organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Bromo­phen­yl)-3-(4-chloro­butano­yl)thio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 22 March 2012; accepted 27 March 2012; online 31 March 2012)

The asymmetric unit of the title compound, C11H12BrClN2OS, consists of two crystallographically independent mol­ecules. In each mol­ecule, the butano­ylthio­urea unit is nearly planar, with maximum deviations of 0.1292 (19) and 0.3352 (18) Å from the mean plane defined by nine non-H atoms, and is twisted relative to the terminal benzene ring with dihedral angles of 69.26 (7) and 82.41 (7)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif in each butano­ylthio­urea unit. In the crystal, N—H⋯O hydrogen bonds link the two independent mol­ecules together, forming an R22(12) ring motif. The mol­ecules are further connected into a tape along the c axis via N—H⋯S and C—H⋯S hydrogen bonds.

Related literature

For related structures, see: Binzet et al. (2009[Binzet, G., Emen, F. M., Flörke, U., Yeşilkaynak, T., Külcü, N. & Arslan, H. (2009). Acta Cryst. E65, o81-o82.]); Khawar Rauf et al. (2006[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006). Acta Cryst. E62, o4299-o4301.]); Shoukat et al. (2007[Shoukat, N., Khawar Rauf, M., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o920-o922.]); Yesilkaynak et al. (2010[Yesilkaynak, T., Binzet, G., Emen, F. M., Florke, U., Kulcu, N. & Arslan, H. (2010). Eur. J. Chem. 1, 1-5.]); Yusof et al. (2007[Yusof, M. S. M., Yaakob, W. N. A., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o241-o243.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12BrClN2OS

  • Mr = 335.65

  • Monoclinic, P 21 /c

  • a = 14.1384 (2) Å

  • b = 11.1948 (1) Å

  • c = 17.7264 (2) Å

  • β = 107.955 (1)°

  • V = 2669.03 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.42 mm−1

  • T = 100 K

  • 0.39 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.350, Tmax = 0.696

  • 34224 measured reflections

  • 8749 independent reflections

  • 6599 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.067

  • S = 1.02

  • 8749 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1A 0.84 2.01 2.6847 (19) 136
N1B—H1NB⋯O1B 0.84 1.97 2.6464 (19) 136
N1A—H1NA⋯O1B 0.84 2.33 2.9976 (18) 137
N1B—H1NB⋯O1A 0.84 2.39 3.0566 (19) 137
N2A—H2NA⋯S1Bi 0.85 2.56 3.3931 (15) 168
N2B—H2NB⋯S1Aii 0.84 2.56 3.3928 (14) 171
C9B—H9BA⋯S1Aii 0.99 2.87 3.7237 (18) 145
C9B—H9BB⋯S1Biii 0.99 2.84 3.7248 (18) 149
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiourea derivatives are flexible ligand and able to coordinate to the metal centre as mono-dentat or multi-dentat depended on the substituent group attached to the both of nitrogen atoms (Binzet et al., 2009; Yesilkaynak et al., 2010).

The asymmetric unit of the title compound (Fig. 1), consists of two crystallographically independent molecules A and B. In both molecules, the intramolecular N1A—H1NA···O1A and N1B—H1NB···O1B hydrogen bonds (Table 1) generate S(6) ring motifs (Bernstein et al., 1995). The chlorobutanoylthiourea groups (Cl1A/S1A/O1A/N1A/N2A/C7A–C11A & Cl1B/S1B/O1B/N1B/N2B/C7B–C11B) are twisted about C10A–C11A bond with C9A–C10A–C11A–Cl1A torsion angle of -66.74 (19)° and about C10B–C11B bond with C9B–C10B–C11B–Cl1B torsion angle of 60.18 (19)°, respectively. However, the butanoylthiourea groups (S1A/O1A/N1A/N2A/C7A–C11A & S1B/O1B/N1B/N2B/C7B–C11B) are nearly planar with maximum deviations of 0.1292 (19) Å at atom C10A and 0.3352 (18) Å at atom C10B. The mean plane through the butanoylthiourea group of molecule A (S1A/O1A/N1A/N2A/C7A–C11A) makes a dihedral angle of 69.26 (7)° with the terminal benzene ring (C1A–C6A). In molecule B, the corresponding value is 82.41 (7)°. The bond lengths and angles are within normal ranges and are comparable to the related structures (Shoukat et al., 2007; Khawar Rauf et al., 2006; Yusof et al., 2007).

In the crystal packing (Fig. 2), intermolecular N—H···O hydrogen bonds (Table 1), form R22(12) (Bernstein et al.,1995) ring motifs. The molecules are further connected into a molecular tape along the c axis via intermolecular N—H···S and C—H···S hydrogen bonds (Table 1).

Related literature top

For related structures, see: Binzet et al. (2009); Khawar Rauf et al. (2006); Shoukat et al. (2007); Yesilkaynak et al. (2010); Yusof et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

An equimolar amount of 2-bromoaniline (1.22 g, 7.09 mmol) in 20 ml acetone was added drop-wise into a stirring acetone solution (75 ml) containing 4-chlorobutanoylchloride (1.00 g, 7.09 mmol) and ammonium thiocyanate (0.54 g, 7.09 mmol). The mixture was refluxed for 1 h. Then, the solution was filtered-off and left to evaporate at room temperature.

Refinement top

N-bound H atoms were located in a difference Fourier map and were fixed at their found locations using riding model with Uiso(H) = 1.2 Ueq(N) (N—H = 0.8391–0.8465 Å). The remaining H atoms were positioned geometrically (C—H = 0.95 or 0.99 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C). Five outliners 11 1 15, 6 15 1, 10 1 13, 4 0 6 and 8 0 10 were omitted in the final refinement.

Structure description top

Thiourea derivatives are flexible ligand and able to coordinate to the metal centre as mono-dentat or multi-dentat depended on the substituent group attached to the both of nitrogen atoms (Binzet et al., 2009; Yesilkaynak et al., 2010).

The asymmetric unit of the title compound (Fig. 1), consists of two crystallographically independent molecules A and B. In both molecules, the intramolecular N1A—H1NA···O1A and N1B—H1NB···O1B hydrogen bonds (Table 1) generate S(6) ring motifs (Bernstein et al., 1995). The chlorobutanoylthiourea groups (Cl1A/S1A/O1A/N1A/N2A/C7A–C11A & Cl1B/S1B/O1B/N1B/N2B/C7B–C11B) are twisted about C10A–C11A bond with C9A–C10A–C11A–Cl1A torsion angle of -66.74 (19)° and about C10B–C11B bond with C9B–C10B–C11B–Cl1B torsion angle of 60.18 (19)°, respectively. However, the butanoylthiourea groups (S1A/O1A/N1A/N2A/C7A–C11A & S1B/O1B/N1B/N2B/C7B–C11B) are nearly planar with maximum deviations of 0.1292 (19) Å at atom C10A and 0.3352 (18) Å at atom C10B. The mean plane through the butanoylthiourea group of molecule A (S1A/O1A/N1A/N2A/C7A–C11A) makes a dihedral angle of 69.26 (7)° with the terminal benzene ring (C1A–C6A). In molecule B, the corresponding value is 82.41 (7)°. The bond lengths and angles are within normal ranges and are comparable to the related structures (Shoukat et al., 2007; Khawar Rauf et al., 2006; Yusof et al., 2007).

In the crystal packing (Fig. 2), intermolecular N—H···O hydrogen bonds (Table 1), form R22(12) (Bernstein et al.,1995) ring motifs. The molecules are further connected into a molecular tape along the c axis via intermolecular N—H···S and C—H···S hydrogen bonds (Table 1).

For related structures, see: Binzet et al. (2009); Khawar Rauf et al. (2006); Shoukat et al. (2007); Yesilkaynak et al. (2010); Yusof et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
1-(2-Bromophenyl)-3-(4-chlorobutanoyl)thiourea top
Crystal data top
C11H12BrClN2OSF(000) = 1344
Mr = 335.65Dx = 1.671 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9962 reflections
a = 14.1384 (2) Åθ = 2.4–31.2°
b = 11.1948 (1) ŵ = 3.42 mm1
c = 17.7264 (2) ÅT = 100 K
β = 107.955 (1)°Block, colourless
V = 2669.03 (5) Å30.39 × 0.17 × 0.11 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8749 independent reflections
Radiation source: fine-focus sealed tube6599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 31.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2020
Tmin = 0.350, Tmax = 0.696k = 1615
34224 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.9931P]
where P = (Fo2 + 2Fc2)/3
8749 reflections(Δ/σ)max = 0.002
307 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C11H12BrClN2OSV = 2669.03 (5) Å3
Mr = 335.65Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.1384 (2) ŵ = 3.42 mm1
b = 11.1948 (1) ÅT = 100 K
c = 17.7264 (2) Å0.39 × 0.17 × 0.11 mm
β = 107.955 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8749 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6599 reflections with I > 2σ(I)
Tmin = 0.350, Tmax = 0.696Rint = 0.029
34224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.02Δρmax = 0.64 e Å3
8749 reflectionsΔρmin = 0.48 e Å3
307 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A1.094519 (14)0.172320 (16)0.342402 (11)0.02211 (5)
Cl1A0.47347 (4)0.16991 (5)0.02259 (3)0.02967 (11)
S1A1.03184 (3)0.00037 (4)0.16098 (2)0.01644 (9)
O1A0.79290 (8)0.11587 (11)0.26956 (7)0.0185 (3)
N1A0.98548 (10)0.07140 (12)0.28866 (8)0.0140 (3)
H1NA0.94190.09840.30770.017*
N2A0.85365 (10)0.03620 (12)0.17480 (8)0.0139 (3)
H2NA0.83700.01750.12620.017*
C1A1.12840 (13)0.19682 (16)0.35152 (11)0.0179 (4)
H1AA1.08810.26540.33370.022*
C2A1.22766 (14)0.20975 (17)0.39607 (11)0.0216 (4)
H2AA1.25490.28740.40920.026*
C3A1.28731 (13)0.11006 (18)0.42148 (11)0.0230 (4)
H3AA1.35540.11960.45100.028*
C4A1.24741 (13)0.00344 (17)0.40372 (11)0.0198 (4)
H4AA1.28810.07190.42090.024*
C5A1.14793 (13)0.01648 (15)0.36076 (10)0.0156 (3)
C6A1.08826 (12)0.08285 (16)0.33317 (10)0.0144 (3)
C7A0.95520 (12)0.03821 (15)0.21252 (10)0.0135 (3)
C8A0.77776 (12)0.07468 (15)0.20308 (10)0.0148 (3)
C9A0.67578 (12)0.05965 (17)0.14407 (10)0.0187 (4)
H9AA0.66140.02660.13490.022*
H9AB0.67500.09600.09300.022*
C10A0.59501 (12)0.11665 (17)0.17189 (10)0.0181 (4)
H10A0.59900.08430.22480.022*
H10B0.60710.20380.17760.022*
C11A0.49134 (13)0.09517 (18)0.11575 (11)0.0215 (4)
H11A0.44170.12460.14030.026*
H11B0.48070.00830.10640.026*
Br1B0.616014 (14)0.168367 (17)0.413043 (11)0.02241 (5)
Cl1B1.23151 (3)0.18536 (4)0.70479 (3)0.02501 (10)
S1B0.76428 (3)0.49774 (4)0.47511 (2)0.01627 (9)
O1B0.93871 (9)0.18019 (11)0.42755 (7)0.0190 (3)
N1B0.78048 (10)0.32012 (13)0.38055 (8)0.0152 (3)
H1NB0.81140.25950.37260.018*
N2B0.91577 (10)0.34933 (12)0.49181 (8)0.0132 (3)
H2NB0.94030.39340.53130.016*
C1B0.67353 (13)0.43193 (17)0.26902 (11)0.0199 (4)
H1BA0.73010.47360.26470.024*
C2B0.58029 (13)0.45596 (17)0.21637 (11)0.0231 (4)
H2BA0.57310.51390.17580.028*
C3B0.49745 (13)0.39537 (18)0.22292 (11)0.0227 (4)
H3BA0.43370.41210.18670.027*
C4B0.50693 (13)0.31080 (17)0.28186 (11)0.0206 (4)
H4BA0.45020.27000.28670.025*
C5B0.60057 (13)0.28675 (16)0.33370 (10)0.0169 (3)
C6B0.68418 (12)0.34721 (15)0.32795 (10)0.0154 (3)
C7B0.82121 (12)0.38288 (15)0.44613 (10)0.0125 (3)
C8B0.97074 (12)0.25286 (16)0.48090 (10)0.0147 (3)
C9B1.07364 (12)0.24650 (16)0.53928 (10)0.0161 (3)
H9BA1.07310.28440.58960.019*
H9BB1.11970.29270.51820.019*
C10B1.11242 (12)0.11951 (16)0.55635 (11)0.0180 (4)
H10C1.06980.07500.58170.022*
H10D1.10820.07920.50570.022*
C11B1.21905 (13)0.11609 (19)0.61013 (11)0.0227 (4)
H11C1.26220.15820.58410.027*
H11D1.24160.03200.61870.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.02895 (10)0.01320 (9)0.02297 (10)0.00066 (8)0.00623 (8)0.00138 (7)
Cl1A0.0230 (2)0.0355 (3)0.0255 (2)0.0028 (2)0.00004 (19)0.0106 (2)
S1A0.01481 (19)0.0212 (2)0.01338 (19)0.00319 (17)0.00442 (16)0.00091 (17)
O1A0.0152 (6)0.0234 (7)0.0159 (6)0.0014 (5)0.0035 (5)0.0053 (5)
N1A0.0116 (6)0.0157 (7)0.0147 (7)0.0013 (6)0.0040 (5)0.0016 (6)
N2A0.0133 (6)0.0159 (7)0.0111 (6)0.0008 (6)0.0015 (5)0.0018 (5)
C1A0.0182 (8)0.0184 (9)0.0174 (9)0.0011 (7)0.0056 (7)0.0015 (7)
C2A0.0210 (9)0.0218 (9)0.0205 (9)0.0050 (8)0.0044 (7)0.0039 (7)
C3A0.0147 (8)0.0321 (11)0.0196 (9)0.0008 (8)0.0013 (7)0.0022 (8)
C4A0.0183 (8)0.0232 (10)0.0166 (8)0.0053 (8)0.0032 (7)0.0010 (7)
C5A0.0189 (8)0.0138 (8)0.0141 (8)0.0003 (7)0.0049 (7)0.0002 (6)
C6A0.0128 (7)0.0182 (9)0.0118 (8)0.0009 (7)0.0029 (6)0.0005 (6)
C7A0.0149 (8)0.0111 (8)0.0136 (8)0.0013 (6)0.0030 (6)0.0022 (6)
C8A0.0141 (7)0.0138 (8)0.0157 (8)0.0016 (7)0.0032 (6)0.0002 (6)
C9A0.0135 (8)0.0244 (10)0.0160 (8)0.0015 (7)0.0011 (7)0.0044 (7)
C10A0.0141 (8)0.0233 (10)0.0162 (8)0.0013 (7)0.0036 (7)0.0019 (7)
C11A0.0158 (8)0.0290 (10)0.0193 (9)0.0016 (8)0.0048 (7)0.0014 (8)
Br1B0.02251 (9)0.02434 (10)0.02018 (9)0.00204 (8)0.00630 (7)0.00036 (8)
Cl1B0.0219 (2)0.0316 (3)0.0171 (2)0.00387 (19)0.00056 (17)0.00221 (19)
S1B0.01620 (19)0.0171 (2)0.01410 (19)0.00422 (17)0.00255 (16)0.00142 (16)
O1B0.0156 (6)0.0193 (7)0.0187 (6)0.0034 (5)0.0004 (5)0.0053 (5)
N1B0.0119 (6)0.0161 (7)0.0153 (7)0.0037 (6)0.0009 (5)0.0024 (6)
N2B0.0122 (6)0.0138 (7)0.0118 (6)0.0007 (5)0.0011 (5)0.0022 (5)
C1B0.0158 (8)0.0222 (10)0.0200 (9)0.0011 (7)0.0029 (7)0.0003 (7)
C2B0.0221 (9)0.0233 (10)0.0190 (9)0.0064 (8)0.0008 (7)0.0039 (8)
C3B0.0146 (8)0.0274 (11)0.0214 (9)0.0052 (8)0.0012 (7)0.0041 (8)
C4B0.0139 (8)0.0238 (10)0.0229 (9)0.0001 (7)0.0040 (7)0.0071 (8)
C5B0.0177 (8)0.0173 (9)0.0155 (8)0.0020 (7)0.0051 (7)0.0041 (7)
C6B0.0125 (7)0.0178 (9)0.0137 (8)0.0030 (7)0.0008 (6)0.0044 (6)
C7B0.0126 (7)0.0134 (8)0.0115 (7)0.0008 (6)0.0038 (6)0.0025 (6)
C8B0.0131 (7)0.0156 (9)0.0149 (8)0.0005 (7)0.0034 (6)0.0005 (6)
C9B0.0116 (7)0.0175 (9)0.0171 (8)0.0007 (7)0.0013 (6)0.0010 (7)
C10B0.0156 (8)0.0200 (9)0.0157 (8)0.0030 (7)0.0009 (7)0.0025 (7)
C11B0.0199 (9)0.0292 (11)0.0176 (9)0.0088 (8)0.0040 (7)0.0017 (8)
Geometric parameters (Å, º) top
Br1A—C5A1.8889 (17)Br1B—C5B1.8955 (18)
Cl1A—C11A1.7983 (19)Cl1B—C11B1.8071 (19)
S1A—C7A1.6751 (17)S1B—C7B1.6792 (17)
O1A—C8A1.221 (2)O1B—C8B1.224 (2)
N1A—C7A1.337 (2)N1B—C7B1.328 (2)
N1A—C6A1.430 (2)N1B—C6B1.426 (2)
N1A—H1NA0.8445N1B—H1NB0.8421
N2A—C7A1.385 (2)N2B—C8B1.379 (2)
N2A—C8A1.386 (2)N2B—C7B1.384 (2)
N2A—H2NA0.8465N2B—H2NB0.8391
C1A—C2A1.390 (2)C1B—C6B1.384 (2)
C1A—C6A1.394 (2)C1B—C2B1.387 (2)
C1A—H1AA0.9500C1B—H1BA0.9500
C2A—C3A1.388 (3)C2B—C3B1.389 (3)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.386 (3)C3B—C4B1.385 (3)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.385 (2)C4B—C5B1.386 (2)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.390 (2)C5B—C6B1.393 (2)
C8A—C9A1.507 (2)C8B—C9B1.505 (2)
C9A—C10A1.517 (2)C9B—C10B1.520 (2)
C9A—H9AA0.9900C9B—H9BA0.9900
C9A—H9AB0.9900C9B—H9BB0.9900
C10A—C11A1.516 (2)C10B—C11B1.516 (2)
C10A—H10A0.9900C10B—H10C0.9900
C10A—H10B0.9900C10B—H10D0.9900
C11A—H11A0.9900C11B—H11C0.9900
C11A—H11B0.9900C11B—H11D0.9900
C7A—N1A—C6A122.48 (14)C7B—N1B—C6B121.93 (14)
C7A—N1A—H1NA117.2C7B—N1B—H1NB117.8
C6A—N1A—H1NA119.3C6B—N1B—H1NB120.1
C7A—N2A—C8A128.57 (14)C8B—N2B—C7B127.96 (14)
C7A—N2A—H2NA114.6C8B—N2B—H2NB118.1
C8A—N2A—H2NA116.3C7B—N2B—H2NB113.9
C2A—C1A—C6A119.70 (17)C6B—C1B—C2B120.03 (17)
C2A—C1A—H1AA120.2C6B—C1B—H1BA120.0
C6A—C1A—H1AA120.2C2B—C1B—H1BA120.0
C3A—C2A—C1A120.46 (18)C1B—C2B—C3B120.01 (18)
C3A—C2A—H2AA119.8C1B—C2B—H2BA120.0
C1A—C2A—H2AA119.8C3B—C2B—H2BA120.0
C4A—C3A—C2A119.96 (17)C4B—C3B—C2B120.57 (16)
C4A—C3A—H3AA120.0C4B—C3B—H3BA119.7
C2A—C3A—H3AA120.0C2B—C3B—H3BA119.7
C5A—C4A—C3A119.64 (17)C3B—C4B—C5B118.91 (17)
C5A—C4A—H4AA120.2C3B—C4B—H4BA120.5
C3A—C4A—H4AA120.2C5B—C4B—H4BA120.5
C4A—C5A—C6A120.81 (16)C4B—C5B—C6B121.06 (17)
C4A—C5A—Br1A118.44 (13)C4B—C5B—Br1B119.73 (14)
C6A—C5A—Br1A120.73 (13)C6B—C5B—Br1B119.20 (13)
C5A—C6A—C1A119.39 (15)C1B—C6B—C5B119.40 (15)
C5A—C6A—N1A121.72 (15)C1B—C6B—N1B119.93 (15)
C1A—C6A—N1A118.85 (15)C5B—C6B—N1B120.64 (16)
N1A—C7A—N2A116.99 (15)N1B—C7B—N2B116.64 (15)
N1A—C7A—S1A124.24 (13)N1B—C7B—S1B123.60 (13)
N2A—C7A—S1A118.77 (12)N2B—C7B—S1B119.76 (12)
O1A—C8A—N2A122.79 (15)O1B—C8B—N2B122.61 (15)
O1A—C8A—C9A123.88 (15)O1B—C8B—C9B123.30 (15)
N2A—C8A—C9A113.33 (14)N2B—C8B—C9B114.08 (14)
C8A—C9A—C10A112.48 (14)C8B—C9B—C10B113.21 (14)
C8A—C9A—H9AA109.1C8B—C9B—H9BA108.9
C10A—C9A—H9AA109.1C10B—C9B—H9BA108.9
C8A—C9A—H9AB109.1C8B—C9B—H9BB108.9
C10A—C9A—H9AB109.1C10B—C9B—H9BB108.9
H9AA—C9A—H9AB107.8H9BA—C9B—H9BB107.8
C11A—C10A—C9A113.10 (15)C11B—C10B—C9B112.12 (15)
C11A—C10A—H10A109.0C11B—C10B—H10C109.2
C9A—C10A—H10A109.0C9B—C10B—H10C109.2
C11A—C10A—H10B109.0C11B—C10B—H10D109.2
C9A—C10A—H10B109.0C9B—C10B—H10D109.2
H10A—C10A—H10B107.8H10C—C10B—H10D107.9
C10A—C11A—Cl1A111.27 (13)C10B—C11B—Cl1B111.50 (12)
C10A—C11A—H11A109.4C10B—C11B—H11C109.3
Cl1A—C11A—H11A109.4Cl1B—C11B—H11C109.3
C10A—C11A—H11B109.4C10B—C11B—H11D109.3
Cl1A—C11A—H11B109.4Cl1B—C11B—H11D109.3
H11A—C11A—H11B108.0H11C—C11B—H11D108.0
C6A—C1A—C2A—C3A0.9 (3)C6B—C1B—C2B—C3B0.3 (3)
C1A—C2A—C3A—C4A1.2 (3)C1B—C2B—C3B—C4B0.1 (3)
C2A—C3A—C4A—C5A0.1 (3)C2B—C3B—C4B—C5B0.6 (3)
C3A—C4A—C5A—C6A1.9 (3)C3B—C4B—C5B—C6B0.9 (3)
C3A—C4A—C5A—Br1A176.78 (14)C3B—C4B—C5B—Br1B178.30 (14)
C4A—C5A—C6A—C1A2.3 (3)C2B—C1B—C6B—C5B0.0 (3)
Br1A—C5A—C6A—C1A176.36 (13)C2B—C1B—C6B—N1B178.15 (16)
C4A—C5A—C6A—N1A179.92 (16)C4B—C5B—C6B—C1B0.6 (3)
Br1A—C5A—C6A—N1A1.4 (2)Br1B—C5B—C6B—C1B178.63 (13)
C2A—C1A—C6A—C5A0.9 (3)C4B—C5B—C6B—N1B178.72 (16)
C2A—C1A—C6A—N1A178.74 (16)Br1B—C5B—C6B—N1B0.5 (2)
C7A—N1A—C6A—C5A75.6 (2)C7B—N1B—C6B—C1B86.2 (2)
C7A—N1A—C6A—C1A106.65 (19)C7B—N1B—C6B—C5B95.7 (2)
C6A—N1A—C7A—N2A176.84 (14)C6B—N1B—C7B—N2B178.95 (14)
C6A—N1A—C7A—S1A3.1 (2)C6B—N1B—C7B—S1B1.1 (2)
C8A—N2A—C7A—N1A6.6 (3)C8B—N2B—C7B—N1B5.2 (2)
C8A—N2A—C7A—S1A173.40 (14)C8B—N2B—C7B—S1B174.71 (13)
C7A—N2A—C8A—O1A1.3 (3)C7B—N2B—C8B—O1B2.2 (3)
C7A—N2A—C8A—C9A179.18 (16)C7B—N2B—C8B—C9B176.77 (15)
O1A—C8A—C9A—C10A7.8 (3)O1B—C8B—C9B—C10B30.9 (2)
N2A—C8A—C9A—C10A172.60 (15)N2B—C8B—C9B—C10B150.22 (15)
C8A—C9A—C10A—C11A176.15 (15)C8B—C9B—C10B—C11B175.45 (15)
C9A—C10A—C11A—Cl1A66.74 (19)C9B—C10B—C11B—Cl1B60.18 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1A0.842.012.6847 (19)136
N1B—H1NB···O1B0.841.972.6464 (19)136
N1A—H1NA···O1B0.842.332.9976 (18)137
N1B—H1NB···O1A0.842.393.0566 (19)137
N2A—H2NA···S1Bi0.852.563.3931 (15)168
N2B—H2NB···S1Aii0.842.563.3928 (14)171
C9B—H9BA···S1Aii0.992.873.7237 (18)145
C9B—H9BB···S1Biii0.992.843.7248 (18)149
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H12BrClN2OS
Mr335.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.1384 (2), 11.1948 (1), 17.7264 (2)
β (°) 107.955 (1)
V3)2669.03 (5)
Z8
Radiation typeMo Kα
µ (mm1)3.42
Crystal size (mm)0.39 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.350, 0.696
No. of measured, independent and
observed [I > 2σ(I)] reflections
34224, 8749, 6599
Rint0.029
(sin θ/λ)max1)0.732
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.067, 1.02
No. of reflections8749
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1A0.842.012.6847 (19)136
N1B—H1NB···O1B0.841.972.6464 (19)136
N1A—H1NA···O1B0.842.332.9976 (18)137
N1B—H1NB···O1A0.842.393.0566 (19)137
N2A—H2NA···S1Bi0.852.563.3931 (15)168
N2B—H2NB···S1Aii0.842.563.3928 (14)171
C9B—H9BA···S1Aii0.992.873.7237 (18)145
C9B—H9BB···S1Biii0.992.843.7248 (18)149
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government, Universiti Malaysia Terengganu and Universiti Sains Malaysia for research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 and FRGS 59178 to conduct this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBinzet, G., Emen, F. M., Flörke, U., Yeşilkaynak, T., Külcü, N. & Arslan, H. (2009). Acta Cryst. E65, o81–o82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006). Acta Cryst. E62, o4299–o4301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoukat, N., Khawar Rauf, M., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o920–o922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYesilkaynak, T., Binzet, G., Emen, F. M., Florke, U., Kulcu, N. & Arslan, H. (2010). Eur. J. Chem. 1, 1–5.  CrossRef CAS Google Scholar
First citationYusof, M. S. M., Yaakob, W. N. A., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o241–o243.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds