organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1031-o1032

6-(3,5-Di­methyl­benz­yl)-5-ethyl-1-[(2-phenyl­eth­­oxy)meth­yl]pyrimidine-2,4(1H,3H)dione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 29 February 2012; accepted 6 March 2012; online 10 March 2012)

In the title pyrimidine derivative, C24H28N2O3, the uracil unit is essentially planar with an r.m.s. deviation of 0.0054 (1) Å for the eight non-H atoms. The pyrimidine ring is tilted by a dihedral angle of 77.08 (7)° with respect to the aromatic ring of the 3,5-dimethyl­benzyl substituent, whereas it is nearly parallel to the benzene ring of the pheneth­oxy­methyl unit, with a dihedral angle of 8.17 (8)°. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by a pair of amide–uracil N—H⋯O hydrogen bonds into an inversion R22(8) dimer. These dimers are stacked along the b axis through ππ inter­actions with a centroid–centroid distance of 3.9517 (8) Å. Weak C—H⋯π inter­actions are also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to anti-viral HIV therapies, see: El-Brollosy et al. (2007[El-Brollosy, N. R., Al-Omar, M. A., Al-Deeb, O. A., El-Emam, A. A. & Nielsen, C. (2007). J. Chem. Res. pp. 263-267.], 2008[El-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9-19.], 2009[El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663-670.]); Hopkins et al. (1996[Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589-1600.], 1999[Hopkins, A. L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D. I. & Stammers, D. K. (1999). J. Med. Chem. 42, 4500-4505.]). For related structures, see: El-Brollosy et al. (2011[El-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2011). Acta Cryst. E67, o2839.], 2012[El-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2012). Acta Cryst. E68, o316.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28N2O3

  • Mr = 392.48

  • Triclinic, [P \overline 1]

  • a = 8.34310 (1) Å

  • b = 8.47760 (1) Å

  • c = 15.9821 (2) Å

  • α = 91.5660 (1)°

  • β = 91.7820 (1)°

  • γ = 109.8350 (1)°

  • V = 1061.97 (1) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 296 K

  • 0.58 × 0.40 × 0.31 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.705, Tmax = 0.824

  • 13575 measured reflections

  • 3863 independent reflections

  • 3542 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.05

  • 3863 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.889 (18) 1.969 (18) 2.8558 (15) 175.7 (17)
C14—H14B⋯O3 0.97 2.36 3.0349 (18) 126
C21—H21BCg3ii 0.96 2.90 3.845 (3) 170
C22—H22CCg3iii 0.96 2.92 3.861 (3) 166
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y, -z+1; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are very promising therapies in the treatment of human immunodeficiency virus (HIV) (Hopkins et al., 1996, 1999). In continuation to our interest in NNRTIs (El-Brollosy et al., 2007, 2008, 2009), and as part of on-going structural studies of pyrimidine derivatives (El-Brollosy et al., 2011), we synthesized the title compound (I) as a potential non-nucleoside reverse transcriptase inhibitor. It showed a good antiviral activity against HIV-1 (El-Brollosy et al., 2009). Herein, the crystal structure of (I) was reported.

In the title pyrimidine derivative, C24H28N2O3, the uracil unit is essentialy planar with an r.m.s. deviation of 0.0054 (1) Å for the eight non-H atoms (C1–C4/N1/N2/O1/O2). The 3,5-dimethylbenzyl unit is also planar with an r.m.s. deviation of 0.0049 (2) Å for the nine non-H atoms (C14–C22). The pyrimidine ring is tilted with the aromatic ring (C15–C20) of the 3,5-dimethylbenzyl substituent by a dihedral angle of 77.08 (7)°, whereas nearly parallel to the C8–C13 benzene ring of the phenylethoxymethyl unit with a dihedral angle of 8.17 (7)°. The dihedral angle between the two benzene rings (C8–C13 and C15–C20) is 82.14 (8)°. The orientation of the ethyl and phenethoxymethyl groups respected to the uracil can be indicated by the torsion angles C1–C2–C23–C24 = -85.87 (19)°, and C6–O3–C5–N1 = -67.31 (14)° and C5–O3–C6–C7 = 159.11 (12)°. Intramolecular weak C14—H14B···O3 interaction generates an S(6) ring motif (Fig. 1) (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structures (El-Brollosy et al., 2011, 2012).

In the crystal packing, (Fig. 2), the two molecules are linked by a pair of N2—H1N2···O1 hydrogen bonds (Table 1) into a centrosymmetric R22(8) dimer (Bernstein et al., 1995). These dimers are stacked along the b axis (Fig. 2) through ππ interactions with a Cg1···Cg2iv, v distance of 3.9517 (8) Å [symmetry codes: (iv) x, -1+y, z; (v) x, 1+y, z]. Weak C—H···π interactions (Table 1) are also present.

Related literature top

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background to anti-viral HIV therapies, see: El-Brollosy et al. (2007, 2008, 2009); Hopkins et al. (1996, 1999). For related structures, see: El-Brollosy et al. (2011, 2012).

Experimental top

5-Ethyl-6-(3,5-dimethylbenzyl)uracil (0.258 g, 1 mmol) was stirred in anhydrous CH3CN (15 ml) under nitrogen and N,O-bis(trimethylsilyl)acetamide (0.87 ml, 3.5 mol) was added. After a clear solution was obtained (10 min), the reaction mixture was cooled to 223 K and trimethylsilyl trifluoromethanesulphonate (0.18 ml, 1 mmol) was added followed by dropwise addition of bis-(2-phenylethyloxy)methane (0.512 g, 2 mmol). The mixture was stirred at room temperature for 4 hr. The reaction was quenched with saturated aqueous NaHCO3 solution (5 ml) and evaporated under reduced pressure. The residue was extracted with ether (3 × 50 ml), the combined organic fractions were collected, dried (MgSO4) and evaporated under reduced pressure. The residue was chromatographed on silica gel column with CHCl3 to afford a white solid, which was recrystallized from ethanol to obtain the title compound as colorless crystals. Yield: 201 mg (51 %), M.p.: 396–398 K.

Refinement top

The amide H atom was located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 for aromatic, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are very promising therapies in the treatment of human immunodeficiency virus (HIV) (Hopkins et al., 1996, 1999). In continuation to our interest in NNRTIs (El-Brollosy et al., 2007, 2008, 2009), and as part of on-going structural studies of pyrimidine derivatives (El-Brollosy et al., 2011), we synthesized the title compound (I) as a potential non-nucleoside reverse transcriptase inhibitor. It showed a good antiviral activity against HIV-1 (El-Brollosy et al., 2009). Herein, the crystal structure of (I) was reported.

In the title pyrimidine derivative, C24H28N2O3, the uracil unit is essentialy planar with an r.m.s. deviation of 0.0054 (1) Å for the eight non-H atoms (C1–C4/N1/N2/O1/O2). The 3,5-dimethylbenzyl unit is also planar with an r.m.s. deviation of 0.0049 (2) Å for the nine non-H atoms (C14–C22). The pyrimidine ring is tilted with the aromatic ring (C15–C20) of the 3,5-dimethylbenzyl substituent by a dihedral angle of 77.08 (7)°, whereas nearly parallel to the C8–C13 benzene ring of the phenylethoxymethyl unit with a dihedral angle of 8.17 (7)°. The dihedral angle between the two benzene rings (C8–C13 and C15–C20) is 82.14 (8)°. The orientation of the ethyl and phenethoxymethyl groups respected to the uracil can be indicated by the torsion angles C1–C2–C23–C24 = -85.87 (19)°, and C6–O3–C5–N1 = -67.31 (14)° and C5–O3–C6–C7 = 159.11 (12)°. Intramolecular weak C14—H14B···O3 interaction generates an S(6) ring motif (Fig. 1) (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structures (El-Brollosy et al., 2011, 2012).

In the crystal packing, (Fig. 2), the two molecules are linked by a pair of N2—H1N2···O1 hydrogen bonds (Table 1) into a centrosymmetric R22(8) dimer (Bernstein et al., 1995). These dimers are stacked along the b axis (Fig. 2) through ππ interactions with a Cg1···Cg2iv, v distance of 3.9517 (8) Å [symmetry codes: (iv) x, -1+y, z; (v) x, 1+y, z]. Weak C—H···π interactions (Table 1) are also present.

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background to anti-viral HIV therapies, see: El-Brollosy et al. (2007, 2008, 2009); Hopkins et al. (1996, 1999). For related structures, see: El-Brollosy et al. (2011, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Only the non-aromatic benzyl H and amide H atoms were shown for clarify.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound, viewed along the b axis. Only H atoms involving in intermolecular hydrogen bonds are drawn for clarify. N—H···O hydrogen bonds are shown as dashed lines.
6-(3,5-Dimethylbenzyl)-5-ethyl-1-[(2-phenylethoxy)methyl]pyrimidine- 2,4(1H,3H)dione top
Crystal data top
C24H28N2O3Z = 2
Mr = 392.48F(000) = 420
Triclinic, P1Dx = 1.227 Mg m3
Hall symbol: -P 1Melting point = 396–398 K
a = 8.34310 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.47760 (1) ÅCell parameters from 3863 reflections
c = 15.9821 (2) Åθ = 2.8–70.0°
α = 91.5660 (1)°µ = 0.65 mm1
β = 91.7820 (1)°T = 296 K
γ = 109.8350 (1)°Block, colorless
V = 1061.97 (1) Å30.58 × 0.40 × 0.31 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3863 independent reflections
Radiation source: sealed tube3542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 70.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.705, Tmax = 0.824k = 1010
13575 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.2589P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3863 reflectionsΔρmax = 0.27 e Å3
270 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0158 (11)
Crystal data top
C24H28N2O3γ = 109.8350 (1)°
Mr = 392.48V = 1061.97 (1) Å3
Triclinic, P1Z = 2
a = 8.34310 (1) ÅCu Kα radiation
b = 8.47760 (1) ŵ = 0.65 mm1
c = 15.9821 (2) ÅT = 296 K
α = 91.5660 (1)°0.58 × 0.40 × 0.31 mm
β = 91.7820 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3863 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3542 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.824Rint = 0.022
13575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
3863 reflectionsΔρmin = 0.18 e Å3
270 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.73374 (14)0.17782 (14)0.18049 (7)0.0389 (3)
N20.86631 (15)0.35816 (15)0.07678 (7)0.0416 (3)
H1N20.855 (2)0.413 (2)0.0316 (12)0.050 (4)*
O11.15299 (13)0.46537 (13)0.07074 (6)0.0516 (3)
O20.57921 (14)0.25880 (15)0.08011 (7)0.0586 (3)
O30.56324 (12)0.10907 (12)0.19600 (6)0.0465 (3)
C10.89379 (17)0.18893 (16)0.21512 (8)0.0372 (3)
C21.03943 (17)0.28209 (17)0.18009 (8)0.0398 (3)
C31.02860 (18)0.37579 (17)0.10647 (8)0.0400 (3)
C40.71675 (18)0.26506 (17)0.11021 (8)0.0408 (3)
C50.57628 (17)0.05835 (18)0.21083 (9)0.0439 (3)
H5A0.57180.07910.27060.053*
H5B0.47930.07710.18350.053*
C60.5432 (2)0.1640 (2)0.10923 (9)0.0496 (4)
H6A0.61370.07570.07550.060*
H6B0.42530.19180.08970.060*
C70.5968 (2)0.3174 (2)0.10163 (11)0.0545 (4)
H7A0.52230.40620.13370.065*
H7B0.58460.35670.04340.065*
C80.77867 (19)0.27984 (17)0.13271 (9)0.0457 (3)
C90.8179 (2)0.33678 (19)0.20831 (10)0.0511 (4)
H9A0.73020.40200.24020.061*
C100.9850 (2)0.2985 (2)0.23730 (11)0.0561 (4)
H10A1.00870.33800.28830.067*
C111.1160 (2)0.2024 (2)0.19109 (12)0.0579 (4)
H11A1.22850.17700.21050.070*
C121.0798 (2)0.1441 (2)0.11607 (12)0.0614 (4)
H12A1.16820.07820.08470.074*
C130.9130 (2)0.1827 (2)0.08704 (10)0.0545 (4)
H13A0.89010.14300.03600.065*
C140.89232 (19)0.09042 (18)0.29230 (8)0.0430 (3)
H14A1.00620.08710.30290.052*
H14B0.81700.02410.28060.052*
C150.83675 (18)0.15601 (18)0.37173 (8)0.0433 (3)
C160.8249 (2)0.31421 (19)0.38003 (9)0.0491 (4)
H16A0.85130.38510.33530.059*
C170.7738 (2)0.3697 (2)0.45442 (10)0.0573 (4)
C180.7354 (2)0.2618 (3)0.52015 (10)0.0642 (5)
H18A0.70110.29720.56990.077*
C190.7467 (2)0.1027 (2)0.51394 (9)0.0597 (4)
C200.7976 (2)0.0516 (2)0.43944 (9)0.0523 (4)
H20A0.80590.05490.43440.063*
C210.7013 (3)0.0151 (3)0.58581 (12)0.0859 (7)
H21A0.75850.09570.58080.129*
H21B0.58020.07240.58420.129*
H21C0.73640.04810.63800.129*
C220.7617 (3)0.5431 (3)0.46177 (14)0.0814 (6)
H22A0.67800.54390.50150.122*
H22B0.72870.57340.40810.122*
H22C0.87050.62220.48030.122*
C231.21678 (19)0.2957 (2)0.21143 (10)0.0509 (4)
H23A1.21360.18830.23220.061*
H23B1.29220.32050.16490.061*
C241.2888 (3)0.4295 (3)0.28019 (13)0.0758 (5)
H24A1.39940.42980.29890.114*
H24B1.21420.40650.32630.114*
H24C1.29870.53720.25910.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0382 (6)0.0428 (6)0.0351 (5)0.0130 (5)0.0022 (4)0.0040 (4)
N20.0461 (6)0.0448 (6)0.0340 (6)0.0152 (5)0.0002 (5)0.0083 (5)
O10.0464 (6)0.0569 (6)0.0462 (6)0.0096 (5)0.0055 (4)0.0146 (5)
O20.0461 (6)0.0739 (8)0.0567 (7)0.0212 (5)0.0057 (5)0.0165 (5)
O30.0450 (5)0.0460 (5)0.0447 (5)0.0105 (4)0.0018 (4)0.0049 (4)
C10.0413 (7)0.0390 (7)0.0321 (6)0.0148 (6)0.0005 (5)0.0003 (5)
C20.0419 (7)0.0420 (7)0.0349 (6)0.0133 (6)0.0006 (5)0.0021 (5)
C30.0442 (7)0.0393 (7)0.0346 (6)0.0120 (6)0.0025 (5)0.0006 (5)
C40.0435 (7)0.0438 (7)0.0364 (6)0.0165 (6)0.0012 (5)0.0019 (5)
C50.0387 (7)0.0503 (8)0.0418 (7)0.0135 (6)0.0060 (5)0.0033 (6)
C60.0455 (8)0.0550 (9)0.0478 (8)0.0177 (7)0.0073 (6)0.0035 (6)
C70.0501 (9)0.0463 (8)0.0630 (9)0.0129 (7)0.0099 (7)0.0063 (7)
C80.0472 (8)0.0377 (7)0.0527 (8)0.0161 (6)0.0016 (6)0.0064 (6)
C90.0487 (8)0.0435 (8)0.0588 (9)0.0122 (7)0.0035 (7)0.0046 (6)
C100.0566 (9)0.0526 (9)0.0604 (9)0.0208 (8)0.0064 (7)0.0038 (7)
C110.0437 (8)0.0571 (9)0.0740 (11)0.0190 (7)0.0016 (7)0.0018 (8)
C120.0506 (9)0.0626 (10)0.0719 (11)0.0190 (8)0.0167 (8)0.0082 (8)
C130.0589 (9)0.0562 (9)0.0520 (9)0.0240 (8)0.0054 (7)0.0045 (7)
C140.0465 (7)0.0439 (7)0.0388 (7)0.0153 (6)0.0008 (5)0.0076 (5)
C150.0442 (7)0.0470 (8)0.0339 (7)0.0093 (6)0.0027 (5)0.0054 (5)
C160.0574 (9)0.0488 (8)0.0370 (7)0.0127 (7)0.0015 (6)0.0039 (6)
C170.0604 (10)0.0636 (10)0.0446 (8)0.0177 (8)0.0007 (7)0.0067 (7)
C180.0635 (10)0.0863 (13)0.0354 (8)0.0165 (9)0.0033 (7)0.0063 (7)
C190.0591 (9)0.0743 (11)0.0346 (7)0.0082 (8)0.0019 (6)0.0100 (7)
C200.0575 (9)0.0543 (9)0.0394 (7)0.0113 (7)0.0019 (6)0.0115 (6)
C210.0950 (15)0.1073 (17)0.0425 (9)0.0158 (13)0.0066 (9)0.0258 (10)
C220.1037 (16)0.0772 (13)0.0676 (12)0.0374 (12)0.0066 (11)0.0150 (10)
C230.0451 (8)0.0563 (9)0.0510 (8)0.0163 (7)0.0024 (6)0.0109 (7)
C240.0590 (11)0.0903 (14)0.0677 (11)0.0142 (10)0.0150 (9)0.0076 (10)
Geometric parameters (Å, º) top
N1—C41.3913 (17)C12—C131.379 (2)
N1—C11.4014 (17)C12—H12A0.9300
N1—C51.4664 (17)C13—H13A0.9300
N2—C41.3643 (18)C14—C151.519 (2)
N2—C31.3783 (18)C14—H14A0.9700
N2—H1N20.887 (19)C14—H14B0.9700
O1—C31.2270 (17)C15—C161.381 (2)
O2—C41.2141 (17)C15—C201.3926 (19)
O3—C51.3992 (17)C16—C171.398 (2)
O3—C61.4372 (18)C16—H16A0.9300
C1—C21.3524 (19)C17—C181.385 (3)
C1—C141.5065 (17)C17—C221.509 (3)
C2—C31.4548 (18)C18—C191.385 (3)
C2—C231.5128 (19)C18—H18A0.9300
C5—H5A0.9700C19—C201.383 (2)
C5—H5B0.9700C19—C211.514 (2)
C6—C71.514 (2)C20—H20A0.9300
C6—H6A0.9700C21—H21A0.9600
C6—H6B0.9700C21—H21B0.9600
C7—C81.505 (2)C21—H21C0.9600
C7—H7A0.9700C22—H22A0.9600
C7—H7B0.9700C22—H22B0.9600
C8—C91.384 (2)C22—H22C0.9600
C8—C131.387 (2)C23—C241.511 (3)
C9—C101.381 (2)C23—H23A0.9700
C9—H9A0.9300C23—H23B0.9700
C10—C111.372 (2)C24—H24A0.9600
C10—H10A0.9300C24—H24B0.9600
C11—C121.373 (3)C24—H24C0.9600
C11—H11A0.9300
C4—N1—C1121.92 (11)C12—C13—C8121.12 (15)
C4—N1—C5116.53 (11)C12—C13—H13A119.4
C1—N1—C5121.18 (11)C8—C13—H13A119.4
C4—N2—C3126.71 (11)C1—C14—C15116.09 (11)
C4—N2—H1N2115.1 (11)C1—C14—H14A108.3
C3—N2—H1N2118.2 (11)C15—C14—H14A108.3
C5—O3—C6114.94 (11)C1—C14—H14B108.3
C2—C1—N1121.22 (12)C15—C14—H14B108.3
C2—C1—C14122.80 (12)H14A—C14—H14B107.4
N1—C1—C14115.98 (11)C16—C15—C20118.73 (14)
C1—C2—C3118.98 (12)C16—C15—C14123.13 (12)
C1—C2—C23124.62 (12)C20—C15—C14118.14 (13)
C3—C2—C23116.39 (12)C15—C16—C17121.23 (14)
O1—C3—N2120.07 (12)C15—C16—H16A119.4
O1—C3—C2123.99 (13)C17—C16—H16A119.4
N2—C3—C2115.93 (12)C18—C17—C16118.24 (16)
O2—C4—N2122.00 (12)C18—C17—C22121.61 (16)
O2—C4—N1122.80 (13)C16—C17—C22120.15 (16)
N2—C4—N1115.20 (11)C17—C18—C19121.94 (15)
O3—C5—N1112.94 (11)C17—C18—H18A119.0
O3—C5—H5A109.0C19—C18—H18A119.0
N1—C5—H5A109.0C20—C19—C18118.37 (15)
O3—C5—H5B109.0C20—C19—C21120.28 (18)
N1—C5—H5B109.0C18—C19—C21121.34 (17)
H5A—C5—H5B107.8C19—C20—C15121.50 (16)
O3—C6—C7107.77 (12)C19—C20—H20A119.3
O3—C6—H6A110.2C15—C20—H20A119.3
C7—C6—H6A110.2C19—C21—H21A109.5
O3—C6—H6B110.2C19—C21—H21B109.5
C7—C6—H6B110.2H21A—C21—H21B109.5
H6A—C6—H6B108.5C19—C21—H21C109.5
C8—C7—C6111.71 (12)H21A—C21—H21C109.5
C8—C7—H7A109.3H21B—C21—H21C109.5
C6—C7—H7A109.3C17—C22—H22A109.5
C8—C7—H7B109.3C17—C22—H22B109.5
C6—C7—H7B109.3H22A—C22—H22B109.5
H7A—C7—H7B107.9C17—C22—H22C109.5
C9—C8—C13117.69 (14)H22A—C22—H22C109.5
C9—C8—C7121.57 (14)H22B—C22—H22C109.5
C13—C8—C7120.71 (14)C24—C23—C2113.15 (14)
C10—C9—C8121.20 (15)C24—C23—H23A108.9
C10—C9—H9A119.4C2—C23—H23A108.9
C8—C9—H9A119.4C24—C23—H23B108.9
C11—C10—C9120.18 (15)C2—C23—H23B108.9
C11—C10—H10A119.9H23A—C23—H23B107.8
C9—C10—H10A119.9C23—C24—H24A109.5
C10—C11—C12119.56 (15)C23—C24—H24B109.5
C10—C11—H11A120.2H24A—C24—H24B109.5
C12—C11—H11A120.2C23—C24—H24C109.5
C11—C12—C13120.24 (16)H24A—C24—H24C109.5
C11—C12—H12A119.9H24B—C24—H24C109.5
C13—C12—H12A119.9
C4—N1—C1—C21.78 (19)C13—C8—C9—C100.1 (2)
C5—N1—C1—C2170.99 (12)C7—C8—C9—C10178.47 (14)
C4—N1—C1—C14178.71 (12)C8—C9—C10—C110.0 (2)
C5—N1—C1—C148.52 (17)C9—C10—C11—C120.3 (3)
N1—C1—C2—C31.72 (19)C10—C11—C12—C130.4 (3)
C14—C1—C2—C3178.80 (12)C11—C12—C13—C80.4 (3)
N1—C1—C2—C23177.60 (12)C9—C8—C13—C120.1 (2)
C14—C1—C2—C231.9 (2)C7—C8—C13—C12178.30 (14)
C4—N2—C3—O1179.20 (13)C2—C1—C14—C15109.79 (15)
C4—N2—C3—C21.31 (19)N1—C1—C14—C1570.71 (16)
C1—C2—C3—O1179.10 (13)C1—C14—C15—C1614.3 (2)
C23—C2—C3—O11.5 (2)C1—C14—C15—C20166.30 (13)
C1—C2—C3—N21.44 (18)C20—C15—C16—C170.3 (2)
C23—C2—C3—N2177.93 (12)C14—C15—C16—C17179.73 (14)
C3—N2—C4—O2179.05 (13)C15—C16—C17—C180.1 (3)
C3—N2—C4—N11.3 (2)C15—C16—C17—C22179.92 (16)
C1—N1—C4—O2178.91 (13)C16—C17—C18—C190.2 (3)
C5—N1—C4—O28.0 (2)C22—C17—C18—C19179.82 (18)
C1—N1—C4—N21.45 (18)C17—C18—C19—C200.2 (3)
C5—N1—C4—N2171.63 (11)C17—C18—C19—C21178.89 (18)
C6—O3—C5—N167.31 (14)C18—C19—C20—C150.1 (3)
C4—N1—C5—O3108.67 (13)C21—C19—C20—C15178.66 (16)
C1—N1—C5—O364.47 (16)C16—C15—C20—C190.3 (2)
C5—O3—C6—C7159.11 (12)C14—C15—C20—C19179.75 (14)
O3—C6—C7—C858.84 (17)C1—C2—C23—C2485.87 (19)
C6—C7—C8—C9106.27 (16)C3—C2—C23—C2494.80 (17)
C6—C7—C8—C1372.06 (19)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.889 (18)1.969 (18)2.8558 (15)175.7 (17)
C14—H14B···O30.972.363.0349 (18)126
C21—H21B···Cg3ii0.962.903.845 (3)170
C22—H22C···Cg3iii0.962.923.861 (3)166
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H28N2O3
Mr392.48
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.34310 (1), 8.47760 (1), 15.9821 (2)
α, β, γ (°)91.5660 (1), 91.7820 (1), 109.8350 (1)
V3)1061.97 (1)
Z2
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.58 × 0.40 × 0.31
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.705, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
13575, 3863, 3542
Rint0.022
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.05
No. of reflections3863
No. of parameters270
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.889 (18)1.969 (18)2.8558 (15)175.7 (17)
C14—H14B···O30.972.363.0349 (18)126
C21—H21B···Cg3ii0.962.903.845 (3)170
C22—H22C···Cg3iii0.962.923.861 (3)166
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, Riyadh, Saudia Arabia, is greatly appreciated. HKF and SC thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. HKF also thanks the King Saud University, Riyadh, Saudi Arabia, for the award of a visiting Professorship (December 23rd 2011 to January 14th 2012).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663–670.  CAS Google Scholar
First citationEl-Brollosy, N. R., Al-Omar, M. A., Al-Deeb, O. A., El-Emam, A. A. & Nielsen, C. (2007). J. Chem. Res. pp. 263–267.  Google Scholar
First citationEl-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2011). Acta Cryst. E67, o2839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2012). Acta Cryst. E68, o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9–19.  CAS Google Scholar
First citationHopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHopkins, A. L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D. I. & Stammers, D. K. (1999). J. Med. Chem. 42, 4500–4505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1031-o1032
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds