organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1095-o1096

3-Acetyl-1,5-di­phenyl-1H-pyrazole-4-carbo­nitrile

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 March 2012; accepted 13 March 2012; online 17 March 2012)

The title compound, C18H13N3O, has a butterfly-like structure, in which the pyrazole ring forms dihedral angles of 59.31 (8) and 57.24 (8)° with the two phenyl rings. The dihedral angle between the two phenyl rings is 64.03 (8)°. The pyrazole ring and the C—C=O plane of the acetyl group are twisted slightly, making a dihedral angle of 7.95 (18)°. In the crystal, mol­ecules are linked through weak C—H⋯N and C—H⋯O inter­actions into a helical chain along the a-axis direction.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to and the bioactivity of pyrazole derivatives, see: Abdel-Aziz et al. (2009[Abdel-Aziz, H. A., Gamal-Eldeen, A. M., Hamdy, N. A. & Fakhr, I. M. I. (2009). Arch. Pharm. 342, 230-237.], 2010[Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427-2432.]); Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601-605.]); Bharate et al. (2008[Bharate, S. B., Mahajan, T. R., Gole, Y. R., Nambiar, M., Matan, T. T., Kulkarni-Almeida, A., Balachandran, S., Junjappa, H., Balakrishnan, A. & Vishwakarma, R. A. (2008). Bioorg. Med. Chem. 16, 7167-7176.]); Dawood et al. (2003[Dawood, K. M., Ragab, E. A. & Farag, A. M. (2003). J. Chem. Res. (S), 11, 685-686.]); Fu et al. (2010[Fu, R.-G., You, Q.-D., Yang, L., Wu, W.-T., Jiang, C. & Xu, X.-L. (2010). Bioorg. Med. Chem. 18, 8035-8043.]); Thumar & Patel (2011[Thumar, N. J. & Patel, M. P. (2011). Saudi Pharm. J. 19, 75-83.]). For a related structure, see: Abdel-Aziz et al. (2011[Abdel-Aziz, H. A., Al-Rashood, K. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2623-o2624.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N3O

  • Mr = 287.31

  • Orthorhombic, P b c a

  • a = 6.8322 (2) Å

  • b = 16.8974 (5) Å

  • c = 25.7968 (6) Å

  • V = 2978.15 (14) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 296 K

  • 0.56 × 0.35 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 0.863

  • 10678 measured reflections

  • 2782 independent reflections

  • 2338 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.08

  • 2782 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯N3i 0.93 2.53 3.432 (2) 165
C16—H16A⋯O1ii 0.93 2.59 3.3758 (19) 142
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Owing to the various biological properties of pyrazole derivatives such as anti-cancer (Fu et al., 2010), anti-inflammatory (Bharate et al., 2008) and antimicrobial activities (Thumar & Patel, 2011), we have during the course of our medicinal chemistry research reported the synthesis and bioactivity of pyrazole derivatives (Abdel-Aziz et al., 2009, 2010; Abdel-Wahab et al., 2009). The title compound (I) was synthesized and characterized in order to study the structure activity relationship of this class of compounds.

The molecule of (I), C18H13N3O, has a butterfly-like structure. The pyrazole ring forms the dihedral angles of 59.31 (8) and 57.24 (8)°, respectively, with the C5–C10 and C11–C16 phenyl rings, whereas the dihedral angle between these two rings is 64.03 (8)°. The cabonitrile substituent lies on the same plane with the pyrazole ring with an r.m.s. 0.0027 (1) Å for the seven non-H atoms (C1–C4/N1–N3), whereas the acetyl group is slightly deviated with the torsion angles N2–C1–C17–C18 = 8.3 (2)° and N2–C1–C17–O1 = -171.47 (13)°. The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structure (Abdel-Aziz et al., 2011). The crystal packing of (I) is stabilized by weak C—H···N and C—H···O interactions (Table 1). Figure 2 shows the molecular a helical chain along the [1 0 0] linked by these interactions.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to and the bioactivity of pyrazole derivatives, see: Abdel-Aziz et al. (2009, 2010); Abdel-Wahab et al. (2009); Bharate et al. (2008); Dawood et al. (2003); Fu et al. (2010); Thumar & Patel (2011). For a related structure, see: Abdel-Aziz et al. (2011).

Experimental top

The title compound was prepared according to the reported method (Dawood et al., 2003). Single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by the slow evaporation of the solvent at room temperature after several days.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.93 for aromatic and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Owing to the various biological properties of pyrazole derivatives such as anti-cancer (Fu et al., 2010), anti-inflammatory (Bharate et al., 2008) and antimicrobial activities (Thumar & Patel, 2011), we have during the course of our medicinal chemistry research reported the synthesis and bioactivity of pyrazole derivatives (Abdel-Aziz et al., 2009, 2010; Abdel-Wahab et al., 2009). The title compound (I) was synthesized and characterized in order to study the structure activity relationship of this class of compounds.

The molecule of (I), C18H13N3O, has a butterfly-like structure. The pyrazole ring forms the dihedral angles of 59.31 (8) and 57.24 (8)°, respectively, with the C5–C10 and C11–C16 phenyl rings, whereas the dihedral angle between these two rings is 64.03 (8)°. The cabonitrile substituent lies on the same plane with the pyrazole ring with an r.m.s. 0.0027 (1) Å for the seven non-H atoms (C1–C4/N1–N3), whereas the acetyl group is slightly deviated with the torsion angles N2–C1–C17–C18 = 8.3 (2)° and N2–C1–C17–O1 = -171.47 (13)°. The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structure (Abdel-Aziz et al., 2011). The crystal packing of (I) is stabilized by weak C—H···N and C—H···O interactions (Table 1). Figure 2 shows the molecular a helical chain along the [1 0 0] linked by these interactions.

For bond-length data, see: Allen et al. (1987). For background to and the bioactivity of pyrazole derivatives, see: Abdel-Aziz et al. (2009, 2010); Abdel-Wahab et al. (2009); Bharate et al. (2008); Dawood et al. (2003); Fu et al. (2010); Thumar & Patel (2011). For a related structure, see: Abdel-Aziz et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound viewed along the b axis, showing the helical chain along the [1 0 0]. C—H···N hydrogen bonds are shown as dashed lines.
3-Acetyl-1,5-diphenyl-1H-pyrazole-4-carbonitrile top
Crystal data top
C18H13N3OF(000) = 1200
Mr = 287.31Dx = 1.282 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 2782 reflections
a = 6.8322 (2) Åθ = 3.4–69.9°
b = 16.8974 (5) ŵ = 0.66 mm1
c = 25.7968 (6) ÅT = 296 K
V = 2978.15 (14) Å3Block, colorless
Z = 80.56 × 0.35 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2782 independent reflections
Radiation source: sealed tube2338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 69.9°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 68
Tmin = 0.708, Tmax = 0.863k = 2020
10678 measured reflectionsl = 3123
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.4109P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2782 reflectionsΔρmax = 0.18 e Å3
201 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (2)
Crystal data top
C18H13N3OV = 2978.15 (14) Å3
Mr = 287.31Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 6.8322 (2) ŵ = 0.66 mm1
b = 16.8974 (5) ÅT = 296 K
c = 25.7968 (6) Å0.56 × 0.35 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2782 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2338 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.863Rint = 0.026
10678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.08Δρmax = 0.18 e Å3
2782 reflectionsΔρmin = 0.17 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.04907 (16)0.77988 (6)0.34667 (4)0.0461 (3)
N20.03430 (17)0.83315 (7)0.30758 (4)0.0501 (3)
N30.1596 (2)0.59304 (10)0.21580 (6)0.0737 (4)
O10.05198 (19)0.78631 (8)0.17444 (4)0.0747 (4)
C10.06117 (18)0.79131 (8)0.26452 (5)0.0480 (3)
C20.09573 (19)0.71052 (8)0.27627 (5)0.0463 (3)
C30.08526 (18)0.70532 (8)0.32961 (5)0.0441 (3)
C40.1299 (2)0.64619 (10)0.24210 (5)0.0536 (4)
C50.0947 (2)0.63535 (8)0.36354 (5)0.0458 (3)
C60.2582 (2)0.58729 (10)0.36412 (6)0.0628 (4)
H6A0.36610.59950.34360.075*
C70.2603 (3)0.52048 (10)0.39553 (8)0.0783 (5)
H7A0.37020.48800.39610.094*
C80.1016 (4)0.50213 (10)0.42561 (7)0.0785 (6)
H8A0.10430.45750.44670.094*
C90.0597 (3)0.54911 (10)0.42477 (7)0.0741 (5)
H9A0.16750.53630.44510.089*
C100.0647 (2)0.61553 (9)0.39400 (6)0.0580 (4)
H10A0.17580.64730.39370.070*
C110.0388 (2)0.80605 (8)0.39950 (5)0.0466 (3)
C120.1957 (2)0.79135 (9)0.43180 (6)0.0566 (4)
H12A0.30640.76560.41940.068*
C130.1858 (3)0.81549 (10)0.48280 (6)0.0650 (4)
H13A0.29010.80550.50500.078*
C140.0225 (3)0.85426 (9)0.50097 (6)0.0658 (4)
H14A0.01640.87030.53540.079*
C150.1319 (3)0.86926 (10)0.46807 (6)0.0662 (4)
H15A0.24140.89610.48030.079*
C160.1254 (2)0.84480 (9)0.41697 (6)0.0576 (4)
H16A0.23020.85440.39480.069*
C170.0492 (2)0.82851 (10)0.21251 (5)0.0568 (4)
C180.0336 (3)0.91591 (11)0.20952 (7)0.0755 (5)
H18A0.04310.93030.17980.113*
H18C0.16210.93840.20650.113*
H18D0.02840.93560.24030.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0550 (6)0.0450 (6)0.0383 (5)0.0011 (5)0.0011 (4)0.0056 (4)
N20.0541 (6)0.0525 (6)0.0438 (6)0.0019 (5)0.0021 (5)0.0112 (5)
N30.0732 (9)0.0852 (10)0.0626 (8)0.0025 (8)0.0026 (7)0.0182 (8)
O10.0859 (8)0.0965 (9)0.0417 (6)0.0136 (7)0.0014 (5)0.0109 (6)
C10.0429 (6)0.0603 (8)0.0407 (7)0.0073 (6)0.0012 (5)0.0096 (6)
C20.0429 (6)0.0566 (8)0.0395 (6)0.0071 (6)0.0003 (5)0.0014 (6)
C30.0446 (6)0.0474 (7)0.0404 (6)0.0036 (5)0.0002 (5)0.0014 (5)
C40.0479 (7)0.0701 (9)0.0429 (7)0.0050 (7)0.0009 (6)0.0026 (7)
C50.0579 (7)0.0430 (7)0.0363 (6)0.0014 (6)0.0021 (5)0.0020 (5)
C60.0642 (9)0.0621 (9)0.0622 (9)0.0079 (7)0.0024 (7)0.0025 (7)
C70.0960 (13)0.0558 (9)0.0832 (12)0.0250 (9)0.0237 (11)0.0051 (9)
C80.1315 (17)0.0486 (9)0.0554 (9)0.0027 (10)0.0064 (10)0.0067 (7)
C90.1125 (14)0.0530 (9)0.0568 (9)0.0034 (9)0.0177 (9)0.0085 (7)
C100.0738 (9)0.0493 (8)0.0508 (8)0.0007 (7)0.0113 (7)0.0040 (6)
C110.0603 (7)0.0395 (6)0.0400 (6)0.0025 (6)0.0011 (6)0.0034 (5)
C120.0651 (9)0.0520 (8)0.0526 (8)0.0055 (7)0.0077 (6)0.0043 (6)
C130.0863 (11)0.0575 (9)0.0511 (8)0.0016 (8)0.0186 (8)0.0037 (7)
C140.0962 (12)0.0568 (9)0.0445 (8)0.0048 (8)0.0002 (8)0.0051 (7)
C150.0801 (10)0.0616 (9)0.0571 (9)0.0084 (8)0.0100 (8)0.0040 (7)
C160.0650 (9)0.0580 (8)0.0499 (8)0.0069 (7)0.0005 (6)0.0038 (7)
C170.0460 (7)0.0792 (10)0.0451 (8)0.0084 (7)0.0012 (6)0.0152 (7)
C180.0816 (11)0.0821 (12)0.0627 (10)0.0030 (9)0.0005 (8)0.0291 (9)
Geometric parameters (Å, º) top
N1—N21.3555 (15)C9—C101.375 (2)
N1—C31.3572 (17)C9—H9A0.9300
N1—C111.4346 (17)C10—H10A0.9300
N2—C11.3294 (18)C11—C161.375 (2)
N3—C41.144 (2)C11—C121.380 (2)
O1—C171.214 (2)C12—C131.379 (2)
C1—C21.418 (2)C12—H12A0.9300
C1—C171.4840 (18)C13—C141.376 (3)
C2—C31.3807 (18)C13—H13A0.9300
C2—C41.419 (2)C14—C151.378 (2)
C3—C51.4724 (18)C14—H14A0.9300
C5—C61.381 (2)C15—C161.382 (2)
C5—C101.384 (2)C15—H15A0.9300
C6—C71.390 (2)C16—H16A0.9300
C6—H6A0.9300C17—C181.483 (2)
C7—C81.369 (3)C18—H18A0.9600
C7—H7A0.9300C18—H18C0.9600
C8—C91.359 (3)C18—H18D0.9600
C8—H8A0.9300
N2—N1—C3112.88 (11)C9—C10—H10A119.8
N2—N1—C11119.90 (10)C5—C10—H10A119.8
C3—N1—C11127.08 (11)C16—C11—C12121.44 (13)
C1—N2—N1104.96 (11)C16—C11—N1119.87 (12)
N2—C1—C2110.88 (11)C12—C11—N1118.69 (12)
N2—C1—C17121.50 (13)C13—C12—C11118.99 (15)
C2—C1—C17127.60 (13)C13—C12—H12A120.5
C3—C2—C1105.40 (12)C11—C12—H12A120.5
C3—C2—C4125.39 (13)C14—C13—C12120.36 (15)
C1—C2—C4129.20 (13)C14—C13—H13A119.8
N1—C3—C2105.88 (11)C12—C13—H13A119.8
N1—C3—C5124.11 (11)C13—C14—C15119.91 (14)
C2—C3—C5129.87 (12)C13—C14—H14A120.0
N3—C4—C2177.90 (16)C15—C14—H14A120.0
C6—C5—C10119.21 (14)C14—C15—C16120.54 (15)
C6—C5—C3120.93 (13)C14—C15—H15A119.7
C10—C5—C3119.83 (12)C16—C15—H15A119.7
C5—C6—C7119.48 (16)C11—C16—C15118.75 (15)
C5—C6—H6A120.3C11—C16—H16A120.6
C7—C6—H6A120.3C15—C16—H16A120.6
C8—C7—C6120.43 (17)O1—C17—C18122.97 (14)
C8—C7—H7A119.8O1—C17—C1118.81 (15)
C6—C7—H7A119.8C18—C17—C1118.22 (14)
C9—C8—C7120.07 (16)C17—C18—H18A109.5
C9—C8—H8A120.0C17—C18—H18C109.5
C7—C8—H8A120.0H18A—C18—H18C109.5
C8—C9—C10120.41 (18)C17—C18—H18D109.5
C8—C9—H9A119.8H18A—C18—H18D109.5
C10—C9—H9A119.8H18C—C18—H18D109.5
C9—C10—C5120.39 (16)
C3—N1—N2—C10.20 (14)C5—C6—C7—C80.2 (3)
C11—N1—N2—C1176.31 (11)C6—C7—C8—C90.3 (3)
N1—N2—C1—C20.67 (14)C7—C8—C9—C100.4 (3)
N1—N2—C1—C17177.93 (11)C8—C9—C10—C50.0 (3)
N2—C1—C2—C30.89 (15)C6—C5—C10—C90.5 (2)
C17—C1—C2—C3177.61 (12)C3—C5—C10—C9178.21 (14)
N2—C1—C2—C4179.54 (13)N2—N1—C11—C1659.51 (17)
C17—C1—C2—C41.0 (2)C3—N1—C11—C16124.99 (15)
N2—N1—C3—C20.34 (14)N2—N1—C11—C12120.59 (14)
C11—N1—C3—C2175.42 (12)C3—N1—C11—C1254.91 (19)
N2—N1—C3—C5175.66 (11)C16—C11—C12—C130.7 (2)
C11—N1—C3—C58.6 (2)N1—C11—C12—C13179.21 (13)
C1—C2—C3—N10.71 (14)C11—C12—C13—C140.6 (2)
C4—C2—C3—N1179.43 (12)C12—C13—C14—C150.1 (3)
C1—C2—C3—C5174.97 (13)C13—C14—C15—C160.8 (3)
C4—C2—C3—C53.7 (2)C12—C11—C16—C150.0 (2)
N1—C3—C5—C6124.42 (15)N1—C11—C16—C15179.86 (14)
C2—C3—C5—C660.6 (2)C14—C15—C16—C110.7 (3)
N1—C3—C5—C1057.90 (18)N2—C1—C17—O1171.47 (13)
C2—C3—C5—C10117.09 (16)C2—C1—C17—O16.9 (2)
C10—C5—C6—C70.5 (2)N2—C1—C17—C188.3 (2)
C3—C5—C6—C7178.24 (14)C2—C1—C17—C18173.32 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N3i0.932.533.432 (2)165
C16—H16A···O1ii0.932.593.3758 (19)142
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H13N3O
Mr287.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)6.8322 (2), 16.8974 (5), 25.7968 (6)
V3)2978.15 (14)
Z8
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.56 × 0.35 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.708, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
10678, 2782, 2338
Rint0.026
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.08
No. of reflections2782
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N3i0.932.533.432 (2)165
C16—H16A···O1ii0.932.593.3758 (19)142
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. HKF also thanks King Saud University, Riyadh, Saudi Arabia, for the award of a visiting Professorship (December 23rd 2011 to January 14th 2012).

References

First citationAbdel-Aziz, H. A., Al-Rashood, K. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2623–o2624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427–2432.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Aziz, H. A., Gamal-Eldeen, A. M., Hamdy, N. A. & Fakhr, I. M. I. (2009). Arch. Pharm. 342, 230–237.  CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBharate, S. B., Mahajan, T. R., Gole, Y. R., Nambiar, M., Matan, T. T., Kulkarni-Almeida, A., Balachandran, S., Junjappa, H., Balakrishnan, A. & Vishwakarma, R. A. (2008). Bioorg. Med. Chem. 16, 7167–7176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawood, K. M., Ragab, E. A. & Farag, A. M. (2003). J. Chem. Res. (S), 11, 685–686.  CrossRef Google Scholar
First citationFu, R.-G., You, Q.-D., Yang, L., Wu, W.-T., Jiang, C. & Xu, X.-L. (2010). Bioorg. Med. Chem. 18, 8035–8043.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThumar, N. J. & Patel, M. P. (2011). Saudi Pharm. J. 19, 75–83.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1095-o1096
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds