organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)imino­meth­yl]-2-meth­­oxy­phenyl 4-bromo­benzene­sulfonate

aCollege of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
*Correspondence e-mail: duan_zhongyu99@163.com

(Received 6 March 2012; accepted 7 March 2012; online 10 March 2012)

In the title compound, C25H22BrN3O5S, the central benzene ring makes dihedral angles of 4.41 (10), 67.09 (9) and 62.05 (10)°, respectively, with the pyrazolone, bromo­benzene and terminal phenyl rings. The dihedral angle between the pyrazolone and phenyl rings is 57.75 (11)°. In the crystal, two pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers. A weak intra­molecular C—H⋯O hydrogen bonds is also observed.

Related literature

For general background to the use of Schiff base derivatives in the development protein and enzyme mimics, see: Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For closely related crystal structures, see: Guo et al. (2010[Guo, M.-J., Chen, X. & Yao, J.-X. (2010). Acta Cryst. E66, o1360.]); Han et al. (2008[Han, J.-R., Tian, X., Zhen, X.-L., Li, Z.-C. & Liu, S.-X. (2008). Acta Cryst. E64, o2244.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22BrN3O5S

  • Mr = 556.43

  • Triclinic, [P \overline 1]

  • a = 7.271 (2) Å

  • b = 12.654 (4) Å

  • c = 13.645 (5) Å

  • α = 88.252 (15)°

  • β = 85.695 (14)°

  • γ = 73.623 (12)°

  • V = 1201.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 294 K

  • 0.25 × 0.20 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.628, Tmax = 0.787

  • 10073 measured reflections

  • 4225 independent reflections

  • 3239 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 0.95

  • 4225 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O5 0.93 2.32 3.020 (3) 132
C22—H22⋯O1i 0.93 2.51 3.394 (3) 158
C12—H12⋯O5i 0.93 2.52 3.212 (3) 131
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been steady growth of interest in the synthesis, structure, and reactivity of Schiff bases due to their potentially biological activities such as protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-5-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)methyl]-2-methoxyphenyl 4-bromobenzenesulfonate (Guo et al., 2010) and (E)-4-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)methyl]phenyl 4-bromobenzenesulfonate (Han et al., 2008) have been reported.

Structural information is useful when investigating the coordination properties of Schiff bases functioning as ligands. We report here the synthesis and molecular structure of the title Schiff base compound, (I), (Fig. 1)

In the title molecule (Fig. 1), bond lengths are within normal ranges (Allen et al., 1987). The pyrazolone ring (C15–C17/N1/N2) is almost planar with an r.m.s. deviation for fitted atoms of 0.058 (2) Å. It makes a dihedral angle of 57.75 (11)° with the attached phenyl ring (C20–C25). The central benzene ring (C7–C12) makes dihedral angles of 4.41 (10), 67.09 (9) and 62.05 (10)°, respectively, with the pyrazolone ring (C15–C17/N1/N2), the bromobenzene ring (C1–C6) and the terminal phenyl ring (C20—C25).

An intramolecular C13—H13···O5C16 hydrogen bond is found in (I) (Table 1), which helps to stabilize the conformation of the molecule. Packing is stabilized by weak, non-classical intermolecular C12—H12···O5C16 and C22—H22···O1S1 hydrogen bonds that form inversion related dimers (Table 1 and Fig. 2).

Related literature top

For general background to the use of Schiff base derivatives in the development protein and enzyme mimics, see: Santos et al. (2001). For closely related crystal structures, see: Guo et al. (2010); Han et al. (2008). For reference bond-length data, see: Allen et al. (1987).

Experimental top

An anhydrous ethanol solution (50 ml) of 4-formyl-2-methoxyphenyl 4-bromobenzenesulfonate (3.71 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture stirred at 350 K for 3 h under N2, giving a yellow precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give pure compound (I) in 83% yield. Yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H.

Structure description top

There has been steady growth of interest in the synthesis, structure, and reactivity of Schiff bases due to their potentially biological activities such as protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-5-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)methyl]-2-methoxyphenyl 4-bromobenzenesulfonate (Guo et al., 2010) and (E)-4-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)methyl]phenyl 4-bromobenzenesulfonate (Han et al., 2008) have been reported.

Structural information is useful when investigating the coordination properties of Schiff bases functioning as ligands. We report here the synthesis and molecular structure of the title Schiff base compound, (I), (Fig. 1)

In the title molecule (Fig. 1), bond lengths are within normal ranges (Allen et al., 1987). The pyrazolone ring (C15–C17/N1/N2) is almost planar with an r.m.s. deviation for fitted atoms of 0.058 (2) Å. It makes a dihedral angle of 57.75 (11)° with the attached phenyl ring (C20–C25). The central benzene ring (C7–C12) makes dihedral angles of 4.41 (10), 67.09 (9) and 62.05 (10)°, respectively, with the pyrazolone ring (C15–C17/N1/N2), the bromobenzene ring (C1–C6) and the terminal phenyl ring (C20—C25).

An intramolecular C13—H13···O5C16 hydrogen bond is found in (I) (Table 1), which helps to stabilize the conformation of the molecule. Packing is stabilized by weak, non-classical intermolecular C12—H12···O5C16 and C22—H22···O1S1 hydrogen bonds that form inversion related dimers (Table 1 and Fig. 2).

For general background to the use of Schiff base derivatives in the development protein and enzyme mimics, see: Santos et al. (2001). For closely related crystal structures, see: Guo et al. (2010); Han et al. (2008). For reference bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, with hydrogen bonds drawn as dashed lines.
(E)-4-[(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4- yl)iminomethyl]-2-methoxyphenyl 4-bromobenzenesulfonate top
Crystal data top
C25H22BrN3O5SZ = 2
Mr = 556.43F(000) = 568
Triclinic, P1Dx = 1.539 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.271 (2) ÅCell parameters from 4454 reflections
b = 12.654 (4) Åθ = 1.5–27.9°
c = 13.645 (5) ŵ = 1.84 mm1
α = 88.252 (15)°T = 294 K
β = 85.695 (14)°Block, yellow
γ = 73.623 (12)°0.25 × 0.20 × 0.13 mm
V = 1201.0 (7) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4225 independent reflections
Radiation source: fine-focus sealed tube3239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.628, Tmax = 0.787k = 1515
10073 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0229P)2]
where P = (Fo2 + 2Fc2)/3
4225 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C25H22BrN3O5Sγ = 73.623 (12)°
Mr = 556.43V = 1201.0 (7) Å3
Triclinic, P1Z = 2
a = 7.271 (2) ÅMo Kα radiation
b = 12.654 (4) ŵ = 1.84 mm1
c = 13.645 (5) ÅT = 294 K
α = 88.252 (15)°0.25 × 0.20 × 0.13 mm
β = 85.695 (14)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4225 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3239 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.787Rint = 0.034
10073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 0.95Δρmax = 0.26 e Å3
4225 reflectionsΔρmin = 0.40 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.01790 (3)0.265549 (18)0.722422 (16)0.02781 (8)
S10.77530 (8)0.26428 (4)0.45611 (4)0.01811 (13)
N10.4302 (2)0.65367 (13)0.05220 (11)0.0157 (4)
N20.2503 (2)0.88912 (13)0.10094 (12)0.0167 (4)
N30.4400 (2)0.85402 (13)0.14262 (12)0.0171 (4)
O10.9083 (2)0.16360 (12)0.48414 (10)0.0264 (4)
O20.8183 (2)0.36677 (11)0.46382 (10)0.0232 (4)
O30.7449 (2)0.24482 (10)0.34352 (9)0.0170 (3)
O40.3891 (2)0.37409 (11)0.33591 (10)0.0199 (3)
O50.7202 (2)0.72221 (11)0.10465 (10)0.0196 (3)
C10.4676 (3)0.36032 (16)0.57928 (14)0.0192 (5)
H10.51920.41970.58010.023*
C20.3033 (3)0.36003 (17)0.63858 (15)0.0217 (5)
H20.24430.41870.68000.026*
C30.2296 (3)0.27100 (17)0.63476 (14)0.0179 (5)
C40.3105 (3)0.18384 (16)0.57180 (14)0.0197 (5)
H40.25490.12630.56840.024*
C50.4742 (3)0.18364 (16)0.51432 (14)0.0180 (5)
H50.53180.12520.47240.022*
C60.5533 (3)0.27149 (16)0.51911 (13)0.0149 (5)
C70.7089 (3)0.33446 (15)0.27618 (13)0.0153 (5)
C80.5194 (3)0.40007 (16)0.27035 (14)0.0158 (5)
C90.4833 (3)0.48370 (15)0.20023 (14)0.0153 (5)
H90.35910.52930.19570.018*
C100.6326 (3)0.49966 (15)0.13639 (13)0.0151 (5)
C110.8185 (3)0.43252 (15)0.14330 (14)0.0169 (5)
H110.91760.44340.10070.020*
C120.8570 (3)0.34868 (16)0.21394 (14)0.0155 (5)
H120.98120.30320.21870.019*
C130.5975 (3)0.58684 (16)0.06028 (14)0.0171 (5)
H130.69910.59350.01720.021*
C140.1955 (3)0.44338 (17)0.33966 (16)0.0255 (5)
H14A0.19300.51620.35860.038*
H14B0.11770.41410.38680.038*
H14C0.14610.44630.27600.038*
C150.4041 (3)0.73576 (16)0.02068 (14)0.0147 (5)
C160.5449 (3)0.76256 (15)0.09004 (14)0.0155 (5)
C170.2292 (3)0.80994 (16)0.03330 (13)0.0157 (5)
C180.0376 (3)0.81078 (17)0.01264 (15)0.0215 (5)
H18A0.03590.78980.03500.032*
H18B0.02810.88340.03590.032*
H18C0.05280.75960.06690.032*
C190.1022 (3)0.94218 (16)0.16870 (14)0.0205 (5)
H19A0.10550.89280.22130.031*
H19B0.12651.00850.19520.031*
H19C0.02210.95980.13380.031*
C200.5247 (3)0.93260 (16)0.19093 (14)0.0158 (5)
C210.6437 (3)0.89948 (16)0.27480 (14)0.0185 (5)
H210.66400.82910.29940.022*
C220.7329 (3)0.97310 (17)0.32194 (15)0.0224 (5)
H220.81450.95160.37800.027*
C230.7003 (3)1.07778 (17)0.28548 (15)0.0237 (5)
H230.75971.12670.31730.028*
C240.5799 (3)1.11040 (17)0.20180 (16)0.0250 (5)
H240.55801.18120.17790.030*
C250.4917 (3)1.03730 (16)0.15343 (15)0.0213 (5)
H250.41181.05840.09680.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02550 (15)0.03136 (14)0.02661 (14)0.01081 (11)0.00783 (10)0.00295 (10)
S10.0170 (3)0.0235 (3)0.0133 (3)0.0052 (3)0.0002 (2)0.0012 (2)
N10.0179 (11)0.0164 (9)0.0142 (9)0.0067 (8)0.0029 (8)0.0001 (7)
N20.0134 (10)0.0186 (9)0.0175 (9)0.0038 (8)0.0007 (8)0.0001 (7)
N30.0138 (10)0.0156 (9)0.0207 (9)0.0029 (8)0.0010 (8)0.0033 (7)
O10.0178 (9)0.0331 (9)0.0210 (8)0.0042 (8)0.0011 (7)0.0077 (7)
O20.0263 (9)0.0306 (9)0.0179 (8)0.0170 (7)0.0012 (7)0.0030 (7)
O30.0241 (9)0.0141 (7)0.0113 (7)0.0032 (7)0.0004 (6)0.0013 (6)
O40.0146 (8)0.0236 (8)0.0197 (8)0.0038 (7)0.0027 (6)0.0060 (6)
O50.0126 (9)0.0197 (8)0.0254 (8)0.0033 (7)0.0017 (7)0.0050 (6)
C10.0214 (13)0.0184 (11)0.0202 (11)0.0095 (10)0.0006 (10)0.0022 (9)
C20.0236 (14)0.0204 (12)0.0199 (11)0.0049 (11)0.0036 (10)0.0058 (9)
C30.0157 (12)0.0235 (12)0.0139 (11)0.0055 (10)0.0005 (9)0.0054 (9)
C40.0235 (13)0.0158 (11)0.0220 (12)0.0082 (10)0.0038 (10)0.0004 (9)
C50.0204 (13)0.0163 (11)0.0170 (11)0.0041 (10)0.0016 (9)0.0028 (9)
C60.0144 (12)0.0184 (11)0.0110 (10)0.0033 (9)0.0013 (9)0.0024 (8)
C70.0214 (13)0.0127 (10)0.0115 (11)0.0042 (10)0.0024 (9)0.0008 (8)
C80.0172 (13)0.0179 (11)0.0136 (11)0.0074 (10)0.0012 (9)0.0031 (9)
C90.0154 (12)0.0151 (11)0.0145 (10)0.0018 (9)0.0027 (9)0.0024 (8)
C100.0191 (13)0.0143 (11)0.0130 (11)0.0064 (10)0.0017 (9)0.0028 (8)
C110.0180 (13)0.0201 (11)0.0144 (11)0.0092 (10)0.0030 (9)0.0021 (9)
C120.0141 (12)0.0152 (11)0.0154 (11)0.0007 (9)0.0013 (9)0.0043 (9)
C130.0218 (13)0.0178 (11)0.0145 (11)0.0103 (10)0.0002 (9)0.0015 (9)
C140.0161 (13)0.0300 (13)0.0303 (13)0.0078 (11)0.0033 (10)0.0007 (10)
C150.0159 (12)0.0142 (10)0.0145 (11)0.0052 (9)0.0003 (9)0.0023 (8)
C160.0196 (13)0.0132 (11)0.0147 (11)0.0054 (10)0.0051 (9)0.0002 (8)
C170.0192 (13)0.0181 (11)0.0106 (10)0.0068 (10)0.0001 (9)0.0036 (9)
C180.0190 (13)0.0255 (12)0.0190 (11)0.0056 (10)0.0028 (10)0.0023 (9)
C190.0191 (13)0.0190 (11)0.0208 (12)0.0006 (10)0.0032 (10)0.0018 (9)
C200.0152 (12)0.0157 (11)0.0173 (11)0.0051 (9)0.0046 (9)0.0045 (9)
C210.0196 (13)0.0156 (11)0.0190 (11)0.0021 (10)0.0039 (10)0.0005 (9)
C220.0187 (13)0.0296 (13)0.0184 (12)0.0067 (11)0.0023 (10)0.0068 (10)
C230.0235 (14)0.0255 (13)0.0267 (13)0.0133 (11)0.0113 (11)0.0117 (10)
C240.0335 (15)0.0163 (12)0.0276 (13)0.0084 (11)0.0120 (11)0.0019 (10)
C250.0247 (14)0.0195 (12)0.0183 (11)0.0033 (10)0.0043 (10)0.0007 (9)
Geometric parameters (Å, º) top
Br1—C31.893 (2)C9—H90.9300
S1—O21.4255 (15)C10—C111.387 (3)
S1—O11.4266 (14)C10—C131.474 (3)
S1—O31.6045 (15)C11—C121.394 (3)
S1—C61.751 (2)C11—H110.9300
N1—C131.282 (2)C12—H120.9300
N1—C151.399 (2)C13—H130.9300
N2—C171.374 (2)C14—H14A0.9600
N2—N31.406 (2)C14—H14B0.9600
N2—C191.473 (2)C14—H14C0.9600
N3—C161.403 (2)C15—C171.370 (3)
N3—C201.431 (2)C15—C161.446 (3)
O3—C71.416 (2)C17—C181.481 (3)
O4—C81.355 (2)C18—H18A0.9600
O4—C141.431 (2)C18—H18B0.9600
O5—C161.235 (2)C18—H18C0.9600
C1—C61.382 (3)C19—H19A0.9600
C1—C21.393 (3)C19—H19B0.9600
C1—H10.9300C19—H19C0.9600
C2—C31.381 (3)C20—C211.382 (3)
C2—H20.9300C20—C251.385 (3)
C3—C41.384 (3)C21—C221.394 (3)
C4—C51.375 (3)C21—H210.9300
C4—H40.9300C22—C231.380 (3)
C5—C61.394 (3)C22—H220.9300
C5—H50.9300C23—C241.384 (3)
C7—C121.369 (3)C23—H230.9300
C7—C81.401 (3)C24—C251.392 (3)
C8—C91.387 (3)C24—H240.9300
C9—C101.396 (3)C25—H250.9300
O2—S1—O1120.80 (10)C11—C12—H12120.5
O2—S1—O3109.18 (8)N1—C13—C10121.44 (19)
O1—S1—O3103.54 (8)N1—C13—H13119.3
O2—S1—C6109.56 (9)C10—C13—H13119.3
O1—S1—C6107.69 (9)O4—C14—H14A109.5
O3—S1—C6104.84 (9)O4—C14—H14B109.5
C13—N1—C15119.41 (18)H14A—C14—H14B109.5
C17—N2—N3106.70 (15)O4—C14—H14C109.5
C17—N2—C19123.01 (18)H14A—C14—H14C109.5
N3—N2—C19116.10 (15)H14B—C14—H14C109.5
C16—N3—N2109.69 (16)C17—C15—N1122.44 (19)
C16—N3—C20123.24 (17)C17—C15—C16108.33 (17)
N2—N3—C20119.48 (16)N1—C15—C16129.17 (18)
C7—O3—S1120.03 (12)O5—C16—N3123.13 (18)
C8—O4—C14118.06 (15)O5—C16—C15132.29 (18)
C6—C1—C2119.3 (2)N3—C16—C15104.55 (17)
C6—C1—H1120.3C15—C17—N2109.88 (19)
C2—C1—H1120.3C15—C17—C18128.98 (19)
C3—C2—C1118.8 (2)N2—C17—C18121.13 (18)
C3—C2—H2120.6C17—C18—H18A109.5
C1—C2—H2120.6C17—C18—H18B109.5
C2—C3—C4122.1 (2)H18A—C18—H18B109.5
C2—C3—Br1118.73 (16)C17—C18—H18C109.5
C4—C3—Br1119.14 (16)H18A—C18—H18C109.5
C5—C4—C3118.9 (2)H18B—C18—H18C109.5
C5—C4—H4120.5N2—C19—H19A109.5
C3—C4—H4120.5N2—C19—H19B109.5
C4—C5—C6119.7 (2)H19A—C19—H19B109.5
C4—C5—H5120.2N2—C19—H19C109.5
C6—C5—H5120.2H19A—C19—H19C109.5
C1—C6—C5121.1 (2)H19B—C19—H19C109.5
C1—C6—S1119.14 (16)C21—C20—C25121.3 (2)
C5—C6—S1119.56 (16)C21—C20—N3117.67 (18)
C12—C7—C8122.31 (17)C25—C20—N3120.96 (19)
C12—C7—O3119.05 (17)C20—C21—C22119.0 (2)
C8—C7—O3118.43 (18)C20—C21—H21120.5
O4—C8—C9126.79 (18)C22—C21—H21120.5
O4—C8—C7115.05 (16)C23—C22—C21120.1 (2)
C9—C8—C7118.16 (19)C23—C22—H22120.0
C8—C9—C10120.31 (19)C21—C22—H22120.0
C8—C9—H9119.8C22—C23—C24120.4 (2)
C10—C9—H9119.8C22—C23—H23119.8
C11—C10—C9120.14 (18)C24—C23—H23119.8
C11—C10—C13118.52 (19)C23—C24—C25120.0 (2)
C9—C10—C13121.34 (18)C23—C24—H24120.0
C10—C11—C12120.16 (19)C25—C24—H24120.0
C10—C11—H11119.9C20—C25—C24119.0 (2)
C12—C11—H11119.9C20—C25—H25120.5
C7—C12—C11118.90 (19)C24—C25—H25120.5
C7—C12—H12120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O50.932.323.020 (3)132
C22—H22···O1i0.932.513.394 (3)158
C12—H12···O5i0.932.523.212 (3)131
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H22BrN3O5S
Mr556.43
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.271 (2), 12.654 (4), 13.645 (5)
α, β, γ (°)88.252 (15), 85.695 (14), 73.623 (12)
V3)1201.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.25 × 0.20 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.628, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
10073, 4225, 3239
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 0.95
No. of reflections4225
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.40

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O50.932.323.020 (3)132
C22—H22···O1i0.932.513.394 (3)158
C12—H12···O5i0.932.523.212 (3)131
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The project was supported by the Hebei Provincial Natural Science Foundation of China (project grant No. B2010000039).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, M.-J., Chen, X. & Yao, J.-X. (2010). Acta Cryst. E66, o1360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, J.-R., Tian, X., Zhen, X.-L., Li, Z.-C. & Liu, S.-X. (2008). Acta Cryst. E64, o2244.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds