organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(1-Benzyl-4-benzyl­­idene-2,5-di­oxopyrrolidin-3-yl)meth­yl]benzalde­hyde 0.25-hydrate

aSchool of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
*Correspondence e-mail: yiminhu@yahoo.cn

(Received 10 March 2012; accepted 21 March 2012; online 24 March 2012)

The crystal structure of the title compound, C26H21NO3·0.25H2O, reveals one stereogenic centre in the mol­ecule. Nevertheless, due to the observed centrosymmetric space group, both enanti­omers are present in the crystal packing. The water molecule of crystallisation is located on a crystallographic inversion center. The mol­ecule contains one five-membered ring (A) and three six-membered rings (benzyl ring B, benzyl­idene ring C and formyl­benzyl ring D). All four rings are not coplanar: the dihedral angles between rings A and B, A and C, and A and D are 70.35 (9), 33.8 (1) and 60.30 (9)°, respectively. In the crystal, pairs of weak C—H⋯O inter­actions lead to the formation of centrosymmetric dimers. Additional C—H⋯O inter­actions link the dimers into chains along [011].

Related literature

For palladium-catalysed coupling reactions, see: Hu et al. (2011[Hu, Y.-M., Sun, Y.-J., Hu, J.-P., Zhu, T., Yu, T. & Zhao, Q.-S. (2011). Chem. Asian J. 6, 797-800.]). For related active pharmaceutical compounds, see: Hu et al. (2009a[Hu, Y.-M., Ouyang, Y., Qu, Y., Hu, Q. & Yao, H. (2009a). Chem. Commun. pp. 4575-4577.],b[Hu, Y.-M., Yu, C.-L., Ren, D., Hu, Q., Zhang, L.-D. & Cheng, D. (2009b). Angew. Chem. Int. Ed. 48, 5448-5451.]). Ffor the physiological activity of dioxo­pyrrol­idinbenzaldehyde derivatives, see: Pitchumani & Vijaikumar (2010[Pitchumani, K. & Vijaikumar, S. (2010). Indian J. Chem. 49, 469-474.]). F palladium-catalysed inter- and intra­molecular reactions, see: Hu et al. (2010a[Hu, Y.-M., Lin, X.-G., Zhu, T., Wan, J., Sun, Y.-J., Zhao, Q. S. & Yu, T. (2010a). Synthesis, 42, 3467-3473.],b[Hu, Y.-M., Ren, D., Zhang, L.-D., Lin, X.-G. & Wang, J. (2010b). Eur. J. Org. Chem. 23, 4454-4459.]).

[Scheme 1]

Experimental

Crystal data
  • C26H21NO3·0.25H2O

  • Mr = 399.94

  • Triclinic, [P \overline 1]

  • a = 7.7360 (15) Å

  • b = 12.441 (3) Å

  • c = 12.577 (3) Å

  • α = 64.14 (3)°

  • β = 81.14 (2)°

  • γ = 86.46 (3)°

  • V = 1076.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.984

  • 8445 measured reflections

  • 4224 independent reflections

  • 3065 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.149

  • S = 1.09

  • 4224 reflections

  • 277 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.98 2.56 3.419 (3) 147
C18—H18A⋯O2i 0.93 2.49 3.322 (3) 149
C19—H19A⋯O1ii 0.97 2.53 3.481 (3) 168
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Palladium-catalyzed coupling reactions have become an important tool in modern organic synthetical chemistry (Hu et al., 2011). A wide variety of active pharmaceutical compounds, natural substances and other complex organic molecules have been made economically accessible by this methodology (Hu et al., 2009a, 2009b). Physiologically active dioxopyrrolidin-benzaldehyde derivatives are effective intermediates in the synthesis of many complex natural products (Pitchumani & Vijaikumar, 2010). We have reported some novel palladium-catalyzed inter- and intramolecular reactions of aryl halides with the olefins and enynes (Hu et al., 2010a, 2010b). The reaction of N-acryloyl-N-benzylcinnamamide with 4-bromobenzaldehyde, in the presence of palladium(II) acetate and triphenylphosphine, in DMF at 373 K for 18 h, gave the unexpected title product.

The crystal structure data of molecule (I) reveals that all the bond lengths and angles have normal values. An asymmetric unit is composed of one title compound molecule and a quarter of a crystal water. The crystal water is located at the inversion center. The title compound molecule contains one five-membered (ring A (N1/C8/C9/C10/C11)) and three six-membered rings (ring B (C1/C2/C3/C4/C5/C6), ring C (C13/C14/C15/C16/C17/C18) and ring D (C20/C21/C22/C23/C24/C25)). All four rings are not coplanar. The dihedral angle between rings A and B, A and C, and A and D are 70.35 (9)°, 33.8 (1)°, and 60.30 (9)°, respectively (Fig 1). In the molecule there is one asymmetric carbon atom (C10). Nevertheless, due to the observed centrosymmetric space group both enantiomers are present in the crystal packing. In the crystal structure weak intermolecular C—H···O interactions (C10—H10a···O2i (i: 1 - x,1 - y,-z)) lead to the formation of centrosymmetric dimers (Fig. 2). Additional C—H···O interactions (C19—H19a···O1ii (ii: 1 + x, y,z)) produce one-dimensional infinite chains from these dimers (Fig. 3).

Related literature top

For palladium-catalysed coupling reactions, see: Hu et al. (2011). For related active pharmaceutical compounds, see: Hu et al. (2009a,b). Ffor the physiological activity of dioxopyrrolidinbenzaldehyde derivatives, see: Pitchumani & Vijaikumar (2010). F palladium-catalysed inter- and intramolecular reactions, see: Hu et al. (2010a,b).

Experimental top

An oven-dried Schlenk tube was evacuated, filled with nitrogen, and then charged with N-acryloyl-N-benzylcinnamamide (2.91 g, 10 mmol), 4-bromobenzaldehyde (1.85 g, 10 mmol), tributylamine (3 ml), PPh3 (52.5 mg, 0.2 mmol), Pd(OAc)2 (24 mg, 0.1 mol), and DMF (10 ml) to give a yellow solution. The reaction mixture was heated to 373 K with stirring. After 18 h the reaction mixture was cooled to room temperature and the resulting yellow-orange mixture was diluted with Et2O (10 ml). The mixture was then washed with H2O (15 ml) and the aqueous layer was extracted with Et2O (20 ml). The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. The crude material was purified by flash column chromatography on silica gel (petroleum ether: EtOAc = 9:1) and recrystalized from EtOAc (yield 3.16 g, 80%). Colorless crystals suitable for X-ray diffraction were obtained by recrystallization from a solution of the title compound in ethyl acetate over a period of one week.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, O—H = 0.85 Å, and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

Palladium-catalyzed coupling reactions have become an important tool in modern organic synthetical chemistry (Hu et al., 2011). A wide variety of active pharmaceutical compounds, natural substances and other complex organic molecules have been made economically accessible by this methodology (Hu et al., 2009a, 2009b). Physiologically active dioxopyrrolidin-benzaldehyde derivatives are effective intermediates in the synthesis of many complex natural products (Pitchumani & Vijaikumar, 2010). We have reported some novel palladium-catalyzed inter- and intramolecular reactions of aryl halides with the olefins and enynes (Hu et al., 2010a, 2010b). The reaction of N-acryloyl-N-benzylcinnamamide with 4-bromobenzaldehyde, in the presence of palladium(II) acetate and triphenylphosphine, in DMF at 373 K for 18 h, gave the unexpected title product.

The crystal structure data of molecule (I) reveals that all the bond lengths and angles have normal values. An asymmetric unit is composed of one title compound molecule and a quarter of a crystal water. The crystal water is located at the inversion center. The title compound molecule contains one five-membered (ring A (N1/C8/C9/C10/C11)) and three six-membered rings (ring B (C1/C2/C3/C4/C5/C6), ring C (C13/C14/C15/C16/C17/C18) and ring D (C20/C21/C22/C23/C24/C25)). All four rings are not coplanar. The dihedral angle between rings A and B, A and C, and A and D are 70.35 (9)°, 33.8 (1)°, and 60.30 (9)°, respectively (Fig 1). In the molecule there is one asymmetric carbon atom (C10). Nevertheless, due to the observed centrosymmetric space group both enantiomers are present in the crystal packing. In the crystal structure weak intermolecular C—H···O interactions (C10—H10a···O2i (i: 1 - x,1 - y,-z)) lead to the formation of centrosymmetric dimers (Fig. 2). Additional C—H···O interactions (C19—H19a···O1ii (ii: 1 + x, y,z)) produce one-dimensional infinite chains from these dimers (Fig. 3).

For palladium-catalysed coupling reactions, see: Hu et al. (2011). For related active pharmaceutical compounds, see: Hu et al. (2009a,b). Ffor the physiological activity of dioxopyrrolidinbenzaldehyde derivatives, see: Pitchumani & Vijaikumar (2010). F palladium-catalysed inter- and intramolecular reactions, see: Hu et al. (2010a,b).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of a hydrogen bonded dimer of recemic molecules.
[Figure 3] Fig. 3. A view of the infinte one-dimensional chains of the dimeric substructures. [Symmetry codes: (i) 1-x, 1-y, -z; (ii) 1-x, y, z.]
(E)-4-[(1-Benzyl-4-benzylidene-2,5-dioxopyrrolidin-3- yl)methyl]benzaldehyde 0.25-hydrate top
Crystal data top
C26H21NO3·0.25H2OZ = 2
Mr = 399.94F(000) = 421
Triclinic, P1Dx = 1.234 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7360 (15) ÅCell parameters from 3716 reflections
b = 12.441 (3) Åθ = 2.1–24.7°
c = 12.577 (3) ŵ = 0.08 mm1
α = 64.14 (3)°T = 291 K
β = 81.14 (2)°Block, colourless
γ = 86.46 (3)°0.28 × 0.22 × 0.20 mm
V = 1076.2 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4224 independent reflections
Radiation source: sealed tube3065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.978, Tmax = 0.984k = 1315
8445 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.07P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
4224 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C26H21NO3·0.25H2Oγ = 86.46 (3)°
Mr = 399.94V = 1076.2 (4) Å3
Triclinic, P1Z = 2
a = 7.7360 (15) ÅMo Kα radiation
b = 12.441 (3) ŵ = 0.08 mm1
c = 12.577 (3) ÅT = 291 K
α = 64.14 (3)°0.28 × 0.22 × 0.20 mm
β = 81.14 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4224 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3065 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.984Rint = 0.027
8445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0611 restraint
wR(F2) = 0.149H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
4224 reflectionsΔρmin = 0.20 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

1.5177 (0.0088) x + 12.2930 (0.0068) y + 6.4535 (0.0131) z = 7.8343 (0.0042)

* 0.0161 (0.0015) N1 * -0.0035 (0.0014) C8 * -0.0090 (0.0014) C9 * 0.0172 (0.0014) C10 * -0.0208 (0.0015) C11

Rms deviation of fitted atoms = 0.0147

3.2207 (0.0064) x + 4.3390 (0.0100) y - 6.9725 (0.0098) z = 0.3855 (0.0095)

Angle to previous plane (with approximate e.s.d.) = 70.35 (0.09)

* 0.0022 (0.0016) C1 * -0.0017 (0.0015) C2 * 0.0004 (0.0014) C3 * 0.0003 (0.0014) C4 * 0.0002 (0.0014) C5 * -0.0015 (0.0015) C6

Rms deviation of fitted atoms = 0.0013

1.5177 (0.0088) x + 12.2930 (0.0068) y + 6.4535 (0.0131) z = 7.8343 (0.0042)

Angle to previous plane (with approximate e.s.d.) = 70.35 (0.09)

* 0.0161 (0.0015) N1 * -0.0035 (0.0014) C8 * -0.0090 (0.0014) C9 * 0.0172 (0.0014) C10 * -0.0208 (0.0015) C11

Rms deviation of fitted atoms = 0.0147

4.8630 (0.0064) x + 9.1574 (0.0092) y + 8.8027 (0.0100) z = 5.4849 (0.0080)

Angle to previous plane (with approximate e.s.d.) = 33.76 (0.10)

* 0.0019 (0.0017) C13 * -0.0066 (0.0017) C14 * 0.0011 (0.0016) C15 * 0.0093 (0.0016) C16 * -0.0141 (0.0016) C17 * 0.0086 (0.0017) C18

Rms deviation of fitted atoms = 0.0082

1.5177 (0.0088) x + 12.2930 (0.0068) y + 6.4535 (0.0131) z = 7.8343 (0.0042)

Angle to previous plane (with approximate e.s.d.) = 33.76 (0.10)

* 0.0161 (0.0015) N1 * -0.0035 (0.0014) C8 * -0.0090 (0.0014) C9 * 0.0172 (0.0014) C10 * -0.0208 (0.0015) C11

Rms deviation of fitted atoms = 0.0147

6.5252 (0.0054) x + 5.2018 (0.0111) y - 0.7915 (0.0119) z = 6.7075 (0.0096)

Angle to previous plane (with approximate e.s.d.) = 60.30 (0.09)

* -0.0090 (0.0016) C20 * 0.0056 (0.0016) C21 * -0.0033 (0.0016) C22 * 0.0043 (0.0018) C23 * -0.0082 (0.0018) C24 * 0.0105 (0.0016) C25

Rms deviation of fitted atoms = 0.0073

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1529 (3)0.6731 (2)0.2926 (2)0.0327 (5)
H1A0.23850.66920.24990.039*
C20.1659 (3)0.75660 (19)0.33915 (19)0.0304 (5)
H2A0.26070.80820.32800.036*
C30.0374 (3)0.76321 (19)0.40232 (19)0.0316 (5)
H3A0.04600.81940.43310.038*
C40.1036 (3)0.6858 (2)0.4193 (2)0.0338 (5)
H4A0.18940.69010.46160.041*
C50.1169 (3)0.6020 (2)0.3733 (2)0.0331 (5)
H5A0.21160.55020.38470.040*
C60.0119 (3)0.59562 (19)0.3101 (2)0.0310 (5)
C70.0065 (3)0.50546 (19)0.25793 (19)0.0283 (4)
H7A0.07400.43800.30570.034*
H7B0.10870.47620.26160.034*
C80.0049 (3)0.6167 (2)0.0375 (2)0.0294 (5)
C90.1367 (3)0.6566 (2)0.0702 (2)0.0323 (5)
C100.3144 (3)0.61565 (19)0.03003 (19)0.0294 (5)
H10A0.36420.56010.06270.035*
C110.2696 (3)0.5479 (2)0.1037 (2)0.0323 (5)
C120.0939 (3)0.7234 (2)0.1780 (2)0.0386 (5)
H12A0.02440.74110.18010.046*
C130.2048 (3)0.7736 (2)0.2946 (2)0.0360 (5)
C140.1571 (3)0.88196 (19)0.38198 (19)0.0292 (5)
H14A0.05550.91980.36650.035*
C150.2610 (3)0.9338 (2)0.49241 (19)0.0305 (5)
H15A0.22921.00660.55060.037*
C160.4072 (3)0.87893 (19)0.51516 (19)0.0282 (5)
H16A0.47730.91470.58870.034*
C170.4552 (3)0.76828 (19)0.42925 (19)0.0312 (5)
H17A0.55420.72960.44720.037*
C180.3577 (3)0.71743 (18)0.31989 (18)0.0259 (4)
H18A0.39220.64550.26190.031*
C190.4489 (3)0.71377 (19)0.0610 (2)0.0308 (5)
H19A0.55440.67730.02770.037*
H19B0.47910.75450.14700.037*
C200.3842 (3)0.8034 (2)0.01497 (19)0.0305 (5)
C210.4122 (3)0.7882 (2)0.09694 (19)0.0324 (5)
H21A0.47340.72160.14320.039*
C220.3524 (3)0.8682 (2)0.14121 (19)0.0294 (5)
H22A0.37110.85420.21750.035*
C230.2649 (3)0.9694 (2)0.0748 (2)0.0384 (5)
C240.2369 (3)0.9850 (2)0.0369 (2)0.0380 (5)
H24A0.17511.05150.08280.046*
C250.2971 (3)0.9064 (2)0.0814 (2)0.0347 (5)
H25A0.27970.92170.15820.042*
C260.2021 (3)1.0583 (2)0.1198 (2)0.0314 (5)
H26A0.14121.12330.07060.038*
N10.0911 (2)0.55614 (17)0.13566 (17)0.0330 (4)
O10.15018 (18)0.62882 (12)0.04401 (13)0.0257 (3)
O20.36924 (18)0.49511 (13)0.17642 (13)0.0280 (3)
O30.22208 (19)1.05470 (13)0.21319 (13)0.0301 (4)
O1W0.50000.50000.50000.0428 (12)0.50
H1X0.49810.44010.56750.051*0.25
H1Y0.59580.51910.45270.051*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (12)0.0359 (12)0.0290 (11)0.0174 (9)0.0162 (9)0.0146 (10)
C20.0302 (11)0.0283 (11)0.0261 (10)0.0184 (9)0.0041 (8)0.0107 (9)
C30.0320 (11)0.0265 (11)0.0258 (11)0.0154 (9)0.0149 (9)0.0056 (9)
C40.0251 (11)0.0360 (12)0.0379 (12)0.0185 (9)0.0152 (9)0.0176 (10)
C50.0315 (12)0.0270 (11)0.0308 (11)0.0142 (9)0.0196 (9)0.0093 (9)
C60.0268 (11)0.0245 (10)0.0327 (11)0.0018 (8)0.0168 (9)0.0108 (9)
C70.0262 (10)0.0274 (10)0.0261 (10)0.0055 (8)0.0002 (8)0.0073 (9)
C80.0240 (11)0.0340 (11)0.0323 (11)0.0104 (8)0.0104 (8)0.0156 (10)
C90.0280 (11)0.0380 (12)0.0297 (11)0.0019 (9)0.0111 (9)0.0115 (10)
C100.0274 (11)0.0283 (11)0.0298 (11)0.0118 (8)0.0133 (9)0.0086 (9)
C110.0296 (11)0.0326 (11)0.0293 (11)0.0095 (9)0.0086 (9)0.0083 (9)
C120.0445 (14)0.0367 (13)0.0304 (12)0.0091 (10)0.0099 (10)0.0103 (10)
C130.0341 (12)0.0338 (12)0.0347 (12)0.0122 (10)0.0040 (9)0.0117 (10)
C140.0268 (11)0.0302 (11)0.0269 (11)0.0112 (8)0.0063 (8)0.0096 (9)
C150.0331 (12)0.0318 (11)0.0217 (10)0.0157 (9)0.0106 (9)0.0068 (9)
C160.0264 (10)0.0260 (10)0.0240 (10)0.0024 (8)0.0000 (8)0.0040 (8)
C170.0322 (11)0.0299 (11)0.0286 (11)0.0208 (9)0.0078 (9)0.0115 (9)
C180.0287 (10)0.0203 (9)0.0275 (11)0.0146 (8)0.0162 (8)0.0070 (8)
C190.0325 (12)0.0286 (11)0.0287 (11)0.0041 (9)0.0116 (9)0.0083 (9)
C200.0235 (10)0.0394 (12)0.0277 (11)0.0015 (9)0.0025 (8)0.0139 (10)
C210.0262 (11)0.0437 (13)0.0241 (11)0.0082 (9)0.0086 (8)0.0113 (10)
C220.0263 (10)0.0330 (11)0.0286 (11)0.0021 (9)0.0093 (8)0.0110 (9)
C230.0428 (13)0.0369 (13)0.0304 (12)0.0062 (10)0.0019 (10)0.0118 (10)
C240.0416 (13)0.0356 (12)0.0324 (12)0.0098 (10)0.0174 (10)0.0081 (10)
C250.0294 (11)0.0355 (12)0.0326 (12)0.0022 (9)0.0094 (9)0.0068 (10)
C260.0240 (11)0.0283 (11)0.0368 (13)0.0026 (8)0.0029 (9)0.0119 (10)
N10.0298 (10)0.0319 (10)0.0277 (10)0.0010 (8)0.0048 (7)0.0041 (8)
O10.0227 (7)0.0253 (7)0.0284 (8)0.0028 (5)0.0112 (6)0.0088 (6)
O20.0210 (7)0.0247 (7)0.0334 (8)0.0082 (6)0.0069 (6)0.0079 (6)
O30.0245 (7)0.0294 (8)0.0292 (8)0.0100 (6)0.0058 (6)0.0103 (6)
O1W0.024 (2)0.036 (3)0.054 (3)0.0020 (19)0.016 (2)0.003 (2)
Geometric parameters (Å, º) top
C1—C21.389 (3)C13—C181.402 (3)
C1—C61.388 (3)C14—C151.389 (3)
C1—H1A0.9300C14—H14A0.9300
C2—C31.392 (3)C15—C161.343 (3)
C2—H2A0.9300C15—H15A0.9300
C3—C41.387 (3)C16—C171.401 (3)
C3—H3A0.9300C16—H16A0.9300
C4—C51.389 (3)C17—C181.357 (3)
C4—H4A0.9300C17—H17A0.9300
C5—C61.393 (4)C18—H18A0.9300
C5—H5A0.9300C19—C201.495 (3)
C6—C71.517 (3)C19—H19A0.9700
C7—N11.444 (3)C19—H19B0.9700
C7—H7A0.9700C20—C211.386 (3)
C7—H7B0.9700C20—C251.388 (3)
C8—O11.195 (3)C21—C221.365 (3)
C8—N11.384 (3)C21—H21A0.9300
C8—C91.474 (3)C22—C231.376 (3)
C9—C121.326 (3)C22—H22A0.9300
C9—C101.519 (3)C23—C241.382 (3)
C10—C111.510 (3)C23—C261.476 (3)
C10—C191.531 (3)C24—C251.351 (4)
C10—H10A0.9800C24—H24A0.9300
C11—O21.222 (3)C25—H25A0.9300
C11—N11.388 (3)C26—O31.189 (3)
C12—C131.468 (3)C26—H26A0.9300
C12—H12A0.9300O1W—H1X0.8500
C13—C141.390 (3)O1W—H1Y0.8500
C2—C1—C6119.8 (2)C15—C14—H14A119.9
C2—C1—H1A120.1C13—C14—H14A119.9
C6—C1—H1A120.1C16—C15—C14120.0 (2)
C1—C2—C3120.17 (19)C16—C15—H15A120.0
C1—C2—H2A119.9C14—C15—H15A120.0
C3—C2—H2A119.9C15—C16—C17120.7 (2)
C4—C3—C2119.9 (2)C15—C16—H16A119.6
C4—C3—H3A120.1C17—C16—H16A119.6
C2—C3—H3A120.1C18—C17—C16120.16 (19)
C3—C4—C5120.2 (2)C18—C17—H17A119.9
C3—C4—H4A119.9C16—C17—H17A119.9
C5—C4—H4A119.9C17—C18—C13119.79 (19)
C4—C5—C6119.8 (2)C17—C18—H18A120.1
C4—C5—H5A120.1C13—C18—H18A120.1
C6—C5—H5A120.1C20—C19—C10112.94 (19)
C1—C6—C5120.2 (2)C20—C19—H19A109.0
C1—C6—C7120.6 (2)C10—C19—H19A109.0
C5—C6—C7119.22 (19)C20—C19—H19B109.0
N1—C7—C6112.17 (18)C10—C19—H19B109.0
N1—C7—H7A109.2H19A—C19—H19B107.8
C6—C7—H7A109.2C21—C20—C25116.5 (2)
N1—C7—H7B109.2C21—C20—C19120.9 (2)
C6—C7—H7B109.2C25—C20—C19122.6 (2)
H7A—C7—H7B107.9C22—C21—C20121.8 (2)
O1—C8—N1123.6 (2)C22—C21—H21A119.1
O1—C8—C9128.5 (2)C20—C21—H21A119.1
N1—C8—C9107.90 (18)C21—C22—C23121.0 (2)
C12—C9—C8121.6 (2)C21—C22—H22A119.5
C12—C9—C10130.6 (2)C23—C22—H22A119.5
C8—C9—C10107.59 (18)C22—C23—C24117.3 (2)
C11—C10—C9102.93 (18)C22—C23—C26122.0 (2)
C11—C10—C19110.13 (18)C24—C23—C26120.7 (2)
C9—C10—C19116.51 (18)C25—C24—C23121.8 (2)
C11—C10—H10A109.0C25—C24—H24A119.1
C9—C10—H10A109.0C23—C24—H24A119.1
C19—C10—H10A109.0C24—C25—C20121.5 (2)
O2—C11—N1123.0 (2)C24—C25—H25A119.2
O2—C11—C10127.8 (2)C20—C25—H25A119.2
N1—C11—C10109.08 (18)O3—C26—C23126.1 (2)
C9—C12—C13129.9 (2)O3—C26—H26A117.0
C9—C12—H12A115.0C23—C26—H26A117.0
C13—C12—H12A115.0C8—N1—C11112.37 (18)
C14—C13—C18119.1 (2)C8—N1—C7124.44 (19)
C14—C13—C12118.4 (2)C11—N1—C7123.18 (19)
C18—C13—C12122.4 (2)H1X—O1W—H1Y118.8
C15—C14—C13120.1 (2)
C6—C1—C2—C30.5 (3)C15—C16—C17—C182.6 (4)
C1—C2—C3—C40.3 (3)C16—C17—C18—C132.5 (4)
C2—C3—C4—C50.1 (3)C14—C13—C18—C171.0 (4)
C3—C4—C5—C60.1 (3)C12—C13—C18—C17179.8 (2)
C2—C1—C6—C50.4 (3)C11—C10—C19—C2060.7 (2)
C2—C1—C6—C7178.8 (2)C9—C10—C19—C2056.0 (3)
C4—C5—C6—C10.3 (3)C10—C19—C20—C2190.7 (3)
C4—C5—C6—C7178.63 (18)C10—C19—C20—C2590.6 (3)
C1—C6—C7—N184.9 (2)C25—C20—C21—C222.0 (3)
C5—C6—C7—N193.5 (2)C19—C20—C21—C22179.2 (2)
O1—C8—C9—C126.1 (4)C20—C21—C22—C231.5 (4)
N1—C8—C9—C12176.0 (2)C21—C22—C23—C241.4 (4)
O1—C8—C9—C10178.2 (2)C21—C22—C23—C26178.8 (2)
N1—C8—C9—C100.3 (2)C22—C23—C24—C251.9 (4)
C12—C9—C10—C11177.4 (3)C26—C23—C24—C25178.3 (2)
C8—C9—C10—C112.2 (2)C23—C24—C25—C202.5 (4)
C12—C9—C10—C1956.8 (4)C21—C20—C25—C242.5 (3)
C8—C9—C10—C19118.4 (2)C19—C20—C25—C24178.7 (2)
C9—C10—C11—O2178.1 (2)C22—C23—C26—O31.7 (4)
C19—C10—C11—O257.0 (3)C24—C23—C26—O3178.5 (2)
C9—C10—C11—N13.5 (2)O1—C8—N1—C11176.0 (2)
C19—C10—C11—N1121.4 (2)C9—C8—N1—C112.0 (3)
C8—C9—C12—C13178.6 (2)O1—C8—N1—C73.3 (4)
C10—C9—C12—C134.0 (5)C9—C8—N1—C7178.7 (2)
C9—C12—C13—C14148.5 (3)O2—C11—N1—C8177.9 (2)
C9—C12—C13—C1830.4 (4)C10—C11—N1—C83.6 (3)
C18—C13—C14—C150.5 (4)O2—C11—N1—C71.4 (4)
C12—C13—C14—C15178.4 (2)C10—C11—N1—C7177.16 (19)
C13—C14—C15—C160.4 (4)C6—C7—N1—C886.5 (3)
C14—C15—C16—C171.2 (4)C6—C7—N1—C1194.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.982.563.419 (3)147
C18—H18A···O2i0.932.493.322 (3)149
C19—H19A···O1ii0.972.533.481 (3)168
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H21NO3·0.25H2O
Mr399.94
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.7360 (15), 12.441 (3), 12.577 (3)
α, β, γ (°)64.14 (3), 81.14 (2), 86.46 (3)
V3)1076.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.978, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8445, 4224, 3065
Rint0.027
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.149, 1.09
No. of reflections4224
No. of parameters277
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.982.563.419 (3)147
C18—H18A···O2i0.932.493.322 (3)149
C19—H19A···O1ii0.972.533.481 (3)168
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

We thank the National Science Foundation of China (project No. 21072003 and 20872002) for financial support of this work.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y.-M., Lin, X.-G., Zhu, T., Wan, J., Sun, Y.-J., Zhao, Q. S. & Yu, T. (2010a). Synthesis, 42, 3467–3473.  Web of Science CrossRef Google Scholar
First citationHu, Y.-M., Ouyang, Y., Qu, Y., Hu, Q. & Yao, H. (2009a). Chem. Commun. pp. 4575–4577.  Web of Science CSD CrossRef Google Scholar
First citationHu, Y.-M., Ren, D., Zhang, L.-D., Lin, X.-G. & Wang, J. (2010b). Eur. J. Org. Chem. 23, 4454–4459.  Google Scholar
First citationHu, Y.-M., Sun, Y.-J., Hu, J.-P., Zhu, T., Yu, T. & Zhao, Q.-S. (2011). Chem. Asian J. 6, 797–800.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHu, Y.-M., Yu, C.-L., Ren, D., Hu, Q., Zhang, L.-D. & Cheng, D. (2009b). Angew. Chem. Int. Ed. 48, 5448–5451.  Web of Science CSD CrossRef CAS Google Scholar
First citationPitchumani, K. & Vijaikumar, S. (2010). Indian J. Chem. 49, 469–474.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds