organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o953-o954

(Z)-N-Methyl-2-(5-nitro-2-oxoindolin-3-yl­­idene)hydrazinecarbo­thio­amide

aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, bFaculty of Science, Sabha University, Libya, cDepartment of Chemistry, International University of Africa, Sudan, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: sgteoh@usm.my

(Received 6 January 2012; accepted 10 January 2012; online 3 March 2012)

In the title compound, C10H9N5O3S, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked via N—H⋯S hydrogen bonds into a zigzag chain along the b axis. C—H⋯O inter­actions are observed between the chains.

Related literature

For related structures, see: Qasem Ali et al. (2011a[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011a). Acta Cryst. E67, o3141-o3142.],b[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011b). Acta Cryst. E67, o3476-o3477.]); Ferrari et al. (2002[Ferrari, M. B., Pelizzi, C., Pelosi, G. & Rodriguez-Argűelles, M. C. (2002). Polyhedron, 21, 2593-2599.]); Pervez et al. (2010[Pervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010). Acta Cryst. E66, o1609.]); Ramzan et al. (2010[Ramzan, M., Pervez, H., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o2387.]). For various biological activities of Schiff bases, see: Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Bhardwaj et al. (2010[Bhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983-2985.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358-361.]); Sridhar et al. (2002[Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129-132.]); Suryavanshi & Pai (2006[Suryavanshi, J. P. & Pai, N. R. (2006). Indian J. Chem. Sect. B, 45, 1227-1230.]). For the cytotoxic and anti­cancer activity of isatin and its derivatives, see: Vine et al. (2009[Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents Med. Chem. 9, 397-414.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N5O3S

  • Mr = 279.28

  • Monoclinic, P 21 /c

  • a = 4.6316 (4) Å

  • b = 9.3157 (8) Å

  • c = 26.458 (2) Å

  • β = 94.485 (2)°

  • V = 1138.09 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.36 × 0.12 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.979

  • 10734 measured reflections

  • 2710 independent reflections

  • 2177 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.102

  • S = 1.10

  • 2710 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1 0.84 (3) 2.02 (3) 2.697 (2) 137 (3)
N1—H1N1⋯S1i 0.81 (3) 2.52 (3) 3.320 (2) 171 (3)
C2—H2A⋯O1ii 0.95 2.39 3.317 (3) 165
C10—H10A⋯O2iii 0.98 2.56 3.079 (3) 113
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain, offer protection against bacterial (Suryavanshi & Pai, 2006) and antifungal infections and possess anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-phenylhydrazinecarbothioamide (Qasem Ali et al., 2011a). In the present paper we describe the single-crystal X-ray diffraction study of title compound, Fig. 1.

In this compound (Fig. 1), the chain N2/N3//C9/S1/N4/C10 connected to the nine-membered 5-nitroindolin-2-one ring system in C7. In this chain, C7—N2—N3—C9 and C10—N4—C9—S1 have torsion angles 177.82 (19) and -0.9 (3)°, respectively. The essentially planar conformation of the molecule is maintained by an intramolecular N3—H1N3···O1 hydrogen bond (Table 1) with a graph-set S(6) (Bernstein et al., 1995) In the crystal, molecules are linked via an intermolecular N1—H1N1···S1i hydrogen bond into an infinite one-dimensional chain along the b axis (Table 1 and Fig. 2). C2—H2A···O1ii and C10—H10A···O2iii hydrogen bonds (Table 1) are also observed between the chains.

Related literature top

For related structures, see: Qasem Ali et al. (2011a,b); Ferrari et al. (2002); Pervez et al. (2010); Ramzan et al. (2010). For various biological activities of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For the cytotoxic and anticancer activity of isatin and its derivatives, see: Vine et al. (2009). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

The Schiff base have been synthesized by refluxing the reaction mixture of hot ethanolic solution (30 ml) of 5-methyl-3-thiosemicarbazide (0.01 mol) and hot ethanolic solution (30 ml) of 5-nitroisatin (0.01 mol) for 2 hrs. The precipitate formed during reflux was filtered, washed with cold EtOH and recrystallized from hot EtOH (yield 80%, m.p. 579.8–580.3 K). The orange crystals were grown in an acetone-DMF (3:1) solution by slow evaporation at room temperature.

Refinement top

N-bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic ring and C—H = 0.98 Å for methyl group, and with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for aromatic ring and methyl group, respectively. The highest residual electron density peak is located at 0.81 Å from C6 and the deepest hole is located at 0.36 Å from Sl.

Structure description top

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain, offer protection against bacterial (Suryavanshi & Pai, 2006) and antifungal infections and possess anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-phenylhydrazinecarbothioamide (Qasem Ali et al., 2011a). In the present paper we describe the single-crystal X-ray diffraction study of title compound, Fig. 1.

In this compound (Fig. 1), the chain N2/N3//C9/S1/N4/C10 connected to the nine-membered 5-nitroindolin-2-one ring system in C7. In this chain, C7—N2—N3—C9 and C10—N4—C9—S1 have torsion angles 177.82 (19) and -0.9 (3)°, respectively. The essentially planar conformation of the molecule is maintained by an intramolecular N3—H1N3···O1 hydrogen bond (Table 1) with a graph-set S(6) (Bernstein et al., 1995) In the crystal, molecules are linked via an intermolecular N1—H1N1···S1i hydrogen bond into an infinite one-dimensional chain along the b axis (Table 1 and Fig. 2). C2—H2A···O1ii and C10—H10A···O2iii hydrogen bonds (Table 1) are also observed between the chains.

For related structures, see: Qasem Ali et al. (2011a,b); Ferrari et al. (2002); Pervez et al. (2010); Ramzan et al. (2010). For various biological activities of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For the cytotoxic and anticancer activity of isatin and its derivatives, see: Vine et al. (2009). For graph-set analysis, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
(Z)-N-Methyl-2-(5-nitro-2-oxoindolin-3- ylidene)hydrazinecarbothioamide top
Crystal data top
C10H9N5O3SF(000) = 576
Mr = 279.28Dx = 1.630 Mg m3
Monoclinic, P21/cMelting point = 579.8–580.3 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.6316 (4) ÅCell parameters from 3870 reflections
b = 9.3157 (8) Åθ = 2.7–30.1°
c = 26.458 (2) ŵ = 0.30 mm1
β = 94.485 (2)°T = 100 K
V = 1138.09 (17) Å3Needle, orange
Z = 40.36 × 0.12 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2710 independent reflections
Radiation source: fine-focus sealed tube2177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.900, Tmax = 0.979k = 1112
10734 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0189P)2 + 1.8143P]
where P = (Fo2 + 2Fc2)/3
2710 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H9N5O3SV = 1138.09 (17) Å3
Mr = 279.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.6316 (4) ŵ = 0.30 mm1
b = 9.3157 (8) ÅT = 100 K
c = 26.458 (2) Å0.36 × 0.12 × 0.07 mm
β = 94.485 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2710 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2177 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.979Rint = 0.045
10734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.40 e Å3
2710 reflectionsΔρmin = 0.29 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.21633 (12)0.51362 (6)0.32848 (2)0.01849 (15)
O10.5410 (3)0.21885 (18)0.25632 (6)0.0199 (4)
O20.1914 (4)0.2525 (2)0.47157 (8)0.0409 (5)
O30.1838 (4)0.1372 (2)0.50290 (7)0.0304 (4)
N10.2084 (4)0.0484 (2)0.27784 (8)0.0187 (4)
N20.6885 (4)0.2193 (2)0.36918 (7)0.0159 (4)
N30.8430 (4)0.3086 (2)0.34179 (7)0.0166 (4)
N41.0960 (4)0.3840 (2)0.41442 (7)0.0189 (4)
N50.0142 (5)0.1717 (2)0.46698 (8)0.0242 (5)
C10.1322 (5)0.0181 (2)0.32196 (8)0.0167 (5)
C20.0740 (5)0.1225 (3)0.32723 (9)0.0198 (5)
H2A0.18710.15920.29860.024*
C30.1108 (5)0.1721 (3)0.37559 (9)0.0212 (5)
H3A0.25020.24440.38070.025*
C40.0580 (5)0.1154 (3)0.41667 (9)0.0198 (5)
C50.2677 (5)0.0110 (3)0.41212 (9)0.0185 (5)
H5A0.38130.02490.44080.022*
C60.3033 (5)0.0383 (2)0.36375 (8)0.0166 (5)
C70.4952 (5)0.1430 (2)0.34383 (8)0.0155 (4)
C80.4257 (5)0.1451 (2)0.28722 (8)0.0166 (5)
C91.0477 (5)0.3984 (2)0.36484 (8)0.0164 (5)
C101.3117 (5)0.4679 (3)0.44437 (9)0.0257 (6)
H10A1.24630.48420.47820.039*
H10B1.33830.56040.42770.039*
H10C1.49590.41570.44730.039*
H1N30.803 (6)0.317 (3)0.3104 (11)0.020 (7)*
H1N41.013 (6)0.318 (3)0.4291 (10)0.021 (7)*
H1N10.123 (6)0.039 (3)0.2501 (11)0.024 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0212 (3)0.0194 (3)0.0137 (3)0.0002 (2)0.0055 (2)0.0021 (2)
O10.0248 (8)0.0222 (9)0.0117 (8)0.0021 (7)0.0052 (7)0.0004 (7)
O20.0460 (12)0.0433 (12)0.0332 (11)0.0198 (10)0.0027 (9)0.0087 (10)
O30.0335 (10)0.0384 (11)0.0183 (9)0.0006 (8)0.0046 (8)0.0046 (8)
N10.0225 (10)0.0215 (10)0.0107 (10)0.0014 (8)0.0081 (8)0.0037 (8)
N20.0173 (9)0.0160 (9)0.0135 (9)0.0022 (7)0.0039 (7)0.0008 (8)
N30.0211 (10)0.0193 (10)0.0082 (9)0.0007 (8)0.0062 (7)0.0012 (8)
N40.0221 (10)0.0222 (11)0.0111 (10)0.0047 (8)0.0055 (8)0.0006 (8)
N50.0274 (11)0.0227 (11)0.0224 (11)0.0017 (9)0.0013 (9)0.0036 (9)
C10.0173 (10)0.0165 (11)0.0153 (11)0.0060 (9)0.0047 (8)0.0041 (9)
C20.0190 (11)0.0189 (12)0.0203 (12)0.0019 (9)0.0066 (9)0.0068 (10)
C30.0216 (11)0.0155 (11)0.0258 (13)0.0013 (9)0.0015 (10)0.0016 (10)
C40.0226 (11)0.0186 (12)0.0177 (12)0.0045 (9)0.0012 (9)0.0010 (9)
C50.0183 (10)0.0188 (12)0.0176 (11)0.0039 (9)0.0037 (9)0.0020 (9)
C60.0165 (10)0.0170 (11)0.0155 (11)0.0037 (8)0.0041 (9)0.0034 (9)
C70.0175 (10)0.0170 (11)0.0111 (11)0.0053 (8)0.0043 (8)0.0016 (9)
C80.0190 (11)0.0182 (11)0.0113 (11)0.0049 (9)0.0063 (8)0.0032 (9)
C90.0174 (10)0.0156 (11)0.0152 (11)0.0047 (9)0.0048 (9)0.0036 (9)
C100.0283 (13)0.0315 (14)0.0157 (12)0.0081 (11)0.0086 (10)0.0036 (11)
Geometric parameters (Å, º) top
S1—C91.675 (2)C1—C21.378 (3)
O1—C81.222 (3)C1—C61.410 (3)
O2—N51.227 (3)C2—C31.383 (3)
O3—N51.227 (3)C2—H2A0.9500
N1—C81.359 (3)C3—C41.392 (3)
N1—C11.391 (3)C3—H3A0.9500
N1—H1N10.81 (3)C4—C51.387 (3)
N2—C71.289 (3)C5—C61.382 (3)
N2—N31.346 (3)C5—H5A0.9500
N3—C91.371 (3)C6—C71.446 (3)
N3—H1N30.84 (3)C7—C81.507 (3)
N4—C91.320 (3)C10—H10A0.9800
N4—C101.454 (3)C10—H10B0.9800
N4—H1N40.84 (3)C10—H10C0.9800
N5—C41.460 (3)
C8—N1—C1112.00 (19)C5—C4—N5118.6 (2)
C8—N1—H1N1123 (2)C3—C4—N5117.8 (2)
C1—N1—H1N1125 (2)C6—C5—C4116.7 (2)
C7—N2—N3115.95 (19)C6—C5—H5A121.7
N2—N3—C9121.06 (19)C4—C5—H5A121.7
N2—N3—H1N3120.3 (18)C5—C6—C1120.1 (2)
C9—N3—H1N3118.3 (18)C5—C6—C7133.1 (2)
C9—N4—C10122.9 (2)C1—C6—C7106.81 (19)
C9—N4—H1N4119.1 (19)N2—C7—C6127.1 (2)
C10—N4—H1N4117.7 (19)N2—C7—C8126.5 (2)
O2—N5—O3122.6 (2)C6—C7—C8106.34 (19)
O2—N5—C4118.3 (2)O1—C8—N1127.4 (2)
O3—N5—C4119.1 (2)O1—C8—C7127.0 (2)
C2—C1—N1128.5 (2)N1—C8—C7105.67 (19)
C2—C1—C6122.4 (2)N4—C9—N3116.0 (2)
N1—C1—C6109.2 (2)N4—C9—S1125.82 (18)
C1—C2—C3117.8 (2)N3—C9—S1118.22 (17)
C1—C2—H2A121.1N4—C10—H10A109.5
C3—C2—H2A121.1N4—C10—H10B109.5
C2—C3—C4119.5 (2)H10A—C10—H10B109.5
C2—C3—H3A120.2N4—C10—H10C109.5
C4—C3—H3A120.2H10A—C10—H10C109.5
C5—C4—C3123.6 (2)H10B—C10—H10C109.5
C7—N2—N3—C9177.82 (19)C2—C1—C6—C7179.3 (2)
C8—N1—C1—C2178.9 (2)N1—C1—C6—C70.7 (2)
C8—N1—C1—C61.1 (3)N3—N2—C7—C6179.3 (2)
N1—C1—C2—C3179.9 (2)N3—N2—C7—C80.4 (3)
C6—C1—C2—C30.0 (3)C5—C6—C7—N20.5 (4)
C1—C2—C3—C40.3 (3)C1—C6—C7—N2179.7 (2)
C2—C3—C4—C50.7 (4)C5—C6—C7—C8179.3 (2)
C2—C3—C4—N5179.4 (2)C1—C6—C7—C80.1 (2)
O2—N5—C4—C5172.4 (2)C1—N1—C8—O1179.1 (2)
O3—N5—C4—C57.9 (3)C1—N1—C8—C71.0 (2)
O2—N5—C4—C38.9 (3)N2—C7—C8—O10.2 (4)
O3—N5—C4—C3170.8 (2)C6—C7—C8—O1179.6 (2)
C3—C4—C5—C60.8 (3)N2—C7—C8—N1179.7 (2)
N5—C4—C5—C6179.5 (2)C6—C7—C8—N10.5 (2)
C4—C5—C6—C10.5 (3)C10—N4—C9—N3178.2 (2)
C4—C5—C6—C7179.5 (2)C10—N4—C9—S10.9 (3)
C2—C1—C6—C50.1 (3)N2—N3—C9—N44.5 (3)
N1—C1—C6—C5180.0 (2)N2—N3—C9—S1176.25 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O10.84 (3)2.02 (3)2.697 (2)137 (3)
N1—H1N1···S1i0.81 (3)2.52 (3)3.320 (2)171 (3)
C2—H2A···O1ii0.952.393.317 (3)165
C10—H10A···O2iii0.982.563.079 (3)113
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H9N5O3S
Mr279.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)4.6316 (4), 9.3157 (8), 26.458 (2)
β (°) 94.485 (2)
V3)1138.09 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.36 × 0.12 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.900, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
10734, 2710, 2177
Rint0.045
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.102, 1.10
No. of reflections2710
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O10.84 (3)2.02 (3)2.697 (2)137 (3)
N1—H1N1···S1i0.81 (3)2.52 (3)3.320 (2)171 (3)
C2—H2A···O1ii0.95002.39003.317 (3)165.00
C10—H10A···O2iii0.98002.56003.079 (3)113.00
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: E-9395-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a schol­arship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983–2985.  CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerrari, M. B., Pelizzi, C., Pelosi, G. & Rodriguez-Argűelles, M. C. (2002). Polyhedron, 21, 2593–2599.  Web of Science CSD CrossRef CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358–361.  Google Scholar
First citationPervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010). Acta Cryst. E66, o1609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011a). Acta Cryst. E67, o3141–o3142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011b). Acta Cryst. E67, o3476–o3477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamzan, M., Pervez, H., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o2387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuryavanshi, J. P. & Pai, N. R. (2006). Indian J. Chem. Sect. B, 45, 1227–1230.  Google Scholar
First citationVine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents Med. Chem. 9, 397–414.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o953-o954
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds