organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-1,1′-Bi­naphthalene-2,2′-diol–(Z)-N-ethyl­ideneethanamine N-oxide (1/1)

aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdwhb@sina.com

(Received 17 December 2011; accepted 19 February 2012; online 3 March 2012)

In the title compound, C4H9NO·C20H14O2, the dihedral angle between the naphthalene ring systems of the binaphthalene­diol mol­ecule is 77.53 (14)°. In the crystal, the two components are linked by O—H⋯O hydrogen bonds, forming a zigzag chain along the c axis.

Related literature

For applications of 2,2′-dihy­droxy-1,1′-dinaphthalene in asymmetric synthesis, see: Noyori et al. (1984[Noyori, R., Tomino, I., Tanimoto, Y. & Nishizawa, M. (1984). J. Am. Chem. Soc. 106, 6709-6712.]); Reeder et al. (1994[Reeder, J., Castro, P. P., Knobler, C. B., Martinborough, E., Owens, L. & Diederich, F. (1994). J. Org. Chem. 59, 3151-3160.]); Toda et al. (1989[Toda, F., Mori, K., Stein, Z. & Goldberg, I. (1989). Tetrahedron Lett. 30, 1841-1843.]); Zhang & Schuster (1994[Zhang, M. & Schuster, G. B. (1994). J. Am. Chem. Soc. 116, 4852-4857.]). For related literature on oxidation of hydroxyl­amines to nitro­nes, see: Cicchi et al. (2001[Cicchi, S., Marradi, M., Goti, A. & Brandi, A. (2001). Tetrahedron Lett. 42, 6503-6505.]); Engel et al. (1997[Engel, P. S., Duan, S. M. & Arhancet, G. B. (1997). J. Org. Chem. 62, 3537-3541.]); Liu et al. (2004[Liu, J. T., Jin, Q. H., Lv, H. J. & Huang, W. Y. (2004). Chin. J. Chem. 22, 945-949.]).

[Scheme 1]

Experimental

Crystal data
  • C4H9NO·C20H14O2

  • Mr = 373.43

  • Trigonal, P 31

  • a = 8.9579 (6) Å

  • c = 21.187 (3) Å

  • V = 1472.4 (2) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.31 × 0.22 × 0.18 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.977

  • 7771 measured reflections

  • 1732 independent reflections

  • 1662 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.115

  • S = 1.19

  • 1732 reflections

  • 257 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.82 1.90 2.706 (5) 167
O2—H2⋯O3i 0.82 1.96 2.763 (5) 168
Symmetry code: (i) [-x+y, -x+1, z-{\script{1\over 3}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,2'-Dihydroxy-1,1'-dinaphthalene (binaphthol) is an important chemical as a precursor for catalysis in asymmetric synthesis, as a chiral host for molecular recognition and enantiomer separation and also as intermediates for the synthesis of chiral materials (Noyori et al., 1984; Toda et al., 1989; Reeder et al., 1994; Zhang & Schuster, 1994). N,N-diethylhydroxylamine is easily oxidized to form E and Z type of N-ethylideneethanamine N-oxide (ELDEA) (Engel et al., 1997; Liu et al., 2004; Cicchi et al., 2001). In this study, only the Z type of ELDEA is trapped by the (R)-binaphthol to form the title complex, (I) (Scheme 1 and Fig. 1).

The asymmetric unit comprises a ELDEA (Z type) molecule and a (R)-binaphthol molecule, which are linked by an intermolecular O—H···O hydrogen bond (Table 1). The two naphthyl groups are almost perpendicular to each other with a dihedral angle being 77.53 (14)°. The N1—O3 length [1.313 (5) Å] of ELDEA is characteristic of the N—O single bond, while the N1C22 bond [1.265 (7) Å] is a double bond. Because of the existence of N1C22 double bond, the O3/N1/C21/C22/C24 plane is almost planar. The ELDEA is connected to two H atoms from different binaphthol molecules through O—H···O hydrogen bonds (Fig. 2 and Table 1), forming infinite chains running along the c axis.

Related literature top

For applications of 2,2'-dihydroxy-1,1'-dinaphthalene in asymmetric synthesis, see: Noyori et al. (1984); Reeder et al. (1994); Toda et al. (1989); Zhang & Schuster (1994). For related literature on oxidation of hydroxylamines to nitrones, see: Cicchi et al. (2001); Engel et al. (1997); Liu et al. (2004).

Experimental top

The (R)-1,1'-bi-2-naphthol (2.9 g) and N,N-diethylhydroxylamine (0.9 g) were mixed and dissolved in sufficient ethanol 30 ml by heating to a temperature of 353 K where a clear solution was resulted, then refluxed for 5 h. The materials of experiment were exposed in air. Single crystals of (I) (2.7 g) were formed form an ethanol solution by gradual evaporation for two weeks at room temperature.

Refinement top

All H atoms were placed in calculated positions and allowed to ride on their parent atoms, with O—H = 0.82 Å, and C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene), and with Uiso(H) = 1.2 or 1.5Ueq of the parent atom. In the absence of significant anomalous scattering, Friedel pairs were merged before the final refinement.

Structure description top

2,2'-Dihydroxy-1,1'-dinaphthalene (binaphthol) is an important chemical as a precursor for catalysis in asymmetric synthesis, as a chiral host for molecular recognition and enantiomer separation and also as intermediates for the synthesis of chiral materials (Noyori et al., 1984; Toda et al., 1989; Reeder et al., 1994; Zhang & Schuster, 1994). N,N-diethylhydroxylamine is easily oxidized to form E and Z type of N-ethylideneethanamine N-oxide (ELDEA) (Engel et al., 1997; Liu et al., 2004; Cicchi et al., 2001). In this study, only the Z type of ELDEA is trapped by the (R)-binaphthol to form the title complex, (I) (Scheme 1 and Fig. 1).

The asymmetric unit comprises a ELDEA (Z type) molecule and a (R)-binaphthol molecule, which are linked by an intermolecular O—H···O hydrogen bond (Table 1). The two naphthyl groups are almost perpendicular to each other with a dihedral angle being 77.53 (14)°. The N1—O3 length [1.313 (5) Å] of ELDEA is characteristic of the N—O single bond, while the N1C22 bond [1.265 (7) Å] is a double bond. Because of the existence of N1C22 double bond, the O3/N1/C21/C22/C24 plane is almost planar. The ELDEA is connected to two H atoms from different binaphthol molecules through O—H···O hydrogen bonds (Fig. 2 and Table 1), forming infinite chains running along the c axis.

For applications of 2,2'-dihydroxy-1,1'-dinaphthalene in asymmetric synthesis, see: Noyori et al. (1984); Reeder et al. (1994); Toda et al. (1989); Zhang & Schuster (1994). For related literature on oxidation of hydroxylamines to nitrones, see: Cicchi et al. (2001); Engel et al. (1997); Liu et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom-labeling and displacement ellipsoids drawn at the 40% probability level. The hydrogen bond is illustrated as a dashed line.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound, viewed along the b axis. Hydrogen bonds are drawn as dashed lines.
(R)-1-(2-hydroxynaphthalen-1-yl)naphthalen-2-ol– (Z)-N-ethylethanimine N-oxide (1/1) top
Crystal data top
C4H9NO·C20H14O2Dx = 1.263 Mg m3
Mr = 373.43Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31Cell parameters from 1360 reflections
Hall symbol: P 31θ = 2.4–16.6°
a = 8.9579 (6) ŵ = 0.08 mm1
c = 21.187 (3) ÅT = 273 K
V = 1472.4 (2) Å3Prism, colorless
Z = 30.31 × 0.22 × 0.18 mm
F(000) = 594.0
Data collection top
Bruker APEX area-detector
diffractometer
1732 independent reflections
Radiation source: fine-focus sealed tube1662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scanθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 109
Tmin = 0.964, Tmax = 0.977k = 710
7771 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.4671P]
where P = (Fo2 + 2Fc2)/3
1732 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C4H9NO·C20H14O2Z = 3
Mr = 373.43Mo Kα radiation
Trigonal, P31µ = 0.08 mm1
a = 8.9579 (6) ÅT = 273 K
c = 21.187 (3) Å0.31 × 0.22 × 0.18 mm
V = 1472.4 (2) Å3
Data collection top
Bruker APEX area-detector
diffractometer
1732 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1662 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.977Rint = 0.033
7771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.115H-atom parameters constrained
S = 1.19Δρmax = 0.19 e Å3
1732 reflectionsΔρmin = 0.26 e Å3
257 parameters
Special details top

Experimental. The IR (KBr pellet) spectrum of (I) showed bands: 3069, 1624, 1583, 1504, 1433, 1338, 1275, 1241, 1177, 1142, 1093, 1012, 979, 965, 928, 867, 820, 753, 624, 581, 492, 442 and 424 cm-1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6567 (4)0.7994 (4)0.76094 (13)0.0418 (7)
H10.58350.78510.78720.063*
O20.5514 (4)0.5899 (4)0.59216 (14)0.0500 (8)
H20.50180.59770.56090.075*
O30.3797 (4)0.7314 (5)0.83262 (16)0.0582 (9)
N10.2490 (6)0.5834 (6)0.8144 (2)0.0643 (12)
C10.7392 (4)0.6275 (4)0.70313 (16)0.0255 (7)
C20.6670 (5)0.6537 (5)0.75628 (16)0.0308 (8)
C30.6065 (5)0.5327 (5)0.80628 (17)0.0365 (9)
H3A0.55730.55210.84170.044*
C40.6198 (5)0.3880 (5)0.80293 (17)0.0356 (9)
H40.57990.31000.83630.043*
C50.6929 (5)0.3548 (5)0.74984 (19)0.0344 (9)
C60.7057 (6)0.2039 (6)0.7449 (2)0.0472 (11)
H60.66600.12470.77780.057*
C70.7742 (7)0.1731 (6)0.6935 (2)0.0551 (12)
H70.78190.07350.69110.066*
C80.8336 (7)0.2911 (6)0.6437 (2)0.0510 (12)
H80.87960.26860.60800.061*
C90.8253 (5)0.4385 (5)0.64668 (18)0.0370 (9)
H90.86740.51610.61320.044*
C100.7537 (4)0.4758 (5)0.69961 (17)0.0292 (8)
C110.8048 (5)0.7566 (4)0.65051 (16)0.0266 (8)
C120.7106 (5)0.7323 (5)0.59651 (17)0.0323 (9)
C130.7759 (5)0.8506 (5)0.54687 (18)0.0411 (10)
H130.71080.82990.51040.049*
C140.9330 (5)0.9954 (5)0.55105 (18)0.0399 (10)
H140.97471.07150.51720.048*
C151.0329 (5)1.0315 (5)0.60593 (19)0.0342 (9)
C161.1919 (6)1.1874 (6)0.6136 (2)0.0464 (11)
H161.23301.26740.58100.056*
C171.2848 (6)1.2220 (6)0.6673 (2)0.0562 (13)
H171.38781.32560.67180.067*
C181.2245 (6)1.1009 (6)0.7159 (2)0.0579 (13)
H181.28971.12320.75250.069*
C191.0714 (5)0.9500 (6)0.71080 (19)0.0413 (10)
H191.03370.87200.74410.050*
C200.9695 (5)0.9104 (5)0.65601 (17)0.0288 (8)
C210.2757 (9)0.6739 (10)0.7052 (3)0.094 (2)
H21A0.33800.63720.67850.140*
H21B0.35340.78680.72150.140*
H21C0.18650.67720.68120.140*
C220.1986 (8)0.5529 (9)0.7577 (3)0.0802 (18)
H220.10500.44490.74860.096*
C230.0453 (10)0.4797 (11)0.9012 (4)0.110 (3)
H23A0.03840.48200.87350.165*
H23B0.10820.58860.92250.165*
H23C0.01230.38960.93180.165*
C240.1635 (9)0.4481 (9)0.8648 (3)0.093 (2)
H24A0.10120.33510.84540.112*
H24B0.25050.44980.89250.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0524 (18)0.0364 (15)0.0433 (17)0.0272 (14)0.0132 (13)0.0028 (12)
O20.0400 (16)0.0387 (17)0.0457 (18)0.0005 (13)0.0158 (13)0.0099 (13)
O30.057 (2)0.067 (2)0.055 (2)0.0340 (19)0.0085 (16)0.0168 (16)
N10.055 (3)0.072 (3)0.057 (3)0.025 (2)0.007 (2)0.006 (2)
C10.0221 (17)0.0219 (18)0.0266 (17)0.0067 (15)0.0059 (15)0.0002 (14)
C20.0277 (19)0.032 (2)0.033 (2)0.0144 (17)0.0027 (15)0.0006 (15)
C30.042 (2)0.045 (2)0.0238 (19)0.0221 (19)0.0043 (16)0.0013 (16)
C40.041 (2)0.035 (2)0.028 (2)0.0174 (18)0.0057 (17)0.0098 (17)
C50.032 (2)0.030 (2)0.038 (2)0.0134 (17)0.0003 (17)0.0037 (16)
C60.061 (3)0.035 (2)0.048 (3)0.026 (2)0.006 (2)0.0130 (19)
C70.078 (3)0.042 (3)0.058 (3)0.040 (3)0.011 (3)0.006 (2)
C80.071 (3)0.048 (3)0.045 (3)0.038 (3)0.011 (2)0.002 (2)
C90.045 (2)0.036 (2)0.033 (2)0.0229 (19)0.0051 (17)0.0049 (17)
C100.0246 (18)0.0260 (19)0.032 (2)0.0093 (15)0.0003 (15)0.0000 (15)
C110.0305 (19)0.0234 (18)0.0277 (18)0.0148 (16)0.0031 (15)0.0026 (14)
C120.032 (2)0.028 (2)0.032 (2)0.0116 (17)0.0026 (16)0.0003 (16)
C130.045 (2)0.043 (2)0.030 (2)0.018 (2)0.0035 (18)0.0063 (18)
C140.045 (2)0.040 (2)0.029 (2)0.017 (2)0.0055 (18)0.0156 (18)
C150.031 (2)0.029 (2)0.040 (2)0.0129 (17)0.0030 (17)0.0030 (16)
C160.039 (2)0.037 (2)0.052 (3)0.0106 (19)0.008 (2)0.0136 (19)
C170.033 (2)0.040 (2)0.067 (3)0.003 (2)0.007 (2)0.003 (2)
C180.041 (3)0.049 (3)0.058 (3)0.003 (2)0.016 (2)0.005 (2)
C190.039 (2)0.041 (2)0.035 (2)0.0126 (19)0.0064 (17)0.0014 (17)
C200.0285 (19)0.0288 (19)0.032 (2)0.0168 (16)0.0016 (16)0.0009 (15)
C210.076 (4)0.149 (6)0.058 (3)0.057 (5)0.007 (3)0.016 (4)
C220.055 (3)0.097 (5)0.070 (4)0.025 (3)0.012 (3)0.021 (4)
C230.095 (5)0.110 (6)0.119 (6)0.047 (5)0.032 (5)0.033 (5)
C240.092 (5)0.087 (5)0.088 (5)0.035 (4)0.024 (4)0.014 (4)
Geometric parameters (Å, º) top
O1—C21.357 (4)C12—C131.397 (5)
O1—H10.8200C13—C141.358 (6)
O2—C121.360 (5)C13—H130.9300
O2—H20.8200C14—C151.403 (6)
O3—N11.313 (5)C14—H140.9300
N1—C221.265 (7)C15—C201.417 (5)
N1—C241.506 (8)C15—C161.420 (6)
C1—C21.376 (5)C16—C171.351 (6)
C1—C101.431 (5)C16—H160.9300
C1—C111.498 (5)C17—C181.394 (7)
C2—C31.416 (5)C17—H170.9300
C3—C41.361 (6)C18—C191.366 (6)
C3—H3A0.9300C18—H180.9300
C4—C51.406 (6)C19—C201.408 (5)
C4—H40.9300C19—H190.9300
C5—C61.416 (6)C21—C221.463 (9)
C5—C101.419 (5)C21—H21A0.9600
C6—C71.345 (6)C21—H21B0.9600
C6—H60.9300C21—H21C0.9600
C7—C81.397 (7)C22—H220.9300
C7—H70.9300C23—C241.447 (10)
C8—C91.361 (6)C23—H23A0.9600
C8—H80.9300C23—H23B0.9600
C9—C101.412 (5)C23—H23C0.9600
C9—H90.9300C24—H24A0.9700
C11—C121.373 (5)C24—H24B0.9700
C11—C201.434 (5)
C2—O1—H1109.5C12—C13—H13119.4
C12—O2—H2109.5C13—C14—C15120.7 (3)
C22—N1—O3122.6 (5)C13—C14—H14119.6
C22—N1—C24121.1 (5)C15—C14—H14119.6
O3—N1—C24116.3 (4)C14—C15—C20118.6 (3)
C2—C1—C10118.6 (3)C14—C15—C16122.2 (4)
C2—C1—C11120.9 (3)C20—C15—C16119.2 (4)
C10—C1—C11120.5 (3)C17—C16—C15121.5 (4)
O1—C2—C1119.2 (3)C17—C16—H16119.2
O1—C2—C3119.9 (3)C15—C16—H16119.2
C1—C2—C3120.9 (3)C16—C17—C18119.3 (4)
C4—C3—C2120.5 (3)C16—C17—H17120.4
C4—C3—H3A119.7C18—C17—H17120.4
C2—C3—H3A119.7C19—C18—C17121.2 (4)
C3—C4—C5121.0 (3)C19—C18—H18119.4
C3—C4—H4119.5C17—C18—H18119.4
C5—C4—H4119.5C18—C19—C20121.2 (4)
C4—C5—C6122.0 (4)C18—C19—H19119.4
C4—C5—C10118.7 (3)C20—C19—H19119.4
C6—C5—C10119.3 (4)C19—C20—C15117.6 (4)
C7—C6—C5121.3 (4)C19—C20—C11122.3 (3)
C7—C6—H6119.4C15—C20—C11120.1 (3)
C5—C6—H6119.4C22—C21—H21A109.5
C6—C7—C8119.8 (4)C22—C21—H21B109.5
C6—C7—H7120.1H21A—C21—H21B109.5
C8—C7—H7120.1C22—C21—H21C109.5
C9—C8—C7120.9 (4)H21A—C21—H21C109.5
C9—C8—H8119.5H21B—C21—H21C109.5
C7—C8—H8119.5N1—C22—C21125.2 (6)
C8—C9—C10121.2 (4)N1—C22—H22117.4
C8—C9—H9119.4C21—C22—H22117.4
C10—C9—H9119.4C24—C23—H23A109.5
C9—C10—C5117.4 (3)C24—C23—H23B109.5
C9—C10—C1122.3 (3)H23A—C23—H23B109.5
C5—C10—C1120.3 (3)C24—C23—H23C109.5
C12—C11—C20118.4 (3)H23A—C23—H23C109.5
C12—C11—C1121.7 (3)H23B—C23—H23C109.5
C20—C11—C1120.0 (3)C23—C24—N1110.4 (6)
O2—C12—C11118.6 (3)C23—C24—H24A109.6
O2—C12—C13120.4 (3)N1—C24—H24A109.6
C11—C12—C13121.1 (3)C23—C24—H24B109.6
C14—C13—C12121.1 (4)N1—C24—H24B109.6
C14—C13—H13119.4H24A—C24—H24B108.1
C10—C1—C2—O1178.3 (3)C20—C11—C12—O2177.4 (3)
C11—C1—C2—O10.5 (5)C1—C11—C12—O22.2 (5)
C10—C1—C2—C30.6 (5)C20—C11—C12—C132.7 (5)
C11—C1—C2—C3179.4 (3)C1—C11—C12—C13177.7 (3)
O1—C2—C3—C4178.4 (4)O2—C12—C13—C14178.5 (4)
C1—C2—C3—C40.5 (6)C11—C12—C13—C141.6 (6)
C2—C3—C4—C50.3 (6)C12—C13—C14—C151.0 (6)
C3—C4—C5—C6179.0 (4)C13—C14—C15—C202.4 (6)
C3—C4—C5—C100.3 (6)C13—C14—C15—C16175.4 (4)
C4—C5—C6—C7179.2 (5)C14—C15—C16—C17178.4 (5)
C10—C5—C6—C70.1 (7)C20—C15—C16—C170.7 (7)
C5—C6—C7—C80.2 (8)C15—C16—C17—C181.0 (8)
C6—C7—C8—C90.8 (8)C16—C17—C18—C191.7 (8)
C7—C8—C9—C101.1 (7)C17—C18—C19—C200.6 (8)
C8—C9—C10—C50.8 (6)C18—C19—C20—C151.1 (6)
C8—C9—C10—C1178.3 (4)C18—C19—C20—C11177.2 (4)
C4—C5—C10—C9179.5 (4)C14—C15—C20—C19179.5 (4)
C6—C5—C10—C90.2 (5)C16—C15—C20—C191.7 (5)
C4—C5—C10—C10.5 (5)C14—C15—C20—C111.2 (5)
C6—C5—C10—C1178.9 (4)C16—C15—C20—C11176.6 (4)
C2—C1—C10—C9179.7 (3)C12—C11—C20—C19177.0 (4)
C11—C1—C10—C91.6 (5)C1—C11—C20—C192.7 (5)
C2—C1—C10—C50.6 (5)C12—C11—C20—C151.2 (5)
C11—C1—C10—C5179.4 (3)C1—C11—C20—C15179.1 (3)
C2—C1—C11—C12100.6 (4)O3—N1—C22—C210.1 (10)
C10—C1—C11—C1280.6 (4)C24—N1—C22—C21178.4 (6)
C2—C1—C11—C2079.0 (4)C22—N1—C24—C23100.9 (8)
C10—C1—C11—C2099.7 (4)O3—N1—C24—C2380.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.821.902.706 (5)167
O2—H2···O3i0.821.962.763 (5)168
Symmetry code: (i) x+y, x+1, z1/3.

Experimental details

Crystal data
Chemical formulaC4H9NO·C20H14O2
Mr373.43
Crystal system, space groupTrigonal, P31
Temperature (K)273
a, c (Å)8.9579 (6), 21.187 (3)
V3)1472.4 (2)
Z3
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.22 × 0.18
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.964, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
7771, 1732, 1662
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.115, 1.19
No. of reflections1732
No. of parameters257
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.821.902.706 (5)167
O2—H2···O3i0.821.962.763 (5)168
Symmetry code: (i) x+y, x+1, z1/3.
 

Acknowledgements

The authors thank Mr X.-J. Ma for preparing the sample, and Mr X.-J. Ma and Mr H.-Y. Li for collecting the diffraction data.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCicchi, S., Marradi, M., Goti, A. & Brandi, A. (2001). Tetrahedron Lett. 42, 6503–6505.  Web of Science CrossRef CAS Google Scholar
First citationEngel, P. S., Duan, S. M. & Arhancet, G. B. (1997). J. Org. Chem. 62, 3537–3541.  CrossRef CAS Web of Science Google Scholar
First citationLiu, J. T., Jin, Q. H., Lv, H. J. & Huang, W. Y. (2004). Chin. J. Chem. 22, 945–949.  CrossRef CAS Google Scholar
First citationNoyori, R., Tomino, I., Tanimoto, Y. & Nishizawa, M. (1984). J. Am. Chem. Soc. 106, 6709–6712.  CrossRef CAS Web of Science Google Scholar
First citationReeder, J., Castro, P. P., Knobler, C. B., Martinborough, E., Owens, L. & Diederich, F. (1994). J. Org. Chem. 59, 3151–3160.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToda, F., Mori, K., Stein, Z. & Goldberg, I. (1989). Tetrahedron Lett. 30, 1841–1843.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, M. & Schuster, G. B. (1994). J. Am. Chem. Soc. 116, 4852–4857.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds