organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-p-Tolyl-2-(p-tolyl­imino)-1,3-thia­zolidin-4-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 March 2012; accepted 16 March 2012; online 24 March 2012)

In the title compound, C17H16N2OS, the central thia­zolidin-4-one ring forms dihedral angles of 66.49 (9) and 79.45 (6)° with the two methyl-substituted benzene rings. In the crystal, mol­ecules are stacked in columns along the b axis through C—H⋯π inter­actions. The H atoms of one of the methyl groups are disordered over two orientations with equal site occupancies.

Related literature

For the chemistry of thia­zolidin-4-one and its experimental preparation, see: Abdel-Aziz et al. (2010[Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427-2432.]). For a related structure, see: Zeller et al. (2011[Zeller, M., Satam, V., Bandi, R. K., Behera, A. K., Mishra, B. K., Pati, H. & Lee, M. (2011). Acta Cryst. E67, o1781-o1782.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2OS

  • Mr = 296.38

  • Monoclinic, P 21 /c

  • a = 14.1321 (4) Å

  • b = 5.8524 (2) Å

  • c = 19.0076 (6) Å

  • β = 100.307 (2)°

  • V = 1546.69 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.85 mm−1

  • T = 296 K

  • 0.98 × 0.21 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.264, Tmax = 0.897

  • 10830 measured reflections

  • 2849 independent reflections

  • 2293 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.135

  • S = 1.07

  • 2849 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1/N2/C1–C3 and C4–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg1i 0.93 3.00 3.788 (2) 144
C9—H9ACg2ii 0.93 2.87 3.607 (2) 138
Symmetry codes: (i) x, y-1, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1. The mean planes of the two methyl-substituted benzene rings (C4–C9 & C10–C15) make dihedral angles of 66.49 (9) and 79.45 (6)°, respectively, with the mean plane of the central thiazolidin-4-one ring [S1/N2/C1–C3/O1; maximum deviation = 0.0075 (12) Å at atom C3]. In the molecule, the hydrogen atoms which are attached to atom C17 are disordered over two positions, with equal site-occupancies. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Zeller et al., 2011).

In the crystal structure, no significant intermolecular hydrogen bonds are observed. The crystal structure is stabilized by C—H···π interactions (Table 1), involving Cg1 and Cg2 which are the centroids of S1/N2/C1–C3 and C4–C9 rings, respectively.

Related literature top

For the chemistry of thiazolidin-4-one and its experimental preparation, see: Abdel-Aziz et al. (2010). For a related structure, see: Zeller et al. (2011). For reference bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to the reported method by Abdel-Aziz et al. (2010). Crystals of the title compound were obtained by slow evaporation from an ethanol solution at room temperature.

Refinement top

The methyl group with atom C17 was found to be disordered over two orientations and the H atoms were located in a difference Fourier map. The site-occupancy ratio was refined to 0.52 (3):0.48 (3) in the refinement using C—H bond distance restraints. In the final refinement, the occupancies were fixed at 0.5 and the H atoms were treated as riding (C—H = 0.96 Å), with Uiso(H) = 1.5Ueq(C). A rotating group model was used for each of the disordered components. All other H atoms were positioned geometrically (C—H = 0.93, 0.96 or 0.97 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was also applied to the other methyl group.

Structure description top

The molecular structure of the title compound is shown in Fig. 1. The mean planes of the two methyl-substituted benzene rings (C4–C9 & C10–C15) make dihedral angles of 66.49 (9) and 79.45 (6)°, respectively, with the mean plane of the central thiazolidin-4-one ring [S1/N2/C1–C3/O1; maximum deviation = 0.0075 (12) Å at atom C3]. In the molecule, the hydrogen atoms which are attached to atom C17 are disordered over two positions, with equal site-occupancies. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Zeller et al., 2011).

In the crystal structure, no significant intermolecular hydrogen bonds are observed. The crystal structure is stabilized by C—H···π interactions (Table 1), involving Cg1 and Cg2 which are the centroids of S1/N2/C1–C3 and C4–C9 rings, respectively.

For the chemistry of thiazolidin-4-one and its experimental preparation, see: Abdel-Aziz et al. (2010). For a related structure, see: Zeller et al. (2011). For reference bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.
(Z)-3-p-Tolyl-2-(p-tolylimino)-1,3-thiazolidin-4-one top
Crystal data top
C17H16N2OSF(000) = 624
Mr = 296.38Dx = 1.273 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1135 reflections
a = 14.1321 (4) Åθ = 4.7–69.2°
b = 5.8524 (2) ŵ = 1.85 mm1
c = 19.0076 (6) ÅT = 296 K
β = 100.307 (2)°Needle, colourless
V = 1546.69 (8) Å30.98 × 0.21 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2849 independent reflections
Radiation source: fine-focus sealed tube2293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 69.8°, θmin = 4.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1617
Tmin = 0.264, Tmax = 0.897k = 56
10830 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.2896P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2849 reflectionsΔρmax = 0.35 e Å3
194 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0124 (10)
Crystal data top
C17H16N2OSV = 1546.69 (8) Å3
Mr = 296.38Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.1321 (4) ŵ = 1.85 mm1
b = 5.8524 (2) ÅT = 296 K
c = 19.0076 (6) Å0.98 × 0.21 × 0.06 mm
β = 100.307 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2849 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2293 reflections with I > 2σ(I)
Tmin = 0.264, Tmax = 0.897Rint = 0.041
10830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
2849 reflectionsΔρmin = 0.35 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.86258 (4)0.00010 (12)0.47164 (3)0.0765 (3)
N10.84789 (10)0.0771 (3)0.32906 (8)0.0522 (4)
N20.73053 (10)0.1441 (3)0.36745 (8)0.0523 (4)
O10.63384 (14)0.3619 (4)0.42357 (10)0.1118 (8)
C10.7698 (2)0.1807 (7)0.49367 (13)0.1031 (11)
H1A0.73490.10190.52600.124*
H1B0.79770.31850.51710.124*
C20.70278 (16)0.2406 (5)0.42561 (12)0.0757 (7)
C30.81438 (12)0.0103 (3)0.37930 (10)0.0496 (4)
C40.93412 (12)0.2091 (3)0.34399 (9)0.0479 (4)
C50.93843 (14)0.4167 (3)0.37968 (12)0.0584 (5)
H5A0.88570.46780.39830.070*
C61.02137 (14)0.5478 (3)0.38750 (12)0.0591 (5)
H6A1.02360.68640.41170.071*
C71.10064 (13)0.4772 (3)0.36010 (11)0.0515 (5)
C81.09587 (13)0.2684 (3)0.32587 (10)0.0530 (4)
H8A1.14920.21550.30830.064*
C91.01362 (13)0.1362 (3)0.31707 (10)0.0514 (4)
H9A1.01170.00250.29290.062*
C100.67884 (12)0.1860 (3)0.29574 (10)0.0475 (4)
C110.61531 (13)0.0238 (3)0.26253 (11)0.0535 (5)
H11A0.60640.11240.28570.064*
C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)
H12A0.52220.04340.17210.070*
C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)
C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)
H14A0.64950.56440.17140.071*
C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)
H15A0.73380.49860.28510.068*
C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)
H16A0.45670.26390.08160.126*
H16B0.55120.22840.05060.126*
H16C0.52390.47250.07440.126*
C171.18878 (15)0.6264 (4)0.36447 (13)0.0688 (6)
H17A1.24420.54490.38850.103*0.50
H17B1.19770.66590.31710.103*0.50
H17C1.18040.76310.39060.103*0.50
H17D1.22560.62030.41200.103*0.50
H17E1.22730.57240.33110.103*0.50
H17F1.16940.78110.35300.103*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0617 (4)0.1143 (5)0.0480 (4)0.0285 (3)0.0047 (2)0.0048 (3)
N10.0461 (8)0.0559 (9)0.0516 (9)0.0101 (7)0.0007 (6)0.0030 (7)
N20.0441 (8)0.0635 (10)0.0461 (8)0.0110 (7)0.0010 (6)0.0011 (7)
O10.0957 (13)0.165 (2)0.0691 (11)0.0751 (14)0.0007 (9)0.0207 (12)
C10.0900 (18)0.159 (3)0.0529 (13)0.0537 (19)0.0063 (12)0.0151 (16)
C20.0616 (12)0.1040 (18)0.0575 (12)0.0279 (13)0.0003 (10)0.0105 (12)
C30.0412 (9)0.0541 (10)0.0502 (10)0.0044 (7)0.0009 (8)0.0044 (8)
C40.0464 (9)0.0470 (9)0.0472 (9)0.0061 (7)0.0003 (7)0.0010 (7)
C50.0487 (10)0.0565 (11)0.0701 (13)0.0018 (8)0.0110 (9)0.0098 (9)
C60.0561 (11)0.0474 (11)0.0718 (13)0.0066 (8)0.0062 (9)0.0119 (9)
C70.0491 (10)0.0494 (10)0.0530 (10)0.0064 (7)0.0013 (8)0.0053 (8)
C80.0492 (9)0.0546 (11)0.0550 (10)0.0001 (8)0.0092 (8)0.0027 (8)
C90.0559 (10)0.0455 (10)0.0516 (10)0.0038 (8)0.0061 (8)0.0039 (7)
C100.0377 (8)0.0539 (10)0.0477 (9)0.0077 (7)0.0010 (7)0.0008 (7)
C110.0495 (10)0.0507 (10)0.0573 (11)0.0010 (7)0.0017 (8)0.0047 (8)
C120.0487 (10)0.0642 (12)0.0575 (11)0.0066 (8)0.0030 (8)0.0023 (9)
C130.0456 (9)0.0677 (12)0.0524 (11)0.0038 (8)0.0017 (8)0.0036 (9)
C140.0572 (11)0.0557 (11)0.0625 (12)0.0008 (9)0.0053 (9)0.0117 (9)
C150.0492 (10)0.0516 (11)0.0639 (12)0.0032 (8)0.0011 (8)0.0037 (9)
C160.0790 (15)0.108 (2)0.0574 (13)0.0013 (14)0.0077 (11)0.0135 (13)
C170.0595 (11)0.0652 (13)0.0810 (15)0.0165 (10)0.0111 (10)0.0006 (11)
Geometric parameters (Å, º) top
S1—C31.7664 (19)C9—H9A0.9300
S1—C11.792 (3)C10—C151.374 (3)
N1—C31.249 (2)C10—C111.379 (3)
N1—C41.428 (2)C11—C121.381 (3)
N2—C21.360 (3)C11—H11A0.9300
N2—C31.405 (2)C12—C131.383 (3)
N2—C101.448 (2)C12—H12A0.9300
O1—C21.200 (3)C13—C141.385 (3)
C1—C21.502 (3)C13—C161.511 (3)
C1—H1A0.9700C14—C151.381 (3)
C1—H1B0.9700C14—H14A0.9300
C4—C91.383 (3)C15—H15A0.9300
C4—C51.387 (3)C16—H16A0.9600
C5—C61.387 (3)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C6—C71.381 (3)C17—H17A0.9600
C6—H6A0.9300C17—H17B0.9600
C7—C81.380 (3)C17—H17C0.9600
C7—C171.511 (3)C17—H17D0.9600
C8—C91.381 (3)C17—H17E0.9600
C8—H8A0.9300C17—H17F0.9600
C3—S1—C192.50 (10)C4—C9—H9A119.9
C3—N1—C4119.78 (15)C15—C10—C11120.72 (17)
C2—N2—C3117.32 (15)C15—C10—N2119.79 (16)
C2—N2—C10121.64 (15)C11—C10—N2119.46 (17)
C3—N2—C10120.97 (15)C10—C11—C12119.31 (18)
C2—C1—S1108.16 (17)C10—C11—H11A120.3
C2—C1—H1A110.1C12—C11—H11A120.3
S1—C1—H1A110.1C11—C12—C13121.27 (18)
C2—C1—H1B110.1C11—C12—H12A119.4
S1—C1—H1B110.1C13—C12—H12A119.4
H1A—C1—H1B108.4C12—C13—C14118.00 (17)
O1—C2—N2124.7 (2)C12—C13—C16121.1 (2)
O1—C2—C1123.3 (2)C14—C13—C16120.9 (2)
N2—C2—C1111.96 (18)C15—C14—C13121.58 (19)
N1—C3—N2122.02 (16)C15—C14—H14A119.2
N1—C3—S1127.89 (14)C13—C14—H14A119.2
N2—C3—S1110.05 (13)C10—C15—C14119.10 (17)
C9—C4—C5118.94 (17)C10—C15—H15A120.4
C9—C4—N1118.71 (16)C14—C15—H15A120.4
C5—C4—N1122.16 (17)C13—C16—H16A109.5
C6—C5—C4119.96 (19)C13—C16—H16B109.5
C6—C5—H5A120.0H16A—C16—H16B109.5
C4—C5—H5A120.0C13—C16—H16C109.5
C7—C6—C5121.40 (18)H16A—C16—H16C109.5
C7—C6—H6A119.3H16B—C16—H16C109.5
C5—C6—H6A119.3C7—C17—H17A109.5
C8—C7—C6117.93 (17)C7—C17—H17B109.5
C8—C7—C17120.51 (19)C7—C17—H17C109.5
C6—C7—C17121.51 (19)C7—C17—H17D109.5
C7—C8—C9121.47 (18)C7—C17—H17E109.5
C7—C8—H8A119.3H17D—C17—H17E109.5
C9—C8—H8A119.3C7—C17—H17F109.5
C8—C9—C4120.27 (18)H17D—C17—H17F109.5
C8—C9—H9A119.9H17E—C17—H17F109.5
C3—S1—C1—C20.6 (3)C5—C6—C7—C17176.1 (2)
C3—N2—C2—O1178.7 (3)C6—C7—C8—C92.0 (3)
C10—N2—C2—O11.7 (4)C17—C7—C8—C9175.62 (19)
C3—N2—C2—C10.4 (3)C7—C8—C9—C41.3 (3)
C10—N2—C2—C1177.4 (2)C5—C4—C9—C80.1 (3)
S1—C1—C2—O1179.3 (3)N1—C4—C9—C8175.14 (17)
S1—C1—C2—N20.2 (4)C2—N2—C10—C1577.3 (3)
C4—N1—C3—N2179.14 (16)C3—N2—C10—C1599.6 (2)
C4—N1—C3—S11.9 (3)C2—N2—C10—C11101.0 (2)
C2—N2—C3—N1176.8 (2)C3—N2—C10—C1182.1 (2)
C10—N2—C3—N10.2 (3)C15—C10—C11—C120.7 (3)
C2—N2—C3—S10.9 (2)N2—C10—C11—C12179.01 (17)
C10—N2—C3—S1177.91 (14)C10—C11—C12—C130.0 (3)
C1—S1—C3—N1176.7 (2)C11—C12—C13—C140.5 (3)
C1—S1—C3—N20.82 (19)C11—C12—C13—C16179.7 (2)
C3—N1—C4—C9118.4 (2)C12—C13—C14—C150.4 (3)
C3—N1—C4—C566.7 (3)C16—C13—C14—C15179.9 (2)
C9—C4—C5—C60.4 (3)C11—C10—C15—C140.9 (3)
N1—C4—C5—C6174.46 (19)N2—C10—C15—C14179.14 (17)
C4—C5—C6—C70.3 (3)C13—C14—C15—C100.3 (3)
C5—C6—C7—C81.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1/N2/C1–C3 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg1i0.933.003.788 (2)144
C9—H9A···Cg2ii0.932.873.607 (2)138
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H16N2OS
Mr296.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.1321 (4), 5.8524 (2), 19.0076 (6)
β (°) 100.307 (2)
V3)1546.69 (8)
Z4
Radiation typeCu Kα
µ (mm1)1.85
Crystal size (mm)0.98 × 0.21 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.264, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
10830, 2849, 2293
Rint0.041
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 1.07
No. of reflections2849
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1/N2/C1–C3 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg1i0.933.003.788 (2)144
C9—H9A···Cg2ii0.932.873.607 (2)138
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HAAA and HAG thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAbdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427–2432.  Web of Science CAS PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeller, M., Satam, V., Bandi, R. K., Behera, A. K., Mishra, B. K., Pati, H. & Lee, M. (2011). Acta Cryst. E67, o1781–o1782.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds