 166.7 (3) | S2—C13—N6—Cu1 | −165.88 (14) |
S2—C13—C14—C15 | −15.0 (4) | N1—Cu1—N6—C13 | −178.8 (2) |
N5—C14—C15—C16 | −2.7 (5) | N5—Cu1—N6—C13 | −6.2 (2) |
C13—C14—C15—C16 | 176.9 (3) | O1—Cu1—N6—C13 | 85.7 (2) |
C14—C15—C16—C17 | 0.7 (4) | N1—Cu1—N6—N7 | 17.3 (3) |
C15—C16—C17—C18 | 1.3 (5) | N5—Cu1—N6—N7 | −170.0 (3) |
C16—C17—C18—N5 | −1.5 (5) | O1—Cu1—N6—N7 | −78.1 (3) |
N7—C19—C20—N8 | 175.3 (3) | C20—C19—N7—N6 | −179.8 (3) |
S2—C19—C20—N8 | −3.7 (4) | S2—C19—N7—N6 | −0.7 (3) |
N7—C19—C20—C21 | −4.8 (5) | C13—N6—N7—C19 | −0.4 (3) |
S2—C19—C20—C21 | 176.1 (2) | Cu1—N6—N7—C19 | 163.4 (2) |
N8—C20—C21—C22 | −0.6 (5) | C23—C24—N8—C20 | −1.2 (5) |
C19—C20—C21—C22 | 179.5 (3) | C21—C20—N8—C24 | 1.1 (5) |
C20—C21—C22—C23 | 0.2 (5) | C19—C20—N8—C24 | −179.0 (3) |
C21—C22—C23—C24 | −0.3 (5) | N2—C1—S1—C7 | 0.4 (2) |
C22—C23—C24—N8 | 0.9 (5) | C2—C1—S1—C7 | −175.7 (3) |
C5—C6—N1—C2 | −0.8 (4) | N3—C7—S1—C1 | −0.1 (2) |
C5—C6—N1—Cu1 | 179.1 (2) | C8—C7—S1—C1 | 179.6 (3) |
C3—C2—N1—C6 | 2.3 (4) | N6—C13—S2—C19 | −1.3 (2) |
C1—C2—N1—C6 | −174.6 (3) | C14—C13—S2—C19 | −179.6 (3) |
C3—C2—N1—Cu1 | −177.6 (2) | N7—C19—S2—C13 | 1.1 (2) |
C1—C2—N1—Cu1 | 5.5 (3) | C20—C19—S2—C13 | −179.8 (3) |
N2—Cu1—N1—C6 | 173.7 (3) | F1—C25—S3—O4 | 170.5 (2) |
N6—Cu1—N1—C6 | −8.2 (3) | F2—C25—S3—O4 | 52.5 (3) |
O1—Cu1—N1—C6 | 86.3 (3) | F3—C25—S3—O4 | −70.1 (3) |
N2—Cu1—N1—C2 | −6.5 (2) | F1—C25—S3—O3 | 51.1 (3) |
N6—Cu1—N1—C2 | 171.7 (2) | F2—C25—S3—O3 | −66.9 (3) |
O1—Cu1—N1—C2 | −93.8 (2) | F3—C25—S3—O3 | 170.4 (2) |
C2—C1—N2—N3 | 175.9 (2) | F1—C25—S3—O2 | −72.1 (3) |
S1—C1—N2—N3 | −0.5 (3) | F2—C25—S3—O2 | 169.9 (3) |
C2—C1—N2—Cu1 | −5.1 (3) | F3—C25—S3—O2 | 47.2 (3) |
S1—C1—N2—Cu1 | 178.51 (13) | F5—C26—S4—O7 | 179.2 (3) |
N1—Cu1—N2—C1 | 6.1 (2) | F4—C26—S4—O7 | 60.3 (3) |
N5—Cu1—N2—C1 | −166.6 (2) | F6—C26—S4—O7 | −62.1 (3) |
O1—Cu1—N2—C1 | 101.2 (2) | F5—C26—S4—O5 | −62.1 (3) |
N1—Cu1—N2—N3 | −175.2 (3) | F4—C26—S4—O5 | 178.9 (3) |
N5—Cu1—N2—N3 | 12.2 (3) | F6—C26—S4—O5 | 56.5 (3) |
O1—Cu1—N2—N3 | −80.0 (3) | F5—C26—S4—O6 | 60.0 (3) |
C8—C7—N3—N2 | −179.9 (3) | F4—C26—S4—O6 | −58.9 (3) |
S1—C7—N3—N2 | −0.1 (3) | F6—C26—S4—O6 | 178.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···O6 | 0.78 | 1.95 | 2.721 (3) | 169 |
O1—H2W···O2i | 0.80 | 1.94 | 2.732 (3) | 167 |
C6—H6···N7 | 0.95 | 2.33 | 3.146 (4) | 143 |
C18—H18···N3 | 0.95 | 2.36 | 3.174 (4) | 143 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S) |
Mr | 860.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 8.469 (3), 11.116 (3), 18.834 (6) |
α, β, γ (°) | 92.111 (14), 90.823 (14), 107.352 (14) |
V (Å3) | 1690.6 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.98 |
Crystal size (mm) | 0.39 × 0.30 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1995) |
Tmin, Tmax | 0.879, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12380, 6517, 5421 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.099, 1.03 |
No. of reflections | 6517 |
No. of parameters | 469 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.39, −0.41 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and ORTEPIII, (Burnett & Johnson, 1996), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···O6 | 0.78 | 1.95 | 2.721 (3) | 169.1 |
O1—H2W···O2i | 0.80 | 1.94 | 2.732 (3) | 167.1 |
C6—H6···N7 | 0.95 | 2.33 | 3.146 (4) | 143.1 |
C18—H18···N3 | 0.95 | 2.36 | 3.174 (4) | 142.9 |
Symmetry code: (i) x−1, y, z. |
References
Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052–m1053. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834–m835. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903—1907. Web of Science CSD CrossRef Google Scholar
Bentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403—408. Web of Science CSD CrossRef Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Keij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093–2097. CSD CrossRef Web of Science Google Scholar
Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994. CrossRef CAS Google Scholar
Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr. 221, 543–544. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
With ligands containing five-membered nitrogen heterocycles, 3 d transition metals such as Ni(II) and Cu(II) have a tendency to form mono- or polynuclear species (Keij et al., 1984). Dinuclear species are of interest due to the potential magnetic coupling of unpaired 3 d electrons via bridging nitrogen containing ligands. Ligands related to 1,2-diazoles with o-pyridine substitution at position 3 and 5, such as 2,5-bis(2-pyridyl)-1,3,4-oxadiazole and thiadiazole, have been of interest for such applications. Indeed, 2,5-bis(2-pyridyl)-1,3,4-thiadiazole can be used in transition metal complexes in association with additional anionic ligands. In the resulting di- and mononuclear complexes, a variety of coordination modes have been observed, of which the dinuclear (N`N``, N2, N``) bridging, the dinuclear (N`N``, N2, N``)2 double bridging and the mononuclear (N`,N`)2 coordination mode are the most common and most important ones (Scheme 1). The latter mode in octahedral complexes is exclusively observed in trans configuration. For the dimeric mode, we have previously reported the synthesis and characterization of the corresponding complexes of Cu(II) and Ni(II) with the 2,5-bis(2-pyridyl)-thiadiazole derivative (bptd) (Bentiss et al., 2004). There are no other reports of the dimeric structures of solid state complexes of this neutral ligand (bptd).
The structures of monomeric complexes of the neutral 2,5-bis(2-pyridyl)-1,3,4-thiadiazole derivative with divalent Zn (chloride and perchlorate), Co (nitrate, perchlorate and tetrafluoborate), Ni (perchlorate and tetrafluoborate), and Cu (nitrate, perchlorate) have been previously reported (Bentiss et al., 2002; Bentiss et al., 2011a; Zheng et al., 2006; Bentiss et al., 2011b). We report here the synthesis and the single-crystal structure of the new monomeric complex formed by 2,5-bis(2-pyridyl)-1,3,4-thiadiazole with copper trifluoromethanesulfonate.
In the new monomeric title complex, the Cu atom is no longer situated on a center of symmetry: its octahedral coordination sphere is built from two crystallographically independent molecules L and two O atoms of different chemical entities: O1 is from a water molecule with Cu1—O1 = 2.259 (2) Å and O4 from one trifluoromethanesulfonate anion with a very long distance Cu1—O4 = 2.540 (3)Å (Fig.1). The axial distortion of the octahedron corresponds to the Jahn-Teller effect typical for Cu2+. While N—Cu—O1 angles range from 88.18 (9)° (N2—Cu—O1) to 94.74 (9)° (N1—Cu—O1), keeping O1 at the axial position on one side of the distorted equatorial plane, the bonded O4 trifluoromethanesulfonate end is located in the opposite axial position, with N—Cu—O4 angles ranging from 85.90 (9)° (N5—Cu—O4) to 89.47 (9)° (N6—Cu—O4).
In this monomeric complex, a completely different ligand configuration is observed compared to our recently reported Co and Ni monomeric complexes of bptd. In both L ligands the non-complexed pyridyl rings are still coplanar with the central thiadiazole heterocycle, while both complexed pyridyl rings are no longer coplanar with the central thiadiazole. In one of the ligands L, topped with the CF3 end of the Cu bound trifluoromethanesulfonate, a small interplanar angle of 3.7 (2) ° of the pyridyl moiety with the thiadiazole ring is observed. On the other hand, in the second ligand this twist is much more pronounced as indicated by an interplanar angle of 12.8 (2)° of the non-coordinated pyridine witrh respect to the remaining planar part of L. This difference cannot be related to any hydrogen bonding interaction with its neighbouring unbound trifluoromethanesulfonate. The trifluoromethanesulfonate ions are involved in an infinite three-dimensional network of O–H···O hydrogen bonds (see Fig.2).