organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o995-o996

Rubrene endoperoxide acetone monosolvate

aDepartment of Law, Faculty of Law, Chuogakuin University, Kujike 451, Abiko, Chiba 270-1196, Japan, and bDepartment of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
*Correspondence e-mail: auchida@biomol.sci.toho-u.ac.jp

(Received 18 February 2012; accepted 28 February 2012; online 10 March 2012)

The title acetone solvate, C42H28O2·C3H6O [systematic name: 1,3,10,12-tetra­phenyl-19,20-dioxapenta­cyclo­[10.6.2.02,11.04,9.013,18]icosa-2(11),3,5,7,9,13,15,17-octa­ene acetone monosolvate], is a photooxygenation product of rubrene (systematic name: 5,6,11,12-tetra­phenyl­tetra­cene). The mol­ecule bends at the bridgehead atoms, which are linked by the O—O transannular bond, with a dihedral angle of 49.21 (6)° between the benzene ring and the naphthalene ring system of the tetra­cene unit. In the crystal, the rubrene mol­ecules are linked by C—H⋯O hydrogen bonds into a column along the c axis. The acetone solvent mol­ecules form a dimer around a crystallographic inversion centre through a carbon­yl–carbonyl dipolar inter­action. A C—H⋯O hydrogen bond between the rubrene and acetone mol­ecules is also observed.

Related literature

For related structures, see: Brown & Ehrenberg (1984[Brown, C. J. & Ehrenberg, M. (1984). Acta Cryst. C40, 1059-1060.]); Izuoka et al. (1997[Izuoka, A., Murase, T., Tsukada, M., Ito, Y., Sugawara, T., Uchida, A., Sato, N. & Inokuchi, H. (1997). Tetrahedron Lett. 38, 245-248.]); Schuster et al. (2002[Schuster, I. I., Craciun, L., Ho, D. M. & Pascal, R. A. Jr (2002). Tetrahedron, 58, 8875-8882.]); Usman et al. (2003[Usman, A., Fun, H.-K., Li, Y. & Xu, J.-H. (2003). Acta Cryst. C59, o308-o310.]); Wang (2008[Wang, Y.-W. (2008). Acta Cryst. E64, o660.]). For background to photooxygenation of polycyclic aromatic hydro­carbons, see: Sakai et al. (1995[Sakai, K., Ohshima, S., Uchida, A., Oonishi, I., Fujisawa, S. & Nagashima, U. (1995). J. Phys. Chem. 99, 5909-5913.]).

[Scheme 1]

Experimental

Crystal data
  • C42H28O2·C3H6O

  • Mr = 622.72

  • Monoclinic, P 21 /c

  • a = 11.1592 (6) Å

  • b = 21.2248 (11) Å

  • c = 13.6121 (7) Å

  • β = 103.113 (1)°

  • V = 3140.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 90 K

  • 0.15 × 0.07 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.988, Tmax = 0.996

  • 20867 measured reflections

  • 7642 independent reflections

  • 5257 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.119

  • S = 1.03

  • 7642 reflections

  • 435 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯O3i 0.95 2.53 3.437 (2) 159
C35—H35⋯O1ii 0.95 2.59 3.408 (2) 144
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Polycyclic aromatic hydrocarbons (PAHs) in solution are known to react with molecular oxygen to form endoperoxides when PAHs are irradiated by light with their absorption wavelength. The photooxygenation of PAHs occur due to 1,4-cycloaddition of singlet oxygen to the ground state of a PAH molecule (Sakai et al., 1995). We present here the crystal structure of the title compound.

The molecule bends at the bridgehead atoms, C9 and C10, with a dihedral angle of 49.21 (6)° between the benzene C1–C4/C14/C13 ring and the naphthalene C5–C8/C17/C11/C15/C16/C12/C18 ring system (Figure 1). The adjacent phenyl groups [C19—C24 (centroid Cg1), C25—C30 (centroid Cg2), C31—C36 (centroid Cg3), C37—C42 (centroid Cg4)] on either side of the molecule adopt a splayed face-to-face geometry with Cg1···Cg3 distance of 3.455 (1) Å and Cg2···Cg4 distance of 3.491 (1) Å (Figure 2). The molecules related by glide plane are linked by C—H···O hydrogen bonds along the c axis.

Related literature top

For related structures, see: Brown & Ehrenberg (1984); Izuoka et al. (1997); Schuster et al. (2002); Usman et al. (2003); Wang (2008). For background to photooxygenation of polycyclic aromatic hydrocarbons, see: Sakai et al. (1995).

Experimental top

Rubrene was purchased from Sigma-Aldrich. An acetone solution of the compound was exposed to sunlight until the solution became colourless. Crystals of the title compound were obtained from the solution placed in the dark.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H = 0.95 for aromatic H atoms and 0.98 Å for CH3 type H atoms, respectively. Uiso(H) values were set at 1.2 times Ueq(C) for aromatic H atoms and 1.5 times for methyl H atoms.

Structure description top

Polycyclic aromatic hydrocarbons (PAHs) in solution are known to react with molecular oxygen to form endoperoxides when PAHs are irradiated by light with their absorption wavelength. The photooxygenation of PAHs occur due to 1,4-cycloaddition of singlet oxygen to the ground state of a PAH molecule (Sakai et al., 1995). We present here the crystal structure of the title compound.

The molecule bends at the bridgehead atoms, C9 and C10, with a dihedral angle of 49.21 (6)° between the benzene C1–C4/C14/C13 ring and the naphthalene C5–C8/C17/C11/C15/C16/C12/C18 ring system (Figure 1). The adjacent phenyl groups [C19—C24 (centroid Cg1), C25—C30 (centroid Cg2), C31—C36 (centroid Cg3), C37—C42 (centroid Cg4)] on either side of the molecule adopt a splayed face-to-face geometry with Cg1···Cg3 distance of 3.455 (1) Å and Cg2···Cg4 distance of 3.491 (1) Å (Figure 2). The molecules related by glide plane are linked by C—H···O hydrogen bonds along the c axis.

For related structures, see: Brown & Ehrenberg (1984); Izuoka et al. (1997); Schuster et al. (2002); Usman et al. (2003); Wang (2008). For background to photooxygenation of polycyclic aromatic hydrocarbons, see: Sakai et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. The dashed lines indicate C—H···O intermolecular interactions.
1,3,10,12-tetraphenyl-19,20- dioxapentacyclo[10.6.2.02,11.04,9.013,18]icosa- 2(11),3,5,7,9,13,15,17-octaene acetone monosolvate top
Crystal data top
C42H28O2·C3H6OF(000) = 1312
Mr = 622.72Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3033 reflections
a = 11.1592 (6) Åθ = 2.3–26.7°
b = 21.2248 (11) ŵ = 0.08 mm1
c = 13.6121 (7) ÅT = 90 K
β = 103.113 (1)°Plate, colourless
V = 3140.0 (3) Å30.15 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7642 independent reflections
Radiation source: fine-focus sealed tube5257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.366 pixels mm-1θmax = 28.1°, θmin = 1.8°
φ and ω scansh = 1411
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2823
Tmin = 0.988, Tmax = 0.996l = 1718
20867 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.4529P]
where P = (Fo2 + 2Fc2)/3
7642 reflections(Δ/σ)max = 0.001
435 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C42H28O2·C3H6OV = 3140.0 (3) Å3
Mr = 622.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1592 (6) ŵ = 0.08 mm1
b = 21.2248 (11) ÅT = 90 K
c = 13.6121 (7) Å0.15 × 0.07 × 0.05 mm
β = 103.113 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7642 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5257 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.996Rint = 0.046
20867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
7642 reflectionsΔρmin = 0.29 e Å3
435 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18118 (10)0.61054 (5)0.17937 (8)0.0153 (2)
O20.08624 (10)0.61524 (5)0.23817 (8)0.0159 (2)
O30.56171 (15)0.92967 (6)0.04751 (10)0.0425 (4)
C10.00522 (15)0.57338 (7)0.06128 (11)0.0157 (3)
H10.06770.57070.09830.019*
C20.10563 (15)0.54225 (7)0.09559 (12)0.0172 (3)
H20.12060.52000.15780.021*
C30.19435 (15)0.54349 (7)0.03941 (12)0.0179 (3)
H30.26990.52190.06300.021*
C40.17376 (15)0.57614 (7)0.05126 (12)0.0161 (3)
H40.23330.57520.09120.019*
C50.00268 (15)0.88782 (7)0.19322 (12)0.0174 (3)
H50.06240.89080.22740.021*
C60.06089 (16)0.94148 (7)0.17353 (12)0.0201 (4)
H60.03580.98120.19390.024*
C70.15725 (16)0.93803 (7)0.12347 (12)0.0219 (4)
H70.19770.97540.11030.026*
C80.19347 (15)0.88095 (7)0.09338 (12)0.0187 (3)
H80.25920.87920.05970.022*
C90.14375 (14)0.64156 (7)0.07997 (11)0.0139 (3)
C100.02556 (14)0.64712 (7)0.18133 (11)0.0132 (3)
C110.17197 (14)0.76393 (7)0.08028 (11)0.0141 (3)
C120.02111 (14)0.77070 (7)0.18730 (11)0.0135 (3)
C130.02509 (14)0.60853 (7)0.02736 (11)0.0128 (3)
C140.06515 (14)0.61037 (6)0.08337 (11)0.0135 (3)
C150.11456 (14)0.70993 (7)0.10355 (11)0.0131 (3)
C160.01819 (14)0.71332 (7)0.15861 (11)0.0131 (3)
C170.13408 (14)0.82406 (7)0.11186 (11)0.0146 (3)
C180.03779 (14)0.82748 (7)0.16346 (11)0.0145 (3)
C190.25208 (14)0.62739 (7)0.03296 (12)0.0146 (3)
C200.35961 (15)0.60032 (7)0.08973 (13)0.0179 (3)
H200.36790.59350.15990.021*
C210.45484 (16)0.58325 (7)0.04452 (14)0.0230 (4)
H210.52750.56460.08390.028*
C220.44413 (16)0.59327 (8)0.05728 (14)0.0254 (4)
H220.50840.58070.08840.030*
C230.33927 (16)0.62178 (8)0.11395 (13)0.0226 (4)
H230.33270.62990.18360.027*
C240.24402 (15)0.63844 (7)0.06923 (12)0.0176 (3)
H240.17220.65770.10880.021*
C250.11396 (15)0.64040 (7)0.25125 (11)0.0150 (3)
C260.23815 (15)0.65513 (7)0.21634 (12)0.0163 (3)
H260.26650.67080.14970.020*
C270.32065 (15)0.64729 (7)0.27750 (12)0.0204 (4)
H270.40510.65720.25250.024*
C280.28005 (16)0.62495 (7)0.37559 (13)0.0220 (4)
H280.33640.61960.41780.026*
C290.15715 (16)0.61064 (7)0.41095 (13)0.0208 (4)
H290.12890.59570.47800.025*
C300.07414 (15)0.61793 (7)0.34927 (12)0.0173 (3)
H300.01010.60750.37420.021*
C310.27087 (14)0.76655 (7)0.02205 (12)0.0147 (3)
C320.39281 (14)0.75275 (7)0.06683 (12)0.0167 (3)
H320.41460.73990.13540.020*
C330.48295 (15)0.75768 (7)0.01173 (13)0.0208 (4)
H330.56580.74730.04240.025*
C340.45275 (16)0.77769 (7)0.08750 (13)0.0218 (4)
H340.51460.78060.12510.026*
C350.33226 (16)0.79350 (7)0.13213 (13)0.0207 (4)
H350.31160.80810.19990.025*
C360.24205 (15)0.78793 (7)0.07754 (12)0.0174 (3)
H360.15950.79880.10830.021*
C370.12262 (14)0.78122 (7)0.24124 (11)0.0144 (3)
C380.23453 (15)0.80595 (7)0.18777 (12)0.0178 (3)
H380.24700.81290.11720.021*
C390.32743 (15)0.82053 (7)0.23616 (13)0.0217 (4)
H390.40330.83700.19880.026*
C400.30963 (16)0.81102 (7)0.33911 (14)0.0224 (4)
H400.37330.82100.37250.027*
C410.19894 (16)0.78702 (7)0.39326 (13)0.0205 (4)
H410.18710.78020.46380.025*
C420.10512 (15)0.77285 (7)0.34508 (12)0.0159 (3)
H420.02870.75740.38310.019*
C430.59016 (18)0.97168 (8)0.10896 (13)0.0279 (4)
C440.5198 (2)0.98239 (9)0.18860 (15)0.0382 (5)
H44A0.45450.95070.18220.057*
H44B0.48311.02460.18060.057*
H44C0.57550.97890.25530.057*
C450.6960 (2)1.01456 (11)0.10861 (17)0.0483 (6)
H45A0.74280.99870.06100.072*
H45B0.74951.01620.17640.072*
H45C0.66511.05690.08820.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0139 (6)0.0193 (6)0.0138 (5)0.0032 (4)0.0054 (5)0.0022 (4)
O20.0144 (6)0.0206 (6)0.0140 (5)0.0026 (4)0.0060 (5)0.0033 (4)
O30.0684 (11)0.0293 (7)0.0296 (8)0.0031 (7)0.0111 (8)0.0067 (6)
C10.0177 (8)0.0144 (7)0.0154 (8)0.0020 (6)0.0049 (7)0.0025 (6)
C20.0223 (9)0.0141 (7)0.0136 (8)0.0013 (6)0.0004 (7)0.0003 (6)
C30.0161 (8)0.0135 (7)0.0223 (8)0.0017 (6)0.0006 (7)0.0006 (6)
C40.0152 (8)0.0138 (7)0.0194 (8)0.0001 (6)0.0042 (7)0.0005 (6)
C50.0206 (8)0.0174 (8)0.0141 (8)0.0005 (6)0.0039 (7)0.0003 (6)
C60.0268 (9)0.0138 (8)0.0197 (8)0.0006 (7)0.0054 (7)0.0019 (6)
C70.0292 (10)0.0134 (8)0.0248 (9)0.0050 (7)0.0093 (8)0.0004 (6)
C80.0217 (9)0.0179 (8)0.0184 (8)0.0028 (7)0.0083 (7)0.0009 (6)
C90.0150 (8)0.0149 (7)0.0120 (7)0.0001 (6)0.0031 (6)0.0007 (6)
C100.0120 (7)0.0120 (7)0.0150 (8)0.0007 (6)0.0021 (6)0.0009 (6)
C110.0130 (8)0.0167 (7)0.0120 (7)0.0001 (6)0.0014 (6)0.0006 (6)
C120.0137 (8)0.0154 (7)0.0103 (7)0.0004 (6)0.0004 (6)0.0001 (6)
C130.0135 (8)0.0100 (7)0.0139 (8)0.0018 (6)0.0009 (6)0.0029 (6)
C140.0164 (8)0.0088 (7)0.0149 (8)0.0017 (6)0.0029 (6)0.0014 (6)
C150.0130 (7)0.0140 (7)0.0111 (7)0.0006 (6)0.0004 (6)0.0002 (6)
C160.0130 (8)0.0153 (7)0.0106 (7)0.0013 (6)0.0017 (6)0.0013 (6)
C170.0166 (8)0.0151 (7)0.0115 (7)0.0011 (6)0.0022 (6)0.0003 (6)
C180.0163 (8)0.0151 (7)0.0112 (7)0.0003 (6)0.0015 (6)0.0005 (6)
C190.0154 (8)0.0103 (7)0.0184 (8)0.0014 (6)0.0041 (7)0.0033 (6)
C200.0169 (8)0.0150 (8)0.0220 (9)0.0016 (6)0.0049 (7)0.0002 (6)
C210.0176 (9)0.0169 (8)0.0356 (10)0.0006 (7)0.0085 (8)0.0003 (7)
C220.0228 (9)0.0191 (8)0.0389 (11)0.0024 (7)0.0167 (9)0.0066 (7)
C230.0259 (10)0.0213 (8)0.0235 (9)0.0069 (7)0.0117 (8)0.0048 (7)
C240.0177 (8)0.0163 (8)0.0189 (8)0.0026 (6)0.0044 (7)0.0037 (6)
C250.0191 (8)0.0100 (7)0.0172 (8)0.0025 (6)0.0067 (7)0.0024 (6)
C260.0190 (8)0.0130 (7)0.0176 (8)0.0034 (6)0.0054 (7)0.0013 (6)
C270.0180 (9)0.0184 (8)0.0261 (9)0.0034 (7)0.0076 (7)0.0050 (7)
C280.0276 (10)0.0185 (8)0.0244 (9)0.0049 (7)0.0155 (8)0.0045 (7)
C290.0302 (10)0.0152 (8)0.0191 (9)0.0031 (7)0.0101 (8)0.0001 (6)
C300.0200 (9)0.0140 (7)0.0186 (8)0.0008 (6)0.0058 (7)0.0000 (6)
C310.0163 (8)0.0107 (7)0.0178 (8)0.0022 (6)0.0051 (7)0.0012 (6)
C320.0172 (8)0.0164 (8)0.0157 (8)0.0027 (6)0.0024 (7)0.0003 (6)
C330.0139 (8)0.0184 (8)0.0297 (10)0.0003 (6)0.0041 (7)0.0003 (7)
C340.0225 (9)0.0187 (8)0.0286 (10)0.0000 (7)0.0150 (8)0.0030 (7)
C350.0262 (9)0.0192 (8)0.0189 (8)0.0023 (7)0.0095 (7)0.0042 (6)
C360.0168 (8)0.0165 (8)0.0185 (8)0.0008 (6)0.0029 (7)0.0020 (6)
C370.0167 (8)0.0100 (7)0.0175 (8)0.0012 (6)0.0057 (7)0.0020 (6)
C380.0176 (8)0.0159 (8)0.0191 (8)0.0018 (6)0.0026 (7)0.0012 (6)
C390.0154 (8)0.0149 (8)0.0353 (10)0.0012 (6)0.0067 (8)0.0004 (7)
C400.0219 (9)0.0171 (8)0.0327 (10)0.0037 (7)0.0155 (8)0.0068 (7)
C410.0271 (9)0.0167 (8)0.0200 (9)0.0066 (7)0.0102 (7)0.0040 (6)
C420.0177 (8)0.0124 (7)0.0175 (8)0.0029 (6)0.0037 (7)0.0023 (6)
C430.0367 (11)0.0251 (9)0.0203 (9)0.0068 (8)0.0032 (8)0.0025 (7)
C440.0422 (13)0.0383 (11)0.0361 (11)0.0029 (9)0.0129 (10)0.0065 (9)
C450.0463 (14)0.0614 (15)0.0359 (12)0.0137 (11)0.0068 (11)0.0054 (11)
Geometric parameters (Å, º) top
O1—O21.4689 (14)C23—C241.385 (2)
O1—C91.4772 (18)C23—H230.9500
O2—C101.4749 (18)C24—H240.9500
O3—C431.214 (2)C25—C301.391 (2)
C1—C21.387 (2)C25—C261.395 (2)
C1—C131.393 (2)C26—C271.384 (2)
C1—H10.9500C26—H260.9500
C2—C31.382 (2)C27—C281.392 (2)
C2—H20.9500C27—H270.9500
C3—C41.388 (2)C28—C291.380 (2)
C3—H30.9500C28—H280.9500
C4—C141.396 (2)C29—C301.393 (2)
C4—H40.9500C29—H290.9500
C5—C61.367 (2)C30—H300.9500
C5—C181.425 (2)C31—C321.390 (2)
C5—H50.9500C31—C361.396 (2)
C6—C71.399 (2)C32—C331.388 (2)
C6—H60.9500C32—H320.9500
C7—C81.369 (2)C33—C341.383 (2)
C7—H70.9500C33—H330.9500
C8—C171.427 (2)C34—C351.385 (2)
C8—H80.9500C34—H340.9500
C9—C191.521 (2)C35—C361.385 (2)
C9—C131.526 (2)C35—H350.9500
C9—C151.537 (2)C36—H360.9500
C10—C141.521 (2)C37—C421.394 (2)
C10—C251.525 (2)C37—C381.397 (2)
C10—C161.542 (2)C38—C391.384 (2)
C11—C151.384 (2)C38—H380.9500
C11—C171.440 (2)C39—C401.385 (2)
C11—C311.499 (2)C39—H390.9500
C12—C161.380 (2)C40—C411.384 (2)
C12—C181.444 (2)C40—H400.9500
C12—C371.500 (2)C41—C421.389 (2)
C13—C141.395 (2)C41—H410.9500
C15—C161.445 (2)C42—H420.9500
C17—C181.413 (2)C43—C451.492 (3)
C19—C241.393 (2)C43—C441.493 (2)
C19—C201.395 (2)C44—H44A0.9800
C20—C211.391 (2)C44—H44B0.9800
C20—H200.9500C44—H44C0.9800
C21—C221.380 (2)C45—H45A0.9800
C21—H210.9500C45—H45B0.9800
C22—C231.386 (2)C45—H45C0.9800
C22—H220.9500
O2—O1—C9112.32 (10)C24—C23—H23119.9
O1—O2—C10111.97 (9)C22—C23—H23119.9
C2—C1—C13120.10 (14)C23—C24—C19120.90 (16)
C2—C1—H1120.0C23—C24—H24119.6
C13—C1—H1120.0C19—C24—H24119.6
C3—C2—C1120.07 (14)C30—C25—C26118.69 (14)
C3—C2—H2120.0C30—C25—C10121.29 (14)
C1—C2—H2120.0C26—C25—C10119.99 (14)
C2—C3—C4120.44 (15)C27—C26—C25120.88 (15)
C2—C3—H3119.8C27—C26—H26119.6
C4—C3—H3119.8C25—C26—H26119.6
C3—C4—C14119.67 (14)C26—C27—C28120.10 (16)
C3—C4—H4120.2C26—C27—H27119.9
C14—C4—H4120.2C28—C27—H27119.9
C6—C5—C18121.30 (15)C29—C28—C27119.40 (15)
C6—C5—H5119.4C29—C28—H28120.3
C18—C5—H5119.4C27—C28—H28120.3
C5—C6—C7120.24 (14)C28—C29—C30120.62 (16)
C5—C6—H6119.9C28—C29—H29119.7
C7—C6—H6119.9C30—C29—H29119.7
C8—C7—C6120.24 (14)C25—C30—C29120.31 (15)
C8—C7—H7119.9C25—C30—H30119.8
C6—C7—H7119.9C29—C30—H30119.8
C7—C8—C17121.05 (15)C32—C31—C36118.76 (14)
C7—C8—H8119.5C32—C31—C11121.69 (14)
C17—C8—H8119.5C36—C31—C11119.38 (14)
O1—C9—C19102.17 (12)C33—C32—C31120.29 (15)
O1—C9—C13105.08 (11)C33—C32—H32119.9
C19—C9—C13113.57 (12)C31—C32—H32119.9
O1—C9—C15105.00 (11)C34—C33—C32120.33 (16)
C19—C9—C15120.06 (12)C34—C33—H33119.8
C13—C9—C15109.23 (12)C32—C33—H33119.8
O2—C10—C14105.51 (11)C33—C34—C35120.00 (15)
O2—C10—C25102.69 (11)C33—C34—H34120.0
C14—C10—C25113.50 (12)C35—C34—H34120.0
O2—C10—C16104.75 (11)C36—C35—C34119.69 (15)
C14—C10—C16109.49 (12)C36—C35—H35120.2
C25—C10—C16119.31 (12)C34—C35—H35120.2
C15—C11—C17118.87 (13)C35—C36—C31120.87 (15)
C15—C11—C31125.89 (13)C35—C36—H36119.6
C17—C11—C31115.23 (13)C31—C36—H36119.6
C16—C12—C18118.85 (13)C42—C37—C38118.63 (14)
C16—C12—C37126.41 (13)C42—C37—C12122.00 (14)
C18—C12—C37114.73 (12)C38—C37—C12119.08 (14)
C1—C13—C14119.72 (14)C39—C38—C37120.91 (15)
C1—C13—C9127.11 (13)C39—C38—H38119.5
C14—C13—C9112.83 (13)C37—C38—H38119.5
C13—C14—C4119.85 (14)C38—C39—C40119.89 (16)
C13—C14—C10113.04 (13)C38—C39—H39120.1
C4—C14—C10126.89 (14)C40—C39—H39120.1
C11—C15—C16120.99 (13)C41—C40—C39119.89 (15)
C11—C15—C9127.08 (13)C41—C40—H40120.1
C16—C15—C9111.91 (12)C39—C40—H40120.1
C12—C16—C15120.80 (13)C40—C41—C42120.37 (15)
C12—C16—C10127.73 (13)C40—C41—H41119.8
C15—C16—C10111.43 (12)C42—C41—H41119.8
C18—C17—C8118.69 (13)C41—C42—C37120.28 (16)
C18—C17—C11120.12 (13)C41—C42—H42119.9
C8—C17—C11121.18 (14)C37—C42—H42119.9
C17—C18—C5118.48 (13)O3—C43—C45121.95 (18)
C17—C18—C12120.33 (13)O3—C43—C44120.89 (18)
C5—C18—C12121.18 (14)C45—C43—C44117.16 (17)
C24—C19—C20118.35 (14)C43—C44—H44A109.5
C24—C19—C9120.63 (14)C43—C44—H44B109.5
C20—C19—C9120.95 (14)H44A—C44—H44B109.5
C21—C20—C19120.63 (15)C43—C44—H44C109.5
C21—C20—H20119.7H44A—C44—H44C109.5
C19—C20—H20119.7H44B—C44—H44C109.5
C22—C21—C20120.20 (17)C43—C45—H45A109.5
C22—C21—H21119.9C43—C45—H45B109.5
C20—C21—H21119.9H45A—C45—H45B109.5
C21—C22—C23119.73 (16)C43—C45—H45C109.5
C21—C22—H22120.1H45A—C45—H45C109.5
C23—C22—H22120.1H45B—C45—H45C109.5
C24—C23—C22120.14 (16)
C9—O1—O2—C102.79 (14)C8—C17—C18—C51.1 (2)
C13—C1—C2—C33.2 (2)C11—C17—C18—C5179.82 (14)
C1—C2—C3—C40.4 (2)C8—C17—C18—C12177.41 (14)
C2—C3—C4—C143.1 (2)C11—C17—C18—C121.7 (2)
C18—C5—C6—C70.2 (3)C6—C5—C18—C170.6 (2)
C5—C6—C7—C80.4 (3)C6—C5—C18—C12177.93 (15)
C6—C7—C8—C170.2 (3)C16—C12—C18—C170.1 (2)
O2—O1—C9—C19177.18 (10)C37—C12—C18—C17179.42 (14)
O2—O1—C9—C1358.38 (13)C16—C12—C18—C5178.62 (14)
O2—O1—C9—C1556.79 (13)C37—C12—C18—C52.1 (2)
O1—O2—C10—C1455.15 (13)O1—C9—C19—C24168.04 (13)
O1—O2—C10—C25174.28 (10)C13—C9—C19—C2455.43 (18)
O1—O2—C10—C1660.39 (13)C15—C9—C19—C2476.45 (18)
C2—C1—C13—C142.4 (2)O1—C9—C19—C208.93 (18)
C2—C1—C13—C9175.14 (14)C13—C9—C19—C20121.53 (15)
O1—C9—C13—C1117.38 (15)C15—C9—C19—C20106.58 (16)
C19—C9—C13—C16.5 (2)C24—C19—C20—C211.8 (2)
C15—C9—C13—C1130.43 (15)C9—C19—C20—C21175.27 (13)
O1—C9—C13—C1455.81 (15)C19—C20—C21—C220.4 (2)
C19—C9—C13—C14166.65 (12)C20—C21—C22—C231.5 (2)
C15—C9—C13—C1456.38 (16)C21—C22—C23—C241.9 (2)
C1—C13—C14—C41.1 (2)C22—C23—C24—C190.5 (2)
C9—C13—C14—C4172.63 (13)C20—C19—C24—C231.4 (2)
C1—C13—C14—C10176.12 (13)C9—C19—C24—C23175.69 (14)
C9—C13—C14—C102.37 (17)O2—C10—C25—C309.34 (17)
C3—C4—C14—C133.8 (2)C14—C10—C25—C30122.72 (15)
C3—C4—C14—C10178.06 (14)C16—C10—C25—C30105.86 (16)
O2—C10—C14—C1358.71 (15)O2—C10—C25—C26168.74 (12)
C25—C10—C14—C13170.39 (12)C14—C10—C25—C2655.35 (18)
C16—C10—C14—C1353.53 (16)C16—C10—C25—C2676.06 (18)
O2—C10—C14—C4115.86 (16)C30—C25—C26—C270.4 (2)
C25—C10—C14—C44.2 (2)C10—C25—C26—C27177.76 (13)
C16—C10—C14—C4131.89 (15)C25—C26—C27—C280.6 (2)
C17—C11—C15—C160.0 (2)C26—C27—C28—C290.1 (2)
C31—C11—C15—C16178.71 (14)C27—C28—C29—C300.5 (2)
C17—C11—C15—C9177.93 (14)C26—C25—C30—C290.2 (2)
C31—C11—C15—C93.4 (3)C10—C25—C30—C29178.33 (13)
O1—C9—C15—C11118.96 (16)C28—C29—C30—C250.6 (2)
C19—C9—C15—C114.9 (2)C15—C11—C31—C3279.6 (2)
C13—C9—C15—C11128.79 (16)C17—C11—C31—C32101.72 (17)
O1—C9—C15—C1659.09 (15)C15—C11—C31—C36105.37 (18)
C19—C9—C15—C16173.12 (13)C17—C11—C31—C3673.35 (18)
C13—C9—C15—C1653.16 (16)C36—C31—C32—C332.7 (2)
C18—C12—C16—C151.5 (2)C11—C31—C32—C33177.81 (13)
C37—C12—C16—C15177.73 (14)C31—C32—C33—C341.4 (2)
C18—C12—C16—C10176.09 (14)C32—C33—C34—C350.6 (2)
C37—C12—C16—C104.7 (3)C33—C34—C35—C361.3 (2)
C11—C15—C16—C121.6 (2)C34—C35—C36—C310.0 (2)
C9—C15—C16—C12179.76 (13)C32—C31—C36—C352.0 (2)
C11—C15—C16—C10176.35 (13)C11—C31—C36—C35177.23 (13)
C9—C15—C16—C101.84 (17)C16—C12—C37—C4279.8 (2)
O2—C10—C16—C12120.29 (16)C18—C12—C37—C42100.95 (16)
C14—C10—C16—C12126.97 (16)C16—C12—C37—C38106.47 (18)
C25—C10—C16—C126.2 (2)C18—C12—C37—C3872.76 (18)
O2—C10—C16—C1557.46 (15)C42—C37—C38—C391.5 (2)
C14—C10—C16—C1555.28 (16)C12—C37—C38—C39175.42 (14)
C25—C10—C16—C15171.56 (13)C37—C38—C39—C400.5 (2)
C7—C8—C17—C181.0 (2)C38—C39—C40—C410.1 (2)
C7—C8—C17—C11180.00 (15)C39—C40—C41—C420.5 (2)
C15—C11—C17—C181.5 (2)C40—C41—C42—C371.6 (2)
C31—C11—C17—C18177.27 (14)C38—C37—C42—C412.0 (2)
C15—C11—C17—C8177.49 (15)C12—C37—C42—C41175.78 (13)
C31—C11—C17—C83.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···O3i0.952.533.437 (2)159
C35—H35···O1ii0.952.593.408 (2)144
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC42H28O2·C3H6O
Mr622.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)11.1592 (6), 21.2248 (11), 13.6121 (7)
β (°) 103.113 (1)
V3)3140.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.15 × 0.07 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.988, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
20867, 7642, 5257
Rint0.046
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 1.03
No. of reflections7642
No. of parameters435
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···O3i0.952.533.437 (2)159
C35—H35···O1ii0.952.593.408 (2)144
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

References

First citationBrown, C. J. & Ehrenberg, M. (1984). Acta Cryst. C40, 1059–1060.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationIzuoka, A., Murase, T., Tsukada, M., Ito, Y., Sugawara, T., Uchida, A., Sato, N. & Inokuchi, H. (1997). Tetrahedron Lett. 38, 245–248.  CSD CrossRef CAS Web of Science Google Scholar
First citationSakai, K., Ohshima, S., Uchida, A., Oonishi, I., Fujisawa, S. & Nagashima, U. (1995). J. Phys. Chem. 99, 5909–5913.  CrossRef CAS Web of Science Google Scholar
First citationSchuster, I. I., Craciun, L., Ho, D. M. & Pascal, R. A. Jr (2002). Tetrahedron, 58, 8875–8882.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Fun, H.-K., Li, Y. & Xu, J.-H. (2003). Acta Cryst. C59, o308–o310.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-W. (2008). Acta Cryst. E64, o660.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o995-o996
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds