metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(dipyridin-2-yl­amine-κ2N2,N2′)palladium(II) dinitrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 13 March 2012; accepted 20 March 2012; online 31 March 2012)

The asymmetric unit of the title compound, [Pd(C10H9N3)2](NO3)2, contains one half of a cationic PdII complex and one NO3 anion. In the complex, the PdII ion is four-coordinated by four pyridine N atoms derived from the two chelating dipyridin-2-yl­amine (dpa) ligands. The PdII atom is located on an inversion centre, and thus the PdN4 unit is exactly planar. The dpa ligand itself is not planar, showing a dihedral angle between the pyridine rings of 39.9 (1)°. The anions are connected to the complex by inter­molecular N—H⋯O hydrogen bonds between the two O atoms of the anion and the N—H group of the cation. Weak inter­molecular C—H⋯O hydrogen bonds additionally link the constituents in the crystal structure. The NO3 anion was found to be disordered over two sites with a site-occupancy factor of 0.55 (10) for the major component.

Related literature

For the crystal structures of the related cationic PdII complexes [Pd(dpa)2](X)2 (X = Cl or PF6), see: Živković et al. (2007[Živković, M. D., Rajković, S., Rychlewska, U., Warżajtis, B. & Djuran, M. (2007). Polyhedron, 26, 1541-1549.]); Antonioli et al. (2008[Antonioli, B., Bray, D. J., Clegg, J. K., Gloe, K., Gloe, K., Jäger, A., Jolliffe, K. A., Kataeva, O., Lindoy, L. F., Steel, P. J., Sumby, C. J. & Wenzel, M. (2008). Polyhedron, 27, 2889-2898.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C10H9N3)2](NO3)2

  • Mr = 572.82

  • Monoclinic, P 21 /c

  • a = 8.5760 (8) Å

  • b = 16.8916 (16) Å

  • c = 7.4893 (7) Å

  • β = 96.296 (2)°

  • V = 1078.37 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 200 K

  • 0.29 × 0.23 × 0.14 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 1.000

  • 7678 measured reflections

  • 2626 independent reflections

  • 1932 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.16

  • 2626 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2i 0.92 2.08 2.964 (4) 160
N2—H2N⋯O3Ai 0.92 2.49 3.274 (17) 144
C2—H2⋯O1ii 0.95 2.57 3.409 (5) 148
C3—H3⋯O3A 0.95 2.55 3.23 (4) 129
C4—H4⋯O2i 0.95 2.37 3.152 (5) 140
C7—H7⋯O3Ai 0.95 2.25 3.07 (2) 144
C10—H10⋯O2iii 0.95 2.53 3.334 (5) 142
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal structures of related cationic PdII complexes, [Pd(dpa)2](X)2 (dpa = dipyridyl-2-ylamine, C10H9N3; X = Cl or PF6), have been reported previously (Živković et al., 2007; Antonioli et al., 2008).

The asymmetric unit of the title compound, [Pd(C10H9N3)2](NO3)2, contains one half of a cationic PdII complex and one NO3- anion (Fig. 1). In the complex, the PdII ion is four-coordinated by four pyridine N atoms derived from the two chelating dipyridin-2-ylamine (dpa) ligands. The Pd atom is located on an inversion centre, and thus the PdN4 unit is exactly planar. The dpa ligand itself is not planar, showing a dihedral angle between the pyridine rings of 39.9 (1)°. The two Pd—N bond lengths are almost equivalent [Pd—N: 2.021 (3) and 2.030 (3) Å]. The anions are connected to the complex by intermolecular N—H···O hydrogen bonds between the two O atoms of the anion and the N—H group of the cation (Fig. 2 and Table 1). Weak intermolecular C—H···O hydrogen bonds additionally link the constituents in the crystal structure (Table 1). The complex molecules are stacked into columns along the a axis. In the columns, several intermolecular π-π interactions between the pyridine rings are present, the shortest ring centroid-centroid distance being 3.771 (2) Å.

Related literature top

For the crystal structures of the related cationic PdII complexes [Pd(dpa)2](X)2 (X = Cl or PF6), see: Živković et al. (2007); Antonioli et al. (2008).

Experimental top

To a solution of Pd(NO3)2.2H2O (0.1315 g, 0.494 mmol) in acetone (30 ml) was added dipyridin-2-pyridylamine (0.0858 g, 0.501 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration and washed with ether, and dried under vacuum, to give a yellow powder (0.1110 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution at room temperature.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. Nitrogen-bound H atom was located from Fourier difference maps then allowed to ride on its parent atom in the final cycles of refinement with N—H = 0.92 Å and Uiso(H) = 1.5 Ueq(N). The NO3- anion displayed relatively large displacement factors and low electron density peaks so that the anion appears to be highly disordered. The atom O3 was modelled anisotropically as disordered over two sites with a site-occupancy factor of 0.55 (10) for the major component. The highest peak (0.91 e Å-3) and the deepest hole (-0.94 e Å-3) in the difference Fourier map are located 0.68 Å and 0.85 Å from the atoms N3 and Pd1, respectively.

Structure description top

Crystal structures of related cationic PdII complexes, [Pd(dpa)2](X)2 (dpa = dipyridyl-2-ylamine, C10H9N3; X = Cl or PF6), have been reported previously (Živković et al., 2007; Antonioli et al., 2008).

The asymmetric unit of the title compound, [Pd(C10H9N3)2](NO3)2, contains one half of a cationic PdII complex and one NO3- anion (Fig. 1). In the complex, the PdII ion is four-coordinated by four pyridine N atoms derived from the two chelating dipyridin-2-ylamine (dpa) ligands. The Pd atom is located on an inversion centre, and thus the PdN4 unit is exactly planar. The dpa ligand itself is not planar, showing a dihedral angle between the pyridine rings of 39.9 (1)°. The two Pd—N bond lengths are almost equivalent [Pd—N: 2.021 (3) and 2.030 (3) Å]. The anions are connected to the complex by intermolecular N—H···O hydrogen bonds between the two O atoms of the anion and the N—H group of the cation (Fig. 2 and Table 1). Weak intermolecular C—H···O hydrogen bonds additionally link the constituents in the crystal structure (Table 1). The complex molecules are stacked into columns along the a axis. In the columns, several intermolecular π-π interactions between the pyridine rings are present, the shortest ring centroid-centroid distance being 3.771 (2) Å.

For the crystal structures of the related cationic PdII complexes [Pd(dpa)2](X)2 (X = Cl or PF6), see: Živković et al. (2007); Antonioli et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Unlabelled atoms are related to the reference atoms by the (-x, -y, -z) symmetry transformation. The minor bond of the disordered anion is drawn as a dashed line.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title compound. Intermolecular N—H···O hydrogen-bond interactions are drawn as dashed lines.
Bis(dipyridin-2-ylamine-κ2N2,N2-)palladium(II) dinitrate top
Crystal data top
[Pd(C10H9N3)2](NO3)2F(000) = 576
Mr = 572.82Dx = 1.764 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4149 reflections
a = 8.5760 (8) Åθ = 2.4–28.3°
b = 16.8916 (16) ŵ = 0.92 mm1
c = 7.4893 (7) ÅT = 200 K
β = 96.296 (2)°Block, yellow
V = 1078.37 (18) Å30.29 × 0.23 × 0.14 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
2626 independent reflections
Radiation source: fine-focus sealed tube1932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 911
Tmin = 0.890, Tmax = 1.000k = 2220
7678 measured reflectionsl = 94
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.011P)2 + 2.4328P]
where P = (Fo2 + 2Fc2)/3
2626 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Pd(C10H9N3)2](NO3)2V = 1078.37 (18) Å3
Mr = 572.82Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.5760 (8) ŵ = 0.92 mm1
b = 16.8916 (16) ÅT = 200 K
c = 7.4893 (7) Å0.29 × 0.23 × 0.14 mm
β = 96.296 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2626 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1932 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 1.000Rint = 0.025
7678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.16Δρmax = 0.91 e Å3
2626 reflectionsΔρmin = 0.94 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.00000.00000.00000.02988 (11)
N10.1491 (3)0.08511 (16)0.1032 (4)0.0310 (6)
N20.0576 (4)0.14664 (17)0.2356 (4)0.0365 (7)
H2N0.08940.19430.27890.055*
N30.1005 (3)0.00901 (17)0.2323 (4)0.0300 (6)
C10.3025 (4)0.0847 (2)0.0763 (5)0.0377 (8)
H10.34370.03880.02510.045*
C20.4012 (5)0.1469 (2)0.1189 (6)0.0445 (10)
H20.50820.14450.09730.053*
C30.3411 (5)0.2138 (2)0.1947 (6)0.0456 (10)
H30.40550.25900.22140.055*
C40.1882 (5)0.2140 (2)0.2306 (5)0.0397 (9)
H40.14610.25880.28520.048*
C50.0942 (4)0.1478 (2)0.1864 (5)0.0339 (8)
C60.1315 (4)0.0808 (2)0.2959 (5)0.0315 (7)
C70.2348 (4)0.0899 (2)0.4275 (5)0.0410 (9)
H70.26000.14120.46810.049*
C80.2983 (5)0.0241 (3)0.4962 (5)0.0453 (10)
H80.37030.02930.58320.054*
C90.2576 (5)0.0503 (2)0.4390 (5)0.0429 (9)
H90.29770.09660.48970.052*
C100.1587 (4)0.0558 (2)0.3084 (5)0.0375 (8)
H100.12990.10680.26970.045*
N40.7615 (4)0.32688 (19)0.3476 (5)0.0396 (7)
O10.7104 (4)0.39245 (17)0.3829 (4)0.0598 (9)
O20.9002 (4)0.3157 (2)0.3252 (5)0.0657 (10)
O3A0.683 (2)0.2662 (8)0.380 (8)0.078 (7)0.55 (10)
O3B0.6702 (18)0.278 (2)0.282 (10)0.073 (10)0.45 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03068 (19)0.02516 (18)0.0353 (2)0.00072 (16)0.01034 (15)0.00249 (17)
N10.0332 (15)0.0272 (14)0.0335 (16)0.0007 (12)0.0078 (13)0.0013 (12)
N20.0405 (17)0.0276 (15)0.0430 (18)0.0000 (13)0.0123 (15)0.0075 (13)
N30.0306 (14)0.0337 (16)0.0263 (13)0.0011 (12)0.0053 (11)0.0025 (12)
C10.0331 (19)0.043 (2)0.038 (2)0.0019 (16)0.0103 (16)0.0033 (17)
C20.035 (2)0.052 (2)0.047 (2)0.0079 (18)0.0044 (18)0.0068 (19)
C30.048 (2)0.038 (2)0.051 (3)0.0123 (18)0.004 (2)0.0012 (19)
C40.049 (2)0.0308 (19)0.040 (2)0.0059 (16)0.0049 (18)0.0019 (16)
C50.0367 (19)0.0319 (18)0.0335 (19)0.0007 (15)0.0065 (16)0.0019 (15)
C60.0332 (18)0.0342 (18)0.0266 (17)0.0027 (14)0.0015 (15)0.0057 (15)
C70.035 (2)0.049 (2)0.039 (2)0.0002 (17)0.0079 (17)0.0094 (18)
C80.037 (2)0.065 (3)0.035 (2)0.0025 (19)0.0103 (17)0.0022 (19)
C90.044 (2)0.050 (2)0.035 (2)0.0117 (19)0.0055 (18)0.0070 (18)
C100.043 (2)0.0353 (19)0.035 (2)0.0049 (16)0.0053 (17)0.0057 (16)
N40.0394 (18)0.0362 (17)0.0433 (19)0.0002 (14)0.0051 (15)0.0024 (15)
O10.079 (2)0.0378 (16)0.066 (2)0.0150 (15)0.0226 (18)0.0034 (15)
O20.0398 (17)0.089 (3)0.071 (2)0.0008 (17)0.0179 (16)0.0229 (19)
O3A0.076 (6)0.035 (4)0.12 (2)0.016 (4)0.006 (9)0.008 (6)
O3B0.051 (6)0.048 (7)0.12 (3)0.020 (5)0.006 (8)0.007 (11)
Geometric parameters (Å, º) top
Pd1—N1i2.021 (3)C3—H30.9500
Pd1—N12.021 (3)C4—C51.397 (5)
Pd1—N32.030 (3)C4—H40.9500
Pd1—N3i2.030 (3)C6—C71.404 (5)
N1—C51.340 (4)C7—C81.363 (6)
N1—C11.353 (4)C7—H70.9500
N2—C61.381 (4)C8—C91.384 (6)
N2—C51.391 (4)C8—H80.9500
N2—H2N0.9200C9—C101.366 (5)
N3—C61.341 (4)C9—H90.9500
N3—C101.355 (4)C10—H100.9500
C1—C21.364 (5)N4—O3B1.204 (15)
C1—H10.9500N4—O11.231 (4)
C2—C31.390 (6)N4—O21.234 (4)
C2—H20.9500N4—O3A1.264 (17)
C3—C41.367 (5)
N1i—Pd1—N1180.00 (19)C3—C4—H4120.2
N1i—Pd1—N394.06 (11)C5—C4—H4120.2
N1—Pd1—N385.94 (11)N1—C5—N2119.9 (3)
N1i—Pd1—N3i85.94 (11)N1—C5—C4121.3 (3)
N1—Pd1—N3i94.06 (11)N2—C5—C4118.7 (3)
N3—Pd1—N3i180.0N3—C6—N2119.7 (3)
C5—N1—C1118.0 (3)N3—C6—C7120.9 (3)
C5—N1—Pd1120.0 (2)N2—C6—C7119.3 (3)
C1—N1—Pd1121.7 (2)C8—C7—C6119.0 (4)
C6—N2—C5125.1 (3)C8—C7—H7120.5
C6—N2—H2N115.1C6—C7—H7120.5
C5—N2—H2N113.8C7—C8—C9120.0 (4)
C6—N3—C10119.0 (3)C7—C8—H8120.0
C6—N3—Pd1119.5 (2)C9—C8—H8120.0
C10—N3—Pd1120.7 (2)C10—C9—C8118.7 (4)
N1—C1—C2123.4 (4)C10—C9—H9120.6
N1—C1—H1118.3C8—C9—H9120.6
C2—C1—H1118.3N3—C10—C9122.1 (4)
C1—C2—C3118.3 (4)N3—C10—H10118.9
C1—C2—H2120.9C9—C10—H10118.9
C3—C2—H2120.9O3B—N4—O1118.3 (11)
C4—C3—C2119.2 (4)O3B—N4—O2115.7 (10)
C4—C3—H3120.4O1—N4—O2122.6 (4)
C2—C3—H3120.4O1—N4—O3A118.7 (9)
C3—C4—C5119.5 (4)O2—N4—O3A116.2 (8)
N3—Pd1—N1—C543.5 (3)C6—N2—C5—N136.1 (5)
N3i—Pd1—N1—C5136.5 (3)C6—N2—C5—C4141.9 (4)
N3—Pd1—N1—C1142.8 (3)C3—C4—C5—N12.5 (6)
N3i—Pd1—N1—C137.2 (3)C3—C4—C5—N2175.4 (4)
N1i—Pd1—N3—C6133.9 (3)C10—N3—C6—N2172.0 (3)
N1—Pd1—N3—C646.1 (3)Pd1—N3—C6—N218.3 (4)
N1i—Pd1—N3—C1035.6 (3)C10—N3—C6—C76.0 (5)
N1—Pd1—N3—C10144.4 (3)Pd1—N3—C6—C7163.7 (3)
C5—N1—C1—C24.4 (6)C5—N2—C6—N333.2 (5)
Pd1—N1—C1—C2169.4 (3)C5—N2—C6—C7144.9 (4)
N1—C1—C2—C30.4 (6)N3—C6—C7—C82.9 (6)
C1—C2—C3—C42.6 (6)N2—C6—C7—C8175.1 (4)
C2—C3—C4—C51.6 (6)C6—C7—C8—C91.5 (6)
C1—N1—C5—N2172.5 (3)C7—C8—C9—C102.7 (6)
Pd1—N1—C5—N213.6 (5)C6—N3—C10—C94.9 (5)
C1—N1—C5—C45.4 (5)Pd1—N3—C10—C9164.7 (3)
Pd1—N1—C5—C4168.5 (3)C8—C9—C10—N30.5 (6)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2ii0.922.082.964 (4)160
N2—H2N···O3Aii0.922.493.274 (17)144
C2—H2···O1iii0.952.573.409 (5)148
C3—H3···O3A0.952.553.23 (4)129
C4—H4···O2ii0.952.373.152 (5)140
C7—H7···O3Aii0.952.253.07 (2)144
C10—H10···O2iv0.952.533.334 (5)142
Symmetry codes: (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pd(C10H9N3)2](NO3)2
Mr572.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)8.5760 (8), 16.8916 (16), 7.4893 (7)
β (°) 96.296 (2)
V3)1078.37 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.29 × 0.23 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.890, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7678, 2626, 1932
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.16
No. of reflections2626
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.94

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.922.082.964 (4)159.9
N2—H2N···O3Ai0.922.493.274 (17)143.9
C2—H2···O1ii0.952.573.409 (5)148.1
C3—H3···O3A0.952.553.23 (4)129.0
C4—H4···O2i0.952.373.152 (5)139.8
C7—H7···O3Ai0.952.253.07 (2)144.2
C10—H10···O2iii0.952.533.334 (5)142.3
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

References

First citationAntonioli, B., Bray, D. J., Clegg, J. K., Gloe, K., Gloe, K., Jäger, A., Jolliffe, K. A., Kataeva, O., Lindoy, L. F., Steel, P. J., Sumby, C. J. & Wenzel, M. (2008). Polyhedron, 27, 2889–2898.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŽivković, M. D., Rajković, S., Rychlewska, U., Warżajtis, B. & Djuran, M. (2007). Polyhedron, 26, 1541–1549.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds