organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Meth­­oxy-1-[(5-meth­­oxy-1H-indol-2-yl)meth­yl]-1H-indole

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 29 February 2012; accepted 1 March 2012; online 7 March 2012)

In the title compound, C19H18N2O2, the two indole ring systems are essentially planar [maximum deviation = 0.015 (2) Å in both indole ring systems] and make a dihedral angle of 72.17 (7)° with each other. In the crystal, the mol­ecules are linked into a zigzag chain along the a axis via N—H⋯O hydrogen bonds.

Related literature

For the biological activity of melatonin (MLT), see: Csernus & Mess (2003[Csernus, V. & Mess, B. (2003). Neuroendocrinol. Lett. 24, 404-411.]); Nosjean et al. (2000[Nosjean, O., Ferro, M., Coge, F., Beauverger, P., Henlin, J.-M., Lefoulon, F., Fauchere, J. L., Delagrange, P., Canet, E. & Boutin, J. A. (2000). J. Biol. Chem. 275, 31311-31317.]); Blask et al. (2002[Blask, D. E., Sauer, L. A. & Dauchy, R. T. (2002). Curr. Top. Med. Chem. 2, 113-132.]); Genovese et al. (2005[Genovese, T., Mazzon, E., Muia, C., Bramanti, P., De Sarro, A. & Cuzzocrea, S. (2005). J. Pineal Res. 38, 198-208.]); Mills et al. (2005[Mills, E., Wu, P., Seely, D. & Guyatt, G. (2005). J. Pineal Res. 39, 360-366.]); Peres (2005[Peres, M. F. P. (2005). Cephalalgia, 5, 403-411.]); Sofic et al. (2005[Sofic, E., Rimpapa, Z., Kundurovic, Z., Sapcanin, A., Tahirovic, I., Rustembegovic, A. & Cao, G. (2005). J. Neural Transm. 112, 349-358.]); Witt-Enderby et al. (2006[Witt-Enderby, P. A., Radio, N. M., Doctor, J. S. & Davis, V. L. (2006). J. Pineal Res. 41, 297-305.]). For related structures, see: Narayanan et al. (2011[Narayanan, P., Sethusankar, K., Ramachandiran, K. & Perumal, P. T. (2011). Acta Cryst. E67, o3196.]); Deng et al. (2011[Deng, X., Wu, D., Huang, X. & Luo, F. (2011). Acta Cryst. E67, o1603.]). For the synthesis, see: Attia et al. (2008[Attia, M. I., Witt-Enderby, P. A. & Julius, J. (2008). Bioorg. Med. Chem. 16, 7654-7661.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N2O2

  • Mr = 306.35

  • Monoclinic, P 21 /c

  • a = 9.4446 (5) Å

  • b = 19.5625 (8) Å

  • c = 8.6657 (5) Å

  • β = 98.903 (4)°

  • V = 1581.78 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 296 K

  • 0.92 × 0.20 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.575, Tmax = 0.961

  • 9421 measured reflections

  • 2584 independent reflections

  • 2087 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.06

  • 2584 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.88 (2) 2.24 (3) 3.037 (2) 151 (2)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Melatonin (N-acetyl-5-methoxytryptamine, MLT) is primarily produced by the pineal gland in the brain with a marked circadian rhythm normally peaking in the dark to regulate sleep. MLT acts through activation of two G-protein-coupled receptors, designated as MT1 and MT2 (Csernus & Mess, 2003). In addition, a low-affinity putative MLT binding site called MT3 has been recently characterized as a melatonin-sensitive form of the human enzyme quinine reductase 2 (Nosjean et al., 2000). MLT has found widespread use in the treatment of sleep disorders. Other effects described in the literature include its anti-inflammatory, pain modulatory, antitumor, and antioxidant properties (Blask et al., 2002; Genovese et al., 2005; Mills et al., 2005; Peres, 2005; Sofic et al., 2005; Witt-Enderby et al., 2006). The title compound is an intermediate which could yield, via the reported procedure (Attia et al., 2008), various MLT analogues which can be evaluated for their potency and selectivity for MLT receptor subtypes.

In the title compound (Fig. 1), the indole ring systems (N1/C10–C17 & N2/C1–C8) are essentially planar with maximum deviations of 0.015 (2) Å at atom C10 and C2, respectively. In addition, the indole ring systems are almost perpendicular to each other with dihedral angle of 72.17 (7)°. Bond lengths and angles are within the normal range and are comparable to those in the related structures (Narayanan et al., 2011; Deng et al., 2011).

The crystal structure is shown in Fig. 2. The molecules are linked into one dimensional zigzag chains along a-axis via N2—H1N2···O1 interactions (Table 1).

Related literature top

For the biological activity of melatonin (MLT), see: Csernus & Mess (2003); Nosjean et al. (2000); Blask et al. (2002); Genovese et al. (2005); Mills et al. (2005); Peres (2005); Sofic et al. (2005); Witt-Enderby et al. (2006). For related structures, see: Narayanan et al. (2011); Deng et al. (2011). For the synthesis, see: Attia et al. (2008).

Experimental top

(5-Methoxy-1H-indol-1-yl)(5-methoxy-1H-indol-2-yl)methanone (0.50 g, 156.03 mmol) was dissolved in dry THF (5 ml) and was added drop-wise to a cooled (0 °C) suspension of LiAlH4/AlCl3 in dry diethyl ether (prepared by a slow addition of AlCl3 (0.32 g, 2.41 mmol) to a suspension LiAlH4 (0.27 g, 7.13 mmol) in dry diethyl ether (15 ml) at 0 °C). The resulting reaction mixture was stirred at 0 °C for one hour and at room temperature for another one hour. The reaction was quenched by a slow addition of saturated sodium sulfate solution. The solids formed were removed by filtration, washed with chloroform (20 ml) and the combined organic phase was dried (Na2SO4) and evaporated under reduced pressure. The residue was purified by silica gel chromatography (chloroform/methanol/ammonia, 10.0:1.0:0.1) to produce the title compound as a light red powder which was recrystallized from ethanol to give single crystals (m.p. 173–174 °C).

Refinement top

N-bound H atom was located in a difference Fourier map and refined freely [N—H = 0.88 (2) Å]. Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

Melatonin (N-acetyl-5-methoxytryptamine, MLT) is primarily produced by the pineal gland in the brain with a marked circadian rhythm normally peaking in the dark to regulate sleep. MLT acts through activation of two G-protein-coupled receptors, designated as MT1 and MT2 (Csernus & Mess, 2003). In addition, a low-affinity putative MLT binding site called MT3 has been recently characterized as a melatonin-sensitive form of the human enzyme quinine reductase 2 (Nosjean et al., 2000). MLT has found widespread use in the treatment of sleep disorders. Other effects described in the literature include its anti-inflammatory, pain modulatory, antitumor, and antioxidant properties (Blask et al., 2002; Genovese et al., 2005; Mills et al., 2005; Peres, 2005; Sofic et al., 2005; Witt-Enderby et al., 2006). The title compound is an intermediate which could yield, via the reported procedure (Attia et al., 2008), various MLT analogues which can be evaluated for their potency and selectivity for MLT receptor subtypes.

In the title compound (Fig. 1), the indole ring systems (N1/C10–C17 & N2/C1–C8) are essentially planar with maximum deviations of 0.015 (2) Å at atom C10 and C2, respectively. In addition, the indole ring systems are almost perpendicular to each other with dihedral angle of 72.17 (7)°. Bond lengths and angles are within the normal range and are comparable to those in the related structures (Narayanan et al., 2011; Deng et al., 2011).

The crystal structure is shown in Fig. 2. The molecules are linked into one dimensional zigzag chains along a-axis via N2—H1N2···O1 interactions (Table 1).

For the biological activity of melatonin (MLT), see: Csernus & Mess (2003); Nosjean et al. (2000); Blask et al. (2002); Genovese et al. (2005); Mills et al. (2005); Peres (2005); Sofic et al. (2005); Witt-Enderby et al. (2006). For related structures, see: Narayanan et al. (2011); Deng et al. (2011). For the synthesis, see: Attia et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the c axis. For the sake of clarity, H atoms not involved in the intermolecular interactions (dashed lines) have been omitted.
5-Methoxy-1-[(5-methoxy-1H-indol-2-yl)methyl]-1H-indole top
Crystal data top
C19H18N2O2F(000) = 648
Mr = 306.35Dx = 1.286 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 919 reflections
a = 9.4446 (5) Åθ = 4.5–60.8°
b = 19.5625 (8) ŵ = 0.68 mm1
c = 8.6657 (5) ÅT = 296 K
β = 98.903 (4)°Plate, pink
V = 1581.78 (14) Å30.92 × 0.20 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2584 independent reflections
Radiation source: fine-focus sealed tube2087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 65.0°, θmin = 4.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.575, Tmax = 0.961k = 2222
9421 measured reflectionsl = 89
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3465P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2584 reflectionsΔρmax = 0.15 e Å3
215 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (5)
Crystal data top
C19H18N2O2V = 1581.78 (14) Å3
Mr = 306.35Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.4446 (5) ŵ = 0.68 mm1
b = 19.5625 (8) ÅT = 296 K
c = 8.6657 (5) Å0.92 × 0.20 × 0.06 mm
β = 98.903 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2584 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2087 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.961Rint = 0.041
9421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.15 e Å3
2584 reflectionsΔρmin = 0.14 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57956 (17)0.66569 (8)0.6878 (2)0.0604 (4)
N20.32036 (18)0.76234 (9)0.5805 (2)0.0588 (4)
O11.08253 (15)0.66541 (8)0.44352 (19)0.0727 (5)
O20.1802 (2)1.02435 (9)0.3902 (2)0.0978 (6)
C10.4392 (2)0.77296 (11)0.6916 (2)0.0573 (5)
C20.4672 (2)0.84059 (11)0.7021 (2)0.0616 (5)
H2A0.54210.86100.76830.074*
C30.36179 (19)0.87542 (10)0.5938 (2)0.0536 (5)
C40.3345 (2)0.94428 (11)0.5531 (3)0.0644 (6)
H4A0.39240.97890.60180.077*
C50.2203 (2)0.95918 (11)0.4396 (3)0.0675 (6)
C60.1345 (2)0.90736 (12)0.3641 (3)0.0703 (6)
H6A0.05930.91880.28590.084*
C70.1585 (2)0.84013 (12)0.4025 (3)0.0661 (6)
H7A0.10080.80590.35190.079*
C80.27154 (19)0.82467 (9)0.5191 (2)0.0529 (5)
C90.5147 (2)0.71548 (12)0.7821 (3)0.0709 (6)
H9A0.58930.73420.86020.085*
H9B0.44700.69180.83680.085*
C100.5303 (2)0.60163 (11)0.6481 (3)0.0728 (6)
H10A0.44610.58310.67320.087*
C110.6216 (2)0.56865 (11)0.5667 (3)0.0704 (6)
H11A0.61120.52440.52710.084*
C120.73578 (19)0.61433 (9)0.5536 (2)0.0535 (5)
C130.86132 (19)0.60976 (9)0.4852 (2)0.0552 (5)
H13A0.88130.57080.43110.066*
C140.95290 (19)0.66412 (10)0.5005 (2)0.0538 (5)
C150.9232 (2)0.72402 (10)0.5783 (2)0.0565 (5)
H15A0.98740.76030.58520.068*
C160.8003 (2)0.72991 (9)0.6444 (2)0.0548 (5)
H16A0.78020.76960.69610.066*
C170.70772 (19)0.67448 (9)0.6312 (2)0.0505 (4)
C181.1240 (3)0.60545 (15)0.3717 (4)0.0934 (8)
H18A1.21640.61220.34110.140*
H18B1.05500.59530.28110.140*
H18C1.12870.56800.44400.140*
C190.2324 (3)1.07922 (13)0.4857 (4)0.1022 (9)
H19A0.18191.12010.44920.153*
H19C0.33281.08510.48230.153*
H19D0.21841.07010.59110.153*
H1N20.274 (3)0.7238 (12)0.559 (3)0.072 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0524 (9)0.0644 (10)0.0664 (11)0.0041 (7)0.0159 (7)0.0093 (8)
N20.0544 (9)0.0598 (10)0.0637 (11)0.0052 (8)0.0135 (7)0.0005 (8)
O10.0617 (8)0.0756 (10)0.0863 (11)0.0066 (7)0.0287 (7)0.0043 (8)
O20.1246 (15)0.0672 (10)0.0933 (14)0.0037 (9)0.0091 (11)0.0129 (9)
C10.0501 (10)0.0742 (13)0.0501 (12)0.0041 (9)0.0153 (8)0.0015 (9)
C20.0528 (11)0.0777 (14)0.0531 (12)0.0001 (9)0.0040 (8)0.0115 (9)
C30.0514 (10)0.0635 (11)0.0475 (11)0.0020 (8)0.0132 (8)0.0084 (8)
C40.0669 (12)0.0638 (13)0.0615 (13)0.0084 (10)0.0073 (10)0.0102 (9)
C50.0758 (13)0.0634 (12)0.0624 (14)0.0007 (10)0.0078 (10)0.0034 (10)
C60.0682 (13)0.0769 (14)0.0617 (14)0.0004 (11)0.0031 (10)0.0038 (10)
C70.0601 (12)0.0718 (14)0.0634 (13)0.0117 (10)0.0005 (10)0.0038 (10)
C80.0495 (10)0.0603 (11)0.0513 (11)0.0038 (8)0.0147 (8)0.0033 (8)
C90.0676 (13)0.0903 (16)0.0584 (14)0.0158 (11)0.0217 (10)0.0089 (11)
C100.0542 (11)0.0711 (14)0.0938 (18)0.0107 (10)0.0132 (11)0.0141 (12)
C110.0587 (12)0.0594 (12)0.0917 (17)0.0093 (10)0.0079 (11)0.0037 (11)
C120.0482 (10)0.0538 (10)0.0563 (12)0.0028 (8)0.0015 (8)0.0027 (8)
C130.0543 (10)0.0534 (10)0.0569 (12)0.0020 (8)0.0061 (8)0.0050 (8)
C140.0486 (10)0.0600 (11)0.0534 (11)0.0017 (8)0.0097 (8)0.0042 (8)
C150.0546 (10)0.0527 (11)0.0618 (13)0.0058 (8)0.0078 (8)0.0018 (8)
C160.0592 (11)0.0502 (10)0.0538 (12)0.0011 (8)0.0053 (8)0.0016 (8)
C170.0479 (9)0.0530 (10)0.0502 (10)0.0031 (8)0.0064 (7)0.0072 (8)
C180.0780 (16)0.1011 (19)0.110 (2)0.0006 (14)0.0436 (14)0.0225 (15)
C190.112 (2)0.0623 (15)0.128 (3)0.0008 (14)0.0042 (18)0.0030 (15)
Geometric parameters (Å, º) top
N1—C101.362 (3)C7—H7A0.9300
N1—C171.385 (2)C9—H9A0.9700
N1—C91.465 (3)C9—H9B0.9700
N2—C11.377 (3)C10—C111.359 (3)
N2—C81.381 (3)C10—H10A0.9300
N2—H1N20.88 (2)C11—C121.419 (3)
O1—C141.390 (2)C11—H11A0.9300
O1—C181.411 (3)C12—C171.401 (3)
O2—C51.379 (3)C12—C131.408 (3)
O2—C191.398 (3)C13—C141.364 (3)
C1—C21.349 (3)C13—H13A0.9300
C1—C91.488 (3)C14—C151.402 (3)
C2—C31.431 (3)C15—C161.376 (3)
C2—H2A0.9300C15—H15A0.9300
C3—C81.400 (3)C16—C171.387 (3)
C3—C41.406 (3)C16—H16A0.9300
C4—C51.374 (3)C18—H18A0.9600
C4—H4A0.9300C18—H18B0.9600
C5—C61.396 (3)C18—H18C0.9600
C6—C71.367 (3)C19—H19A0.9600
C6—H6A0.9300C19—H19C0.9600
C7—C81.385 (3)C19—H19D0.9600
C10—N1—C17107.95 (17)H9A—C9—H9B107.6
C10—N1—C9126.61 (18)C11—C10—N1110.38 (18)
C17—N1—C9125.33 (17)C11—C10—H10A124.8
C1—N2—C8108.88 (17)N1—C10—H10A124.8
C1—N2—H1N2127.1 (16)C10—C11—C12107.10 (19)
C8—N2—H1N2123.6 (16)C10—C11—H11A126.5
C14—O1—C18117.49 (17)C12—C11—H11A126.5
C5—O2—C19118.1 (2)C17—C12—C13119.31 (16)
C2—C1—N2108.97 (18)C17—C12—C11106.74 (18)
C2—C1—C9129.2 (2)C13—C12—C11133.94 (19)
N2—C1—C9121.79 (19)C14—C13—C12118.18 (17)
C1—C2—C3108.28 (17)C14—C13—H13A120.9
C1—C2—H2A125.9C12—C13—H13A120.9
C3—C2—H2A125.9C13—C14—O1124.04 (18)
C8—C3—C4119.24 (18)C13—C14—C15121.81 (18)
C8—C3—C2106.12 (17)O1—C14—C15114.14 (16)
C4—C3—C2134.64 (18)C16—C15—C14120.99 (17)
C5—C4—C3118.42 (19)C16—C15—H15A119.5
C5—C4—H4A120.8C14—C15—H15A119.5
C3—C4—H4A120.8C15—C16—C17117.50 (17)
C4—C5—O2124.4 (2)C15—C16—H16A121.2
C4—C5—C6121.1 (2)C17—C16—H16A121.2
O2—C5—C6114.5 (2)N1—C17—C16129.98 (18)
C7—C6—C5121.5 (2)N1—C17—C12107.83 (16)
C7—C6—H6A119.3C16—C17—C12122.19 (18)
C5—C6—H6A119.3O1—C18—H18A109.5
C6—C7—C8117.88 (19)O1—C18—H18B109.5
C6—C7—H7A121.1H18A—C18—H18B109.5
C8—C7—H7A121.1O1—C18—H18C109.5
N2—C8—C7130.36 (18)H18A—C18—H18C109.5
N2—C8—C3107.76 (17)H18B—C18—H18C109.5
C7—C8—C3121.86 (19)O2—C19—H19A109.5
N1—C9—C1114.58 (18)O2—C19—H19C109.5
N1—C9—H9A108.6H19A—C19—H19C109.5
C1—C9—H9A108.6O2—C19—H19D109.5
N1—C9—H9B108.6H19A—C19—H19D109.5
C1—C9—H9B108.6H19C—C19—H19D109.5
C8—N2—C1—C20.1 (2)N2—C1—C9—N163.6 (3)
C8—N2—C1—C9178.52 (17)C17—N1—C10—C110.4 (2)
N2—C1—C2—C30.3 (2)C9—N1—C10—C11176.8 (2)
C9—C1—C2—C3178.2 (2)N1—C10—C11—C120.0 (3)
C1—C2—C3—C80.3 (2)C10—C11—C12—C170.5 (2)
C1—C2—C3—C4179.3 (2)C10—C11—C12—C13179.3 (2)
C8—C3—C4—C50.7 (3)C17—C12—C13—C141.4 (3)
C2—C3—C4—C5179.7 (2)C11—C12—C13—C14177.2 (2)
C3—C4—C5—O2179.0 (2)C12—C13—C14—O1177.71 (17)
C3—C4—C5—C61.1 (3)C12—C13—C14—C151.6 (3)
C19—O2—C5—C417.5 (4)C18—O1—C14—C132.9 (3)
C19—O2—C5—C6162.6 (2)C18—O1—C14—C15176.4 (2)
C4—C5—C6—C71.6 (4)C13—C14—C15—C160.9 (3)
O2—C5—C6—C7178.5 (2)O1—C14—C15—C16178.47 (17)
C5—C6—C7—C80.2 (3)C14—C15—C16—C170.0 (3)
C1—N2—C8—C7178.2 (2)C10—N1—C17—C16178.4 (2)
C1—N2—C8—C30.1 (2)C9—N1—C17—C161.9 (3)
C6—C7—C8—N2179.7 (2)C10—N1—C17—C120.7 (2)
C6—C7—C8—C31.6 (3)C9—N1—C17—C12177.15 (18)
C4—C3—C8—N2179.48 (17)C15—C16—C17—N1178.80 (18)
C2—C3—C8—N20.3 (2)C15—C16—C17—C120.2 (3)
C4—C3—C8—C72.1 (3)C13—C12—C17—N1179.73 (16)
C2—C3—C8—C7178.18 (18)C11—C12—C17—N10.7 (2)
C10—N1—C9—C1105.6 (2)C13—C12—C17—C160.5 (3)
C17—N1—C9—C178.6 (3)C11—C12—C17—C16178.44 (17)
C2—C1—C9—N1118.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.88 (2)2.24 (3)3.037 (2)151 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H18N2O2
Mr306.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.4446 (5), 19.5625 (8), 8.6657 (5)
β (°) 98.903 (4)
V3)1581.78 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.92 × 0.20 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.575, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
9421, 2584, 2087
Rint0.041
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.06
No. of reflections2584
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.88 (2)2.24 (3)3.037 (2)151 (2)
Symmetry code: (i) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for supporting this study. HKF and SA thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA also thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award.

References

First citationAttia, M. I., Witt-Enderby, P. A. & Julius, J. (2008). Bioorg. Med. Chem. 16, 7654–7661.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlask, D. E., Sauer, L. A. & Dauchy, R. T. (2002). Curr. Top. Med. Chem. 2, 113–132.  CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCsernus, V. & Mess, B. (2003). Neuroendocrinol. Lett. 24, 404–411.  Web of Science PubMed CAS Google Scholar
First citationDeng, X., Wu, D., Huang, X. & Luo, F. (2011). Acta Cryst. E67, o1603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGenovese, T., Mazzon, E., Muia, C., Bramanti, P., De Sarro, A. & Cuzzocrea, S. (2005). J. Pineal Res. 38, 198–208.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMills, E., Wu, P., Seely, D. & Guyatt, G. (2005). J. Pineal Res. 39, 360–366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarayanan, P., Sethusankar, K., Ramachandiran, K. & Perumal, P. T. (2011). Acta Cryst. E67, o3196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNosjean, O., Ferro, M., Coge, F., Beauverger, P., Henlin, J.-M., Lefoulon, F., Fauchere, J. L., Delagrange, P., Canet, E. & Boutin, J. A. (2000). J. Biol. Chem. 275, 31311–31317.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeres, M. F. P. (2005). Cephalalgia, 5, 403–411.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSofic, E., Rimpapa, Z., Kundurovic, Z., Sapcanin, A., Tahirovic, I., Rustembegovic, A. & Cao, G. (2005). J. Neural Transm. 112, 349–358.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitt-Enderby, P. A., Radio, N. M., Doctor, J. S. & Davis, V. L. (2006). J. Pineal Res. 41, 297–305.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds