metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(azido-κN)(di-2-pyridyl­amine-κ2N2,N2′)platinum(IV)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 13 March 2012; accepted 14 March 2012; online 21 March 2012)

In the title complex, [Pt(N3)4(C10H9N3)], the PtIV ion is six-coordinated in a slightly distorted octa­hedral environment by the two pyridine N atoms of the chelating di-2-pyridyl­amine (dpa) ligand and four N atoms from four azide anions. The dpa ligand is not planar, the dihedral angle between the pyridine rings being 20.0 (3)°. The azide ligands are slightly bent [N—N—N = 173.5 (8)–175.1 (8)°]. In the crystal, the complex mol­ecules are connected by N—H⋯N hydrogen bonds, forming a chain along the b axis. An inter­molecular ππ inter­action between the chains is also present, the ring centroid–centroid distance being 3.713 (4) Å.

Related literature

For the crystal structure of the related chlorido PtIV complex [PtCl4(dpa)], see: Ha (2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 633-634.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(N3)4(C10H9N3)]

  • Mr = 534.41

  • Monoclinic, P 21 /c

  • a = 7.0057 (4) Å

  • b = 14.7685 (9) Å

  • c = 14.9633 (9) Å

  • β = 98.118 (1)°

  • V = 1532.64 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.19 mm−1

  • T = 200 K

  • 0.18 × 0.07 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.420, Tmax = 0.576

  • 9422 measured reflections

  • 3004 independent reflections

  • 2132 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.077

  • S = 0.94

  • 3004 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 2.25 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N4 2.029 (7)
Pt1—N7 2.030 (7)
Pt1—N13 2.057 (6)
Pt1—N1 2.061 (6)
Pt1—N3 2.067 (6)
Pt1—N10 2.076 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N10i 0.92 2.13 3.031 (9) 167
N2—H2N⋯N11i 0.92 2.60 3.381 (9) 143
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal structure of the related chlorido PtIV complex, [PtCl4(dpa)] (dpa = di-2-pyridylamine, C10H9N3), has been reported previously (Ha, 2011).

In the title complex, [Pt(N3)4(dpa)], the PtIV ion is six-coordinated in a slightly distorted octahedral environment by the two pyridine N atoms of the chelating dpa ligand and four N atoms from four azide anions (Fig. 1). In the crystal structure, the dpa ligand is not planar. The dihedral angle between the least-squares planes of the pyridine rings is 20.0 (3)°. The Pt—N(dpa) and Pt—N(azide) bond lengths are nearly equivalent [Pt—N: 2.029 (7)–2.076 (6) Å] (Table 1). The azido ligands are slightly bent with the bond angles of <N4—N5—N6 = 174.1 (9)°, <N7—N8—N9 = 173.5 (8)°, <N10—N11—N12 = 174.3 (8)° and <N13—N14—N15 = 175.1 (8)°. But, the N—N bond lengths of the ligands are almost equal [N—N: 1.129 (9)–1.236 (9) Å]. The complex molecules are stacked in columns along the a axis and are connected by intermolecular N—H···N hydrogen bonds, forming chains along the b axis (Fig. 2 and Table 2). Along the b axis, successive chains stack in opposite directions. An intermolecular ππ interaction between the pyridine rings is also present, the ring centroid-centroid distance being 3.713 (4) Å.

Related literature top

For the crystal structure of the related chlorido PtIV complex [PtCl4(dpa)], see: Ha (2011).

Experimental top

To a solution of Na2PtCl6.6H2O (0.1684 g, 0.300 mmol) in MeOH (30 ml) were added NaN3 (0.2129 g, 3.275 mmol) and di-2-pyridylamine (0.1046 g, 0.611 mmol), and the mixture was refluxed for 5 h. The formed precipitate was separated by filtration and washed with H2O and MeOH, and dried at 50 °C, to give a yellow powder (0.0687 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. Nitrogen-bound H atom was located in a difference Fourier map and then allowed to ride on its parent atom in the final cycles of refinement with N—H = 0.92 Å and Uiso(H) = 1.5 Ueq(N). The highest peak (2.25 eÅ-3) and the deepest hole (-0.86 eÅ-3) in the difference Fourier map are located 1.25 Å and 1.09 Å from the atoms N4 and C10, respectively.

Structure description top

Crystal structure of the related chlorido PtIV complex, [PtCl4(dpa)] (dpa = di-2-pyridylamine, C10H9N3), has been reported previously (Ha, 2011).

In the title complex, [Pt(N3)4(dpa)], the PtIV ion is six-coordinated in a slightly distorted octahedral environment by the two pyridine N atoms of the chelating dpa ligand and four N atoms from four azide anions (Fig. 1). In the crystal structure, the dpa ligand is not planar. The dihedral angle between the least-squares planes of the pyridine rings is 20.0 (3)°. The Pt—N(dpa) and Pt—N(azide) bond lengths are nearly equivalent [Pt—N: 2.029 (7)–2.076 (6) Å] (Table 1). The azido ligands are slightly bent with the bond angles of <N4—N5—N6 = 174.1 (9)°, <N7—N8—N9 = 173.5 (8)°, <N10—N11—N12 = 174.3 (8)° and <N13—N14—N15 = 175.1 (8)°. But, the N—N bond lengths of the ligands are almost equal [N—N: 1.129 (9)–1.236 (9) Å]. The complex molecules are stacked in columns along the a axis and are connected by intermolecular N—H···N hydrogen bonds, forming chains along the b axis (Fig. 2 and Table 2). Along the b axis, successive chains stack in opposite directions. An intermolecular ππ interaction between the pyridine rings is also present, the ring centroid-centroid distance being 3.713 (4) Å.

For the crystal structure of the related chlorido PtIV complex [PtCl4(dpa)], see: Ha (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structure detail of the title complex, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial view of the unit-cell contents of the title complex. Intermolecular N—H···N hydrogen-bond interactions are drawn with dashed lines.
Tetrakis(azido-κN)(di-2-pyridylamine- κ2N2,N2')platinum(IV) top
Crystal data top
[Pt(N3)4(C10H9N3)]F(000) = 1008
Mr = 534.41Dx = 2.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3131 reflections
a = 7.0057 (4) Åθ = 2.8–25.9°
b = 14.7685 (9) ŵ = 9.19 mm1
c = 14.9633 (9) ÅT = 200 K
β = 98.118 (1)°Block, yellow
V = 1532.64 (16) Å30.18 × 0.07 × 0.06 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3004 independent reflections
Radiation source: fine-focus sealed tube2132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.420, Tmax = 0.576k = 1817
9422 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0288P)2]
where P = (Fo2 + 2Fc2)/3
3004 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 2.25 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Pt(N3)4(C10H9N3)]V = 1532.64 (16) Å3
Mr = 534.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0057 (4) ŵ = 9.19 mm1
b = 14.7685 (9) ÅT = 200 K
c = 14.9633 (9) Å0.18 × 0.07 × 0.06 mm
β = 98.118 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3004 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2132 reflections with I > 2σ(I)
Tmin = 0.420, Tmax = 0.576Rint = 0.063
9422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 0.94Δρmax = 2.25 e Å3
3004 reflectionsΔρmin = 0.86 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.81972 (4)0.15708 (2)0.266198 (19)0.02164 (11)
N10.8308 (9)0.0693 (4)0.1599 (4)0.0190 (14)
N20.9443 (9)0.0523 (4)0.2561 (4)0.0229 (15)
H2N0.96920.11350.25620.034*
N31.0214 (9)0.0791 (4)0.3460 (4)0.0200 (14)
C10.7670 (11)0.0998 (5)0.0743 (5)0.0256 (19)
H10.74440.16270.06440.031*
C20.7353 (11)0.0410 (6)0.0027 (5)0.0279 (19)
H20.69100.06280.05630.033*
C30.7682 (12)0.0494 (6)0.0174 (5)0.032 (2)
H30.74380.09110.03130.038*
C40.8357 (12)0.0795 (5)0.1014 (5)0.0271 (19)
H40.85870.14230.11150.033*
C50.8713 (11)0.0191 (5)0.1725 (5)0.0211 (17)
C61.0400 (11)0.0099 (5)0.3320 (5)0.0201 (17)
C71.1569 (11)0.0630 (5)0.3944 (5)0.0229 (18)
H71.16800.12620.38470.028*
C81.2555 (11)0.0231 (6)0.4697 (5)0.0278 (19)
H81.33420.05870.51320.033*
C91.2400 (11)0.0690 (6)0.4821 (5)0.028 (2)
H91.30850.09780.53370.034*
C101.1251 (11)0.1176 (6)0.4191 (5)0.0232 (18)
H101.11720.18130.42670.028*
N40.6200 (11)0.2306 (5)0.1855 (4)0.0369 (19)
N50.5449 (10)0.2945 (5)0.2159 (4)0.0302 (16)
N60.4660 (13)0.3556 (6)0.2374 (6)0.063 (3)
N70.8045 (10)0.2450 (5)0.3692 (5)0.0319 (17)
N80.6586 (12)0.2401 (5)0.4068 (4)0.0353 (19)
N90.5310 (14)0.2423 (6)0.4464 (6)0.059 (3)
N101.0370 (10)0.2427 (4)0.2364 (4)0.0281 (17)
N111.0858 (10)0.2358 (4)0.1613 (5)0.0306 (17)
N121.1381 (12)0.2365 (5)0.0918 (5)0.041 (2)
N130.6117 (10)0.0768 (4)0.3100 (4)0.0247 (15)
N140.4674 (10)0.0646 (4)0.2548 (4)0.0281 (17)
N150.3276 (11)0.0487 (5)0.2071 (5)0.043 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02640 (18)0.01631 (17)0.02080 (17)0.00107 (15)0.00153 (12)0.00106 (14)
N10.024 (4)0.016 (4)0.016 (4)0.002 (3)0.001 (3)0.001 (3)
N20.035 (4)0.013 (4)0.019 (4)0.001 (3)0.003 (3)0.005 (3)
N30.020 (4)0.019 (4)0.019 (4)0.002 (3)0.001 (3)0.003 (3)
C10.031 (5)0.024 (5)0.020 (5)0.001 (4)0.001 (4)0.002 (3)
C20.026 (5)0.033 (5)0.023 (5)0.002 (4)0.003 (4)0.001 (4)
C30.038 (5)0.039 (6)0.017 (4)0.001 (4)0.004 (4)0.007 (4)
C40.038 (5)0.016 (5)0.027 (5)0.003 (4)0.003 (4)0.006 (3)
C50.021 (4)0.026 (5)0.016 (4)0.004 (4)0.004 (3)0.002 (3)
C60.018 (4)0.020 (5)0.024 (4)0.004 (3)0.007 (3)0.002 (3)
C70.018 (4)0.021 (5)0.030 (5)0.003 (3)0.003 (4)0.005 (3)
C80.022 (4)0.041 (6)0.020 (4)0.000 (4)0.003 (4)0.004 (4)
C90.020 (4)0.038 (6)0.027 (5)0.000 (4)0.004 (4)0.009 (4)
C100.021 (4)0.024 (5)0.023 (5)0.002 (4)0.002 (4)0.001 (3)
N40.044 (5)0.033 (5)0.029 (4)0.022 (4)0.010 (4)0.002 (3)
N50.035 (4)0.020 (4)0.035 (4)0.003 (4)0.002 (3)0.004 (3)
N60.070 (7)0.049 (6)0.067 (6)0.038 (5)0.000 (5)0.005 (5)
N70.029 (4)0.029 (4)0.037 (4)0.002 (3)0.004 (4)0.009 (3)
N80.059 (6)0.024 (4)0.022 (4)0.001 (4)0.001 (4)0.013 (3)
N90.071 (7)0.049 (6)0.063 (6)0.022 (5)0.038 (5)0.025 (4)
N100.039 (4)0.018 (4)0.027 (4)0.011 (3)0.005 (3)0.005 (3)
N110.034 (4)0.015 (4)0.041 (5)0.006 (3)0.003 (4)0.002 (3)
N120.056 (6)0.030 (5)0.040 (5)0.007 (4)0.014 (4)0.001 (4)
N130.029 (4)0.020 (4)0.024 (4)0.002 (3)0.003 (3)0.000 (3)
N140.031 (4)0.028 (4)0.027 (4)0.003 (3)0.011 (4)0.003 (3)
N150.031 (5)0.062 (6)0.030 (5)0.005 (4)0.011 (4)0.002 (4)
Geometric parameters (Å, º) top
Pt1—N42.029 (7)C4—C51.383 (10)
Pt1—N72.030 (7)C4—H40.9500
Pt1—N132.057 (6)C6—C71.393 (10)
Pt1—N12.061 (6)C7—C81.369 (11)
Pt1—N32.067 (6)C7—H70.9500
Pt1—N102.076 (6)C8—C91.379 (11)
N1—C51.344 (9)C8—H80.9500
N1—C11.372 (9)C9—C101.356 (11)
N2—C51.373 (9)C9—H90.9500
N2—C61.385 (9)C10—H100.9500
N2—H2N0.9200N4—N51.200 (9)
N3—C61.340 (9)N5—N61.129 (9)
N3—C101.350 (9)N7—N81.236 (9)
C1—C21.373 (10)N8—N91.141 (10)
C1—H10.9500N10—N111.223 (9)
C2—C31.367 (11)N11—N121.151 (9)
C2—H20.9500N13—N141.225 (9)
C3—C41.353 (11)N14—N151.152 (9)
C3—H30.9500
N4—Pt1—N790.2 (3)C4—C3—H3120.1
N4—Pt1—N1392.2 (3)C2—C3—H3120.1
N7—Pt1—N1390.6 (3)C3—C4—C5120.3 (8)
N4—Pt1—N188.6 (3)C3—C4—H4119.9
N7—Pt1—N1178.8 (3)C5—C4—H4119.9
N13—Pt1—N189.4 (2)N1—C5—N2121.2 (6)
N4—Pt1—N3178.4 (3)N1—C5—C4120.5 (7)
N7—Pt1—N391.3 (3)N2—C5—C4118.3 (7)
N13—Pt1—N387.3 (2)N3—C6—N2121.7 (7)
N1—Pt1—N389.9 (2)N3—C6—C7120.5 (7)
N4—Pt1—N1090.6 (3)N2—C6—C7117.8 (7)
N7—Pt1—N1083.8 (3)C8—C7—C6119.4 (8)
N13—Pt1—N10173.8 (2)C8—C7—H7120.3
N1—Pt1—N1096.2 (2)C6—C7—H7120.3
N3—Pt1—N1090.1 (3)C7—C8—C9119.7 (8)
C5—N1—C1119.0 (6)C7—C8—H8120.2
C5—N1—Pt1122.3 (5)C9—C8—H8120.2
C1—N1—Pt1118.1 (5)C10—C9—C8118.6 (8)
C5—N2—C6131.3 (6)C10—C9—H9120.7
C5—N2—H2N113.5C8—C9—H9120.7
C6—N2—H2N111.9N3—C10—C9122.6 (8)
C6—N3—C10119.1 (6)N3—C10—H10118.7
C6—N3—Pt1122.0 (5)C9—C10—H10118.7
C10—N3—Pt1118.6 (5)N5—N4—Pt1119.8 (6)
N1—C1—C2121.0 (8)N6—N5—N4174.1 (9)
N1—C1—H1119.5N8—N7—Pt1116.3 (5)
C2—C1—H1119.5N9—N8—N7173.5 (8)
C3—C2—C1119.2 (8)N11—N10—Pt1117.1 (5)
C3—C2—H2120.4N12—N11—N10174.3 (8)
C1—C2—H2120.4N14—N13—Pt1115.1 (5)
C4—C3—C2119.9 (8)N15—N14—N13175.1 (8)
N4—Pt1—N1—C5149.7 (6)C10—N3—C6—N2176.9 (6)
N13—Pt1—N1—C557.5 (6)Pt1—N3—C6—N29.2 (9)
N3—Pt1—N1—C529.7 (6)C10—N3—C6—C73.3 (10)
N10—Pt1—N1—C5119.8 (6)Pt1—N3—C6—C7170.6 (5)
N4—Pt1—N1—C120.5 (6)C5—N2—C6—N323.2 (12)
N13—Pt1—N1—C1112.7 (6)C5—N2—C6—C7157.0 (7)
N3—Pt1—N1—C1160.1 (5)N3—C6—C7—C81.0 (11)
N10—Pt1—N1—C170.0 (6)N2—C6—C7—C8179.2 (6)
N7—Pt1—N3—C6152.3 (6)C6—C7—C8—C90.9 (11)
N13—Pt1—N3—C661.7 (6)C7—C8—C9—C100.6 (11)
N1—Pt1—N3—C627.7 (6)C6—N3—C10—C93.7 (11)
N10—Pt1—N3—C6123.9 (6)Pt1—N3—C10—C9170.4 (6)
N7—Pt1—N3—C1021.7 (6)C8—C9—C10—N31.8 (12)
N13—Pt1—N3—C10112.2 (6)N7—Pt1—N4—N54.3 (7)
N1—Pt1—N3—C10158.4 (5)N13—Pt1—N4—N586.4 (7)
N10—Pt1—N3—C1062.1 (5)N1—Pt1—N4—N5175.7 (7)
C5—N1—C1—C23.2 (11)N10—Pt1—N4—N588.1 (7)
Pt1—N1—C1—C2167.4 (6)N4—Pt1—N7—N874.2 (6)
N1—C1—C2—C30.0 (12)N13—Pt1—N7—N818.0 (6)
C1—C2—C3—C41.6 (12)N3—Pt1—N7—N8105.3 (6)
C2—C3—C4—C50.1 (12)N10—Pt1—N7—N8164.8 (6)
C1—N1—C5—N2176.9 (7)N4—Pt1—N10—N1173.8 (6)
Pt1—N1—C5—N213.0 (9)N7—Pt1—N10—N11164.0 (6)
C1—N1—C5—C44.7 (10)N1—Pt1—N10—N1114.8 (6)
Pt1—N1—C5—C4165.4 (6)N3—Pt1—N10—N11104.7 (6)
C6—N2—C5—N121.0 (12)N4—Pt1—N13—N1431.4 (6)
C6—N2—C5—C4160.5 (7)N7—Pt1—N13—N14121.6 (6)
C3—C4—C5—N13.2 (12)N1—Pt1—N13—N1457.2 (6)
C3—C4—C5—N2178.4 (7)N3—Pt1—N13—N14147.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N10i0.922.133.031 (9)167
N2—H2N···N11i0.922.603.381 (9)143
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pt(N3)4(C10H9N3)]
Mr534.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)7.0057 (4), 14.7685 (9), 14.9633 (9)
β (°) 98.118 (1)
V3)1532.64 (16)
Z4
Radiation typeMo Kα
µ (mm1)9.19
Crystal size (mm)0.18 × 0.07 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.420, 0.576
No. of measured, independent and
observed [I > 2σ(I)] reflections
9422, 3004, 2132
Rint0.063
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.077, 0.94
No. of reflections3004
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.25, 0.86

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—N42.029 (7)Pt1—N12.061 (6)
Pt1—N72.030 (7)Pt1—N32.067 (6)
Pt1—N132.057 (6)Pt1—N102.076 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N10i0.922.133.031 (9)167
N2—H2N···N11i0.922.603.381 (9)143
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 633–634.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds