metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m365-m366

catena-Poly[[[aqua­manganese(III)]-μ-(E)-5-bromo-N-[2-(5-bromo-2-oxido­benzyl­­idene­amino)-4-nitro­phen­yl]-2-oxidobenzamidato] N,N-di­methyl­fomamide monosolvate]

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 21 February 2012; accepted 25 February 2012; online 3 March 2012)

The asymmetric unit of the title complex, {[Mn(C20H10Br2N3O5)(H2O)]·(CH3)2NCHO}n, consists of one MnIII ion, one (E)-5-bromo-N-[2-(5-bromo-2-oxidobenzyl­idene­amino)-4-nitro­phen­yl]-2-oxidobenzamidate ligand (Schiff base), one water mol­ecule and an N,N-dimethyl­formamide mol­ecule. The coordination geometry around the MnIII ion is a distorted octa­hedron, being surrounded by two O and two N atoms from the Schiff base, which are positioned in the equatorial plane. The water mol­ecule and the O atom of the carbonyl group from the adjacent MnIII complex are situated at the axial positions, leading to a polymeric chain along the c axis. In the crystal, the complex and N,N-dimethyl­formamide mol­ecules are connected via O—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network.

Related literature

For details of the coordination chemistry and biological importance of manganese, see: Maneiro et al. (2003[Maneiro, M., Bermejo, M. R., Fernánde, I., Gomez, E., Noya, A. M. G. & Tyryshkin, A. A. M. (2003). New J. Chem. 27, 727-733.]); Chandra et al. (2009[Chandra, S., Parmar, S. & Kumar, Y. (2009). Bioinorg. Chem. Appl. Article ID 851316, 6 pp.]); Chrisianson & Cox (1999[Chrisianson, D. W. & Cox, D. (1999). Annu. Rev. Biochem. 68, 33-57.]); Ni et al. (2009[Ni, C., Rekken, B., Fettinger, J. C., Long, G. J. & Power, P. P. (2009). Dalton Trans. pp. 8349-8355.]); Zhang et al. (2005[Zhang, Q.-Z., Lu, C.-Z. & Xia, C.-K. (2005). Inorg. Chem. Commun. 8, 304-306.]); Huh & Lee (2008[Huh, H. S. & Lee, S. W. (2008). Bull. Korean Chem. Soc. 29 2383-2385.]); Pastoriza-Santos & Liz-Marzań (2009[Pastoriza-Santos, I. & Liz-Marzań, L. M. (2009). Adv. Funct. Mater. 19, 679-688.]). For related structures, see: Su & Xu (2005[Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256-m258.]); Ma et al. (2004[Ma, C.-B., Hu, M.-Q., Zhang, C.-X., Chen, F., Chen, C.-N. & Liu, Q.-T. (2004). Acta Cryst. C60, m288-m290.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C20H10Br2N3O5)(H2O)]·C3H7NO

  • Mr = 678.18

  • Monoclinic, P 21 /c

  • a = 11.0746 (6) Å

  • b = 24.9781 (13) Å

  • c = 9.5563 (5) Å

  • β = 114.658 (1)°

  • V = 2402.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.93 mm−1

  • T = 100 K

  • 0.52 × 0.17 × 0.11 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.234, Tmax = 0.672

  • 27005 measured reflections

  • 8188 independent reflections

  • 6617 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.02

  • 8188 reflections

  • 344 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.85 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W2⋯O5i 0.73 (4) 2.03 (4) 2.736 (2) 163 (4)
O1W—H2W2⋯O1ii 0.77 (3) 2.55 (3) 3.178 (2) 140 (3)
O1W—H2W2⋯O2ii 0.77 (3) 2.19 (3) 2.890 (2) 153 (3)
C2—H2⋯O5iii 0.93 2.42 3.351 (2) 175
C5—H5⋯O4iv 0.93 2.49 3.395 (3) 166
C7—H7⋯O3iv 0.93 2.60 3.509 (2) 167
C18—H18⋯Br2v 0.93 2.83 3.449 (2) 125
C23—H23A⋯O5vi 0.96 2.40 3.350 (3) 170
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z-1; (iv) -x+1, -y+1, -z+3; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, the coordination chemistry of manganese has been intensively studied due to its presence in the active sites of some enzymes that participate in the chemistry of reactive oxygen species, such as the participation of Mn(II) complexes in peroxidase activity (Maneiro et al., 2003), antipathogenic activity (Chandra et al., 2009) and as essential cofactors in metalloenzymes (Chrisianson & Cox, 1999). X-Ray crystallography has shown a quasi- two-coordinate strongly bent geometry with Mn, which has an almost linear geometry with a wide N—Mn—N angle of 176.1° (Ni et al., 2009). Octahedral coordination is completed by N4O2 ligands (Zhang et al., 2005). The reaction system (solvent composition and reaction temperature) may cause dramatic changes in the structures. The preparation of the polymer results in the introduction of guest molecules such as DMF into its empty channels by the use of mixed solvents DMF-EtOH-H2O under hydro(solvo)thermal conditions (Huh & Lee, 2008). The mechanism of oxidation by DMF have been proposed by Pastoriza-Santos & Liz-Marzań (2009). Due to these interesting features, the title compound was synthesized and its crystal structure presented here.

The asymmetric unit of the title polymeric complex, consisting of one Mn (III) ion, one (E)-5-bromo-N-(2- (5-bromo-2-hydroxybenzylideneamino)-4-nitrophenyl)-2-hydroxybenzamide (Schiff base), one water molecule and a dimethylformamide solvate molecule is shown in Fig. 1. The coordination geometry around Mn (III) is a distorted octahedron, with the Mn (III) ion being surrounded by two O and two N atoms from the Schiff base which are positioned in the equatorial plane. The water molecule and an atom from a carbonyl group are situated in the axial positions. The carbonyl groups bridge the Mn (III) ions, leading to polymeric chains along the c-axis (Fig. 2). The bond lengths are Mn1—O2 = 1.8557 (13); Mn1—O1 = 1.8875 (13); Mn1—N2 = 1.9750 (15); Mn1—N1 = 1.9782 (15); Mn1—O1W =2.2431(15; Mn1—O6 = 2.3448 (14) Å. All bond lengths are in agreement with those in the related structures (Su & Xu, 2005; Ma et al., 2004). In the crystal, (Fig. 3), the complexes are connected with the solvent molecules via O—H···O, C—H···O and C—H···Br hydrogen bonds (Table 1) to form a three-dimensional network.

Related literature top

For details of the coordination chemistry and biological importance of manganese, see: Maneiro et al. (2003); Chandra et al. (2009); Chrisianson & Cox (1999); Ni et al. (2009); Zhang et al. (2005); Huh & Lee (2008); Pastoriza-Santos & Liz-Marzań (2009). For related structures, see: Su & Xu (2005); Ma et al. (2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To the solution of 4-nitrobenzene-1,2-diamine (0.306 g, 2 mmol) in ethanol (30 mL) was added 5-bromo-2-hydroxybenzaldehyde (0.804 g, 4 mmol), after which the colour of solution became orange. The mixture was refluxed with stirring for three hours. On adding manganese(II) chloride (0.395 g, 2 mmol), followed by triethylamine (500 mL, 3.6 mmol), a brown precipitate was formed. The mixture was stirred with reflux for three hours. The precipitate, obtained by filtration, was washed by ethanol (5 mL) and dried, affording the title compound (87.33 % yield). Brown block-shaped single crystals suitable for X-ray structure determination were obtained from DMF: ethanol mixture (2:8) with decomposition pt. >340 °C. IR spectroscopy (KBr): ν = 3370 (-OH), 1612 (CN), 1335 (NO2), 639 (M–N), 480 (M–O) cm-1. Anal. Calcd (found) for [C20H15Br2N3O6Mn].C3H7NO: C 39.50 (39.55), H 2.49 (2.11), N 6.91 (6.55), Mn 9.03 (8.66). MASS Calcd (found) m/z: [605.87 - 2H2O]+ = 569.87 (571.9).

Refinement top

Atoms H1W2 and H2W2 were located from a difference Fourier map and refined freely [O—H = 0.72 (4) and 0.77 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93–0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The highest residual electron density peak is located at 0.75 Å from atom Br1 and the deepest hole is located at 0.66 Å from atom Br2.

Structure description top

In recent years, the coordination chemistry of manganese has been intensively studied due to its presence in the active sites of some enzymes that participate in the chemistry of reactive oxygen species, such as the participation of Mn(II) complexes in peroxidase activity (Maneiro et al., 2003), antipathogenic activity (Chandra et al., 2009) and as essential cofactors in metalloenzymes (Chrisianson & Cox, 1999). X-Ray crystallography has shown a quasi- two-coordinate strongly bent geometry with Mn, which has an almost linear geometry with a wide N—Mn—N angle of 176.1° (Ni et al., 2009). Octahedral coordination is completed by N4O2 ligands (Zhang et al., 2005). The reaction system (solvent composition and reaction temperature) may cause dramatic changes in the structures. The preparation of the polymer results in the introduction of guest molecules such as DMF into its empty channels by the use of mixed solvents DMF-EtOH-H2O under hydro(solvo)thermal conditions (Huh & Lee, 2008). The mechanism of oxidation by DMF have been proposed by Pastoriza-Santos & Liz-Marzań (2009). Due to these interesting features, the title compound was synthesized and its crystal structure presented here.

The asymmetric unit of the title polymeric complex, consisting of one Mn (III) ion, one (E)-5-bromo-N-(2- (5-bromo-2-hydroxybenzylideneamino)-4-nitrophenyl)-2-hydroxybenzamide (Schiff base), one water molecule and a dimethylformamide solvate molecule is shown in Fig. 1. The coordination geometry around Mn (III) is a distorted octahedron, with the Mn (III) ion being surrounded by two O and two N atoms from the Schiff base which are positioned in the equatorial plane. The water molecule and an atom from a carbonyl group are situated in the axial positions. The carbonyl groups bridge the Mn (III) ions, leading to polymeric chains along the c-axis (Fig. 2). The bond lengths are Mn1—O2 = 1.8557 (13); Mn1—O1 = 1.8875 (13); Mn1—N2 = 1.9750 (15); Mn1—N1 = 1.9782 (15); Mn1—O1W =2.2431(15; Mn1—O6 = 2.3448 (14) Å. All bond lengths are in agreement with those in the related structures (Su & Xu, 2005; Ma et al., 2004). In the crystal, (Fig. 3), the complexes are connected with the solvent molecules via O—H···O, C—H···O and C—H···Br hydrogen bonds (Table 1) to form a three-dimensional network.

For details of the coordination chemistry and biological importance of manganese, see: Maneiro et al. (2003); Chandra et al. (2009); Chrisianson & Cox (1999); Ni et al. (2009); Zhang et al. (2005); Huh & Lee (2008); Pastoriza-Santos & Liz-Marzań (2009). For related structures, see: Su & Xu (2005); Ma et al. (2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. : The polymeric chain of the title compound along the c-axis. H atoms and solvent molecules omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of the title compound, showing a 3D molecular network.
catena-Poly[[[aquamanganese(III)]-µ-(E)-5-bromo- N-[2-(5-bromo-2-oxidobenzylideneamino)-4-nitrophenyl]- 2-oxidobenzamidato] N,N-dimethylfomamide monosolvate] top
Crystal data top
[Mn(C20H10Br2N3O5)(H2O)]·C3H7NOF(000) = 1344
Mr = 678.18Dx = 1.875 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7902 reflections
a = 11.0746 (6) Åθ = 3.2–31.8°
b = 24.9781 (13) ŵ = 3.93 mm1
c = 9.5563 (5) ÅT = 100 K
β = 114.658 (1)°Block, brown
V = 2402.4 (2) Å30.52 × 0.17 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8188 independent reflections
Radiation source: fine-focus sealed tube6617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 31.8°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.234, Tmax = 0.672k = 3637
27005 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.041P)2 + 1.7977P]
where P = (Fo2 + 2Fc2)/3
8188 reflections(Δ/σ)max = 0.003
344 parametersΔρmax = 1.85 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Mn(C20H10Br2N3O5)(H2O)]·C3H7NOV = 2402.4 (2) Å3
Mr = 678.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0746 (6) ŵ = 3.93 mm1
b = 24.9781 (13) ÅT = 100 K
c = 9.5563 (5) Å0.52 × 0.17 × 0.11 mm
β = 114.658 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8188 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6617 reflections with I > 2σ(I)
Tmin = 0.234, Tmax = 0.672Rint = 0.032
27005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.85 e Å3
8188 reflectionsΔρmin = 0.62 e Å3
344 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.32207 (3)0.285186 (10)1.10714 (3)0.01283 (6)
Br10.39872 (2)0.002567 (8)1.29527 (2)0.02540 (6)
Br20.00337 (3)0.540295 (9)0.75613 (3)0.03831 (8)
O10.19454 (14)0.31410 (5)0.92195 (14)0.0161 (2)
O20.28189 (14)0.21775 (5)1.01810 (15)0.0162 (3)
O30.65113 (16)0.47920 (6)1.64497 (17)0.0250 (3)
O40.76182 (19)0.42584 (7)1.83364 (18)0.0345 (4)
N10.37015 (15)0.35574 (6)1.20959 (17)0.0132 (3)
N20.44814 (15)0.25853 (6)1.31031 (17)0.0130 (3)
N30.68440 (17)0.43404 (7)1.69974 (19)0.0196 (3)
C10.15509 (18)0.36422 (7)0.8920 (2)0.0155 (3)
C20.0566 (2)0.37633 (8)0.7440 (2)0.0207 (4)
H20.02110.34900.67220.025*
C30.0124 (2)0.42798 (8)0.7046 (2)0.0239 (4)
H30.05160.43550.60630.029*
C40.0636 (2)0.46918 (8)0.8124 (3)0.0240 (4)
C50.1582 (2)0.45925 (8)0.9576 (2)0.0212 (4)
H50.19060.48701.02830.025*
C60.20647 (19)0.40668 (7)0.9997 (2)0.0163 (3)
C70.30926 (19)0.40035 (7)1.1515 (2)0.0154 (3)
H70.33470.43061.21370.019*
C80.47310 (18)0.35266 (7)1.36140 (19)0.0130 (3)
C90.53061 (18)0.39672 (7)1.4535 (2)0.0149 (3)
H90.50390.43131.41780.018*
C100.62842 (19)0.38799 (7)1.5994 (2)0.0157 (3)
C110.6734 (2)0.33696 (8)1.6552 (2)0.0177 (3)
H110.74120.33241.75300.021*
C120.6157 (2)0.29309 (7)1.5628 (2)0.0169 (3)
H120.64520.25881.59860.020*
C130.51269 (18)0.30003 (7)1.4150 (2)0.0135 (3)
C140.44056 (18)0.20846 (7)1.3632 (2)0.0141 (3)
C150.38604 (18)0.16400 (7)1.2496 (2)0.0142 (3)
C160.41170 (19)0.11188 (7)1.3105 (2)0.0162 (3)
H160.46190.10691.41550.019*
C170.3626 (2)0.06804 (7)1.2151 (2)0.0177 (3)
C180.2833 (2)0.07434 (7)1.0590 (2)0.0182 (3)
H180.24890.04460.99640.022*
C190.25639 (19)0.12505 (7)0.9983 (2)0.0166 (3)
H190.20180.12940.89430.020*
C200.30947 (18)0.17067 (7)1.0900 (2)0.0138 (3)
O60.47681 (14)0.19817 (5)1.50376 (15)0.0162 (3)
O1W0.15751 (15)0.28059 (7)1.18541 (18)0.0203 (3)
O50.94801 (16)0.27762 (6)1.48344 (18)0.0259 (3)
N40.84158 (18)0.32089 (7)1.2543 (2)0.0202 (3)
C210.9247 (2)0.28447 (8)1.3460 (3)0.0232 (4)
H210.96870.26251.30390.028*
C220.7663 (2)0.35587 (9)1.3091 (3)0.0269 (4)
H22A0.78430.34681.41350.040*
H22B0.67310.35161.24550.040*
H22C0.79150.39241.30440.040*
C230.8221 (2)0.32762 (9)1.0947 (2)0.0250 (4)
H23A0.86860.29981.06800.037*
H23B0.85580.36191.08260.037*
H23C0.72900.32551.02850.037*
H1W20.110 (4)0.2602 (15)1.142 (4)0.051 (11)*
H2W20.180 (3)0.2712 (12)1.269 (4)0.034 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01673 (13)0.01111 (12)0.00881 (11)0.00105 (9)0.00349 (10)0.00144 (9)
Br10.03687 (12)0.01250 (9)0.02373 (10)0.00229 (8)0.00957 (9)0.00146 (7)
Br20.03147 (13)0.01713 (10)0.04152 (14)0.00359 (8)0.00934 (10)0.00522 (9)
O10.0204 (6)0.0140 (6)0.0106 (5)0.0001 (5)0.0030 (5)0.0002 (4)
O20.0241 (7)0.0107 (6)0.0119 (5)0.0022 (5)0.0057 (5)0.0014 (4)
O30.0333 (8)0.0129 (6)0.0223 (7)0.0034 (6)0.0050 (6)0.0013 (5)
O40.0465 (10)0.0217 (7)0.0162 (7)0.0040 (7)0.0059 (7)0.0030 (6)
N10.0153 (7)0.0128 (6)0.0105 (6)0.0011 (5)0.0043 (5)0.0012 (5)
N20.0158 (7)0.0113 (6)0.0106 (6)0.0006 (5)0.0044 (5)0.0018 (5)
N30.0230 (8)0.0168 (7)0.0161 (7)0.0034 (6)0.0052 (6)0.0032 (6)
C10.0163 (8)0.0155 (8)0.0132 (7)0.0015 (6)0.0047 (6)0.0003 (6)
C20.0209 (9)0.0195 (9)0.0151 (8)0.0017 (7)0.0011 (7)0.0001 (7)
C30.0203 (9)0.0212 (9)0.0204 (9)0.0007 (7)0.0013 (8)0.0041 (7)
C40.0218 (10)0.0160 (8)0.0261 (10)0.0017 (7)0.0019 (8)0.0038 (7)
C50.0193 (9)0.0146 (8)0.0222 (9)0.0002 (7)0.0014 (7)0.0002 (7)
C60.0172 (8)0.0150 (8)0.0137 (8)0.0003 (6)0.0034 (7)0.0005 (6)
C70.0170 (8)0.0136 (7)0.0143 (8)0.0000 (6)0.0050 (7)0.0012 (6)
C80.0138 (8)0.0128 (7)0.0107 (7)0.0004 (6)0.0036 (6)0.0010 (6)
C90.0164 (8)0.0137 (7)0.0142 (7)0.0011 (6)0.0059 (6)0.0014 (6)
C100.0186 (8)0.0141 (8)0.0129 (7)0.0038 (6)0.0050 (7)0.0043 (6)
C110.0195 (9)0.0167 (8)0.0125 (7)0.0011 (7)0.0024 (7)0.0011 (6)
C120.0203 (9)0.0137 (8)0.0138 (8)0.0010 (7)0.0044 (7)0.0011 (6)
C130.0156 (8)0.0133 (7)0.0115 (7)0.0011 (6)0.0058 (6)0.0019 (6)
C140.0150 (8)0.0129 (7)0.0134 (7)0.0003 (6)0.0049 (6)0.0007 (6)
C150.0176 (8)0.0135 (7)0.0115 (7)0.0009 (6)0.0059 (6)0.0008 (6)
C160.0193 (9)0.0133 (8)0.0152 (8)0.0003 (6)0.0063 (7)0.0003 (6)
C170.0215 (9)0.0113 (7)0.0210 (9)0.0007 (7)0.0096 (7)0.0009 (6)
C180.0222 (9)0.0134 (8)0.0180 (8)0.0036 (7)0.0075 (7)0.0040 (6)
C190.0205 (9)0.0150 (8)0.0126 (7)0.0029 (7)0.0052 (7)0.0030 (6)
C200.0165 (8)0.0125 (7)0.0134 (7)0.0007 (6)0.0073 (6)0.0014 (6)
O60.0196 (6)0.0164 (6)0.0120 (6)0.0000 (5)0.0058 (5)0.0006 (5)
O1W0.0181 (7)0.0288 (8)0.0123 (6)0.0024 (6)0.0046 (5)0.0010 (6)
O50.0249 (8)0.0265 (8)0.0253 (7)0.0055 (6)0.0093 (6)0.0059 (6)
N40.0217 (8)0.0207 (8)0.0197 (8)0.0021 (6)0.0099 (7)0.0001 (6)
C210.0229 (10)0.0222 (9)0.0262 (10)0.0029 (8)0.0120 (8)0.0009 (8)
C220.0294 (11)0.0281 (10)0.0262 (10)0.0088 (9)0.0146 (9)0.0024 (8)
C230.0290 (11)0.0268 (10)0.0200 (9)0.0002 (8)0.0110 (8)0.0002 (8)
Geometric parameters (Å, º) top
Mn1—O21.8557 (13)C9—H90.9300
Mn1—O11.8875 (13)C10—C111.391 (3)
Mn1—N21.9750 (15)C11—C121.385 (3)
Mn1—N11.9782 (15)C11—H110.9300
Mn1—O1W2.2431 (15)C12—C131.408 (3)
Mn1—O6i2.3448 (14)C12—H120.9300
Br1—C171.8977 (18)C14—O61.258 (2)
Br2—C41.895 (2)C14—C151.493 (2)
O1—C11.317 (2)C15—C161.406 (2)
O2—C201.331 (2)C15—C201.412 (2)
O3—N31.233 (2)C16—C171.383 (3)
O4—N31.224 (2)C16—H160.9300
N1—C71.301 (2)C17—C181.389 (3)
N1—C81.425 (2)C18—C191.373 (3)
N2—C141.365 (2)C18—H180.9300
N2—C131.410 (2)C19—C201.407 (2)
N3—C101.460 (2)C19—H190.9300
C1—C21.412 (3)O6—Mn1ii2.3448 (14)
C1—C61.421 (3)O1W—H1W20.72 (4)
C2—C31.375 (3)O1W—H2W20.77 (3)
C2—H20.9300O5—C211.240 (3)
C3—C41.398 (3)N4—C211.331 (3)
C3—H30.9300N4—C221.448 (3)
C4—C51.368 (3)N4—C231.458 (3)
C5—C61.412 (3)C21—H210.9300
C5—H50.9300C22—H22A0.9600
C6—C71.430 (3)C22—H22B0.9600
C7—H70.9300C22—H22C0.9600
C8—C91.387 (2)C23—H23A0.9600
C8—C131.413 (2)C23—H23B0.9600
C9—C101.380 (3)C23—H23C0.9600
O2—Mn1—O188.57 (6)C9—C10—N3118.59 (16)
O2—Mn1—N294.63 (6)C11—C10—N3118.96 (16)
O1—Mn1—N2175.06 (6)C12—C11—C10118.98 (17)
O2—Mn1—N1177.72 (6)C12—C11—H11120.5
O1—Mn1—N193.71 (6)C10—C11—H11120.5
N2—Mn1—N183.10 (6)C11—C12—C13120.50 (17)
O2—Mn1—O1W91.93 (6)C11—C12—H12119.8
O1—Mn1—O1W86.45 (6)C13—C12—H12119.8
N2—Mn1—O1W89.68 (6)C12—C13—N2125.44 (16)
N1—Mn1—O1W88.22 (6)C12—C13—C8118.51 (16)
O2—Mn1—O6i92.60 (5)N2—C13—C8115.98 (15)
O1—Mn1—O6i85.96 (5)O6—C14—N2122.76 (16)
N2—Mn1—O6i97.63 (6)O6—C14—C15118.47 (16)
N1—Mn1—O6i87.56 (6)N2—C14—C15118.77 (15)
O1W—Mn1—O6i171.06 (5)C16—C15—C20118.88 (16)
C1—O1—Mn1128.16 (12)C16—C15—C14115.91 (15)
C20—O2—Mn1127.29 (11)C20—C15—C14125.18 (16)
C7—N1—C8122.21 (15)C17—C16—C15120.29 (17)
C7—N1—Mn1124.56 (13)C17—C16—H16119.9
C8—N1—Mn1113.05 (11)C15—C16—H16119.9
C14—N2—C13120.16 (15)C16—C17—C18121.12 (17)
C14—N2—Mn1123.06 (12)C16—C17—Br1120.75 (15)
C13—N2—Mn1113.00 (11)C18—C17—Br1118.11 (14)
O4—N3—O3123.46 (17)C19—C18—C17119.14 (17)
O4—N3—C10118.37 (17)C19—C18—H18120.4
O3—N3—C10118.17 (16)C17—C18—H18120.4
O1—C1—C2117.94 (16)C18—C19—C20121.56 (17)
O1—C1—C6123.76 (16)C18—C19—H19119.2
C2—C1—C6118.30 (17)C20—C19—H19119.2
C3—C2—C1120.85 (18)O2—C20—C19116.61 (16)
C3—C2—H2119.6O2—C20—C15124.49 (16)
C1—C2—H2119.6C19—C20—C15118.89 (16)
C2—C3—C4120.02 (19)C14—O6—Mn1ii116.75 (12)
C2—C3—H3120.0Mn1—O1W—H1W2110 (3)
C4—C3—H3120.0Mn1—O1W—H2W2114 (2)
C5—C4—C3121.17 (19)H1W2—O1W—H2W2103 (3)
C5—C4—Br2119.20 (16)C21—N4—C22121.24 (18)
C3—C4—Br2119.63 (16)C21—N4—C23121.86 (18)
C4—C5—C6119.77 (18)C22—N4—C23116.90 (17)
C4—C5—H5120.1O5—C21—N4125.0 (2)
C6—C5—H5120.1O5—C21—H21117.5
C5—C6—C1119.88 (17)N4—C21—H21117.5
C5—C6—C7116.01 (16)N4—C22—H22A109.5
C1—C6—C7124.10 (17)N4—C22—H22B109.5
N1—C7—C6125.38 (17)H22A—C22—H22B109.5
N1—C7—H7117.3N4—C22—H22C109.5
C6—C7—H7117.3H22A—C22—H22C109.5
C9—C8—C13121.17 (16)H22B—C22—H22C109.5
C9—C8—N1124.31 (16)N4—C23—H23A109.5
C13—C8—N1114.51 (15)N4—C23—H23B109.5
C10—C9—C8118.35 (17)H23A—C23—H23B109.5
C10—C9—H9120.8N4—C23—H23C109.5
C8—C9—H9120.8H23A—C23—H23C109.5
C9—C10—C11122.43 (16)H23B—C23—H23C109.5
O2—Mn1—O1—C1175.97 (16)N1—C8—C9—C10179.15 (17)
N1—Mn1—O1—C14.03 (16)C8—C9—C10—C111.8 (3)
O1W—Mn1—O1—C183.95 (16)C8—C9—C10—N3176.83 (16)
O6i—Mn1—O1—C191.32 (15)O4—N3—C10—C9173.19 (19)
O1—Mn1—O2—C20162.27 (15)O3—N3—C10—C96.8 (3)
N2—Mn1—O2—C2013.96 (16)O4—N3—C10—C115.5 (3)
O1W—Mn1—O2—C2075.87 (15)O3—N3—C10—C11174.50 (18)
O6i—Mn1—O2—C20111.84 (15)C9—C10—C11—C121.8 (3)
O1—Mn1—N1—C76.45 (16)N3—C10—C11—C12176.82 (17)
N2—Mn1—N1—C7169.77 (16)C10—C11—C12—C130.3 (3)
O1W—Mn1—N1—C779.88 (15)C11—C12—C13—N2178.99 (18)
O6i—Mn1—N1—C792.24 (15)C11—C12—C13—C82.2 (3)
O1—Mn1—N1—C8178.30 (12)C14—N2—C13—C1227.2 (3)
N2—Mn1—N1—C85.48 (12)Mn1—N2—C13—C12174.01 (15)
O1W—Mn1—N1—C895.38 (12)C14—N2—C13—C8155.88 (16)
O6i—Mn1—N1—C892.51 (12)Mn1—N2—C13—C82.9 (2)
O2—Mn1—N2—C1426.70 (15)C9—C8—C13—C122.2 (3)
N1—Mn1—N2—C14153.46 (15)N1—C8—C13—C12178.80 (16)
O1W—Mn1—N2—C1465.22 (14)C9—C8—C13—N2179.31 (16)
O6i—Mn1—N2—C14119.95 (14)N1—C8—C13—N21.7 (2)
O2—Mn1—N2—C13175.27 (12)C13—N2—C14—O67.6 (3)
N1—Mn1—N2—C134.57 (12)Mn1—N2—C14—O6148.89 (15)
O1W—Mn1—N2—C1392.82 (13)C13—N2—C14—C15172.84 (16)
O6i—Mn1—N2—C1382.02 (12)Mn1—N2—C14—C1530.6 (2)
Mn1—O1—C1—C2179.45 (14)O6—C14—C15—C1616.2 (3)
Mn1—O1—C1—C60.9 (3)N2—C14—C15—C16164.22 (16)
O1—C1—C2—C3179.07 (19)O6—C14—C15—C20162.02 (18)
C6—C1—C2—C30.6 (3)N2—C14—C15—C2017.5 (3)
C1—C2—C3—C40.9 (3)C20—C15—C16—C170.1 (3)
C2—C3—C4—C50.3 (4)C14—C15—C16—C17178.44 (17)
C2—C3—C4—Br2179.33 (17)C15—C16—C17—C182.4 (3)
C3—C4—C5—C60.7 (3)C15—C16—C17—Br1179.05 (14)
Br2—C4—C5—C6178.36 (16)C16—C17—C18—C191.7 (3)
C4—C5—C6—C11.0 (3)Br1—C17—C18—C19179.70 (15)
C4—C5—C6—C7177.4 (2)C17—C18—C19—C201.3 (3)
O1—C1—C6—C5179.99 (18)Mn1—O2—C20—C19173.51 (13)
C2—C1—C6—C50.4 (3)Mn1—O2—C20—C155.8 (3)
O1—C1—C6—C71.8 (3)C18—C19—C20—O2177.07 (17)
C2—C1—C6—C7177.89 (18)C18—C19—C20—C153.6 (3)
C8—N1—C7—C6179.15 (17)C16—C15—C20—O2177.88 (17)
Mn1—N1—C7—C66.0 (3)C14—C15—C20—O23.9 (3)
C5—C6—C7—N1177.16 (19)C16—C15—C20—C192.8 (3)
C1—C6—C7—N11.2 (3)C14—C15—C20—C19175.36 (17)
C7—N1—C8—C99.0 (3)N2—C14—O6—Mn1ii83.77 (19)
Mn1—N1—C8—C9175.61 (14)C15—C14—O6—Mn1ii95.75 (17)
C7—N1—C8—C13169.94 (17)C22—N4—C21—O51.6 (3)
Mn1—N1—C8—C135.44 (19)C23—N4—C21—O5178.2 (2)
C13—C8—C9—C100.3 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W2···O5iii0.73 (4)2.03 (4)2.736 (2)163 (4)
O1W—H2W2···O1ii0.77 (3)2.55 (3)3.178 (2)140 (3)
O1W—H2W2···O2ii0.77 (3)2.19 (3)2.890 (2)153 (3)
C2—H2···O5iv0.932.423.351 (2)175
C5—H5···O4v0.932.493.395 (3)166
C7—H7···O3v0.932.603.509 (2)167
C18—H18···Br2vi0.932.833.449 (2)125
C23—H23A···O5i0.962.403.350 (3)170
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2; (iv) x1, y, z1; (v) x+1, y+1, z+3; (vi) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn(C20H10Br2N3O5)(H2O)]·C3H7NO
Mr678.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.0746 (6), 24.9781 (13), 9.5563 (5)
β (°) 114.658 (1)
V3)2402.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.93
Crystal size (mm)0.52 × 0.17 × 0.11
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.234, 0.672
No. of measured, independent and
observed [I > 2σ(I)] reflections
27005, 8188, 6617
Rint0.032
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.02
No. of reflections8188
No. of parameters344
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.85, 0.62

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W2···O5i0.73 (4)2.03 (4)2.736 (2)163 (4)
O1W—H2W2···O1ii0.77 (3)2.55 (3)3.178 (2)140 (3)
O1W—H2W2···O2ii0.77 (3)2.19 (3)2.890 (2)153 (3)
C2—H2···O5iii0.932.423.351 (2)175
C5—H5···O4iv0.932.493.395 (3)166
C7—H7···O3iv0.932.603.509 (2)167
C18—H18···Br2v0.932.833.449 (2)125
C23—H23A···O5vi0.962.403.350 (3)170
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z1; (iv) x+1, y+1, z+3; (v) x, y1/2, z+3/2; (vi) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AMF, TSG and HO thank the Malaysian Government and Universiti Sains Malaysia (USM) for the RU research grant (1001/PKIMIA/815002). AMF thanks Naser Taha and Hema for their help. HKF and MH thanks the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S., Parmar, S. & Kumar, Y. (2009). Bioinorg. Chem. Appl. Article ID 851316, 6 pp.  Google Scholar
First citationChrisianson, D. W. & Cox, D. (1999). Annu. Rev. Biochem. 68, 33–57.  Web of Science PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuh, H. S. & Lee, S. W. (2008). Bull. Korean Chem. Soc. 29 2383–2385.  CAS Google Scholar
First citationMa, C.-B., Hu, M.-Q., Zhang, C.-X., Chen, F., Chen, C.-N. & Liu, Q.-T. (2004). Acta Cryst. C60, m288–m290.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManeiro, M., Bermejo, M. R., Fernánde, I., Gomez, E., Noya, A. M. G. & Tyryshkin, A. A. M. (2003). New J. Chem. 27, 727–733.  Web of Science CrossRef CAS Google Scholar
First citationNi, C., Rekken, B., Fettinger, J. C., Long, G. J. & Power, P. P. (2009). Dalton Trans. pp. 8349–8355.  Web of Science CSD CrossRef Google Scholar
First citationPastoriza-Santos, I. & Liz-Marzań, L. M. (2009). Adv. Funct. Mater. 19, 679–688.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256–m258.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q.-Z., Lu, C.-Z. & Xia, C.-K. (2005). Inorg. Chem. Commun. 8, 304–306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m365-m366
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds