organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-({3-[(5-Amino-1,3,4-thia­diazol-2-yl)sulfanylmeth­yl]benz­yl}sulfan­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 23 March 2012; accepted 26 March 2012; online 31 March 2012)

In the title compound, C12H12N6S4, the two terminal thia­diazole rings are twisted with respect to the central benzene ring, making dihedral angles of 54.28 (4) and 76.56 (3)°. The dihedral angle between the two thia­diazole rings is 27.77 (4)°. Inter­molecular N—H⋯N hydrogen bonds stabilize the crystal packing, linking the mol­ecules into a tape along the b axis.

Related literature

For the synthesis and reactivity of thia­diazole derivatives, see: Cho et al. (1993[Cho, N. S., Kim, G. N. & Parkanyi, C. (1993). J. Heterocycl. Chem. 30, 397-401.], 2001[Cho, N. S., Hwang, H. J., Kim, J. G. & Suh, I. H. (2001). Heterocycles, 55, 579-587.]) and for the synthesis and reactivity of macrocyclic compounds with thia­diazole derivatives, see: Cho et al. (2002[Cho, N. S., Oh, J. G., Hwang, H. J., Kim, J. G. & Suh, I. H. (2002). Heterocycles, 57, 1919-1933.], 2006[Cho, N. S., Park, M. S., Kim, Y. H., Yu, Y. A., Kwon, H. S. & Kim, Y. J. (2006). Heterocycles, 68, 811-819.]). For related structures of thia­diazole derivatives, see: Kang, Cho & Jang (2012[Kang, S. K., Cho, N. S. & Jang, S. (2012). Acta Cryst. E68, o503.]); Kang, Cho & Jeon (2012[Kang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o544.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N6S4

  • Mr = 368.52

  • Monoclinic, C 2/c

  • a = 16.3579 (10) Å

  • b = 6.1382 (4) Å

  • c = 30.7095 (18) Å

  • β = 90.373 (1)°

  • V = 3083.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 296 K

  • 0.14 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.91, Tmax = 0.96

  • 22777 measured reflections

  • 3836 independent reflections

  • 2387 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.077

  • S = 0.88

  • 3836 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14A⋯N20i 0.86 2.27 3.005 (3) 144
N14—H14B⋯N13ii 0.86 2.31 3.142 (2) 162
N22—H22A⋯N12iii 0.86 2.15 3.007 (3) 171
N22—H22B⋯N21iv 0.86 2.14 2.982 (3) 168
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Polydentate macrocyclic compounds containing heterocyclic rings as a subunit possessed a variety of interesting properties. The 5-amino-3H-1,3,4-thiadizoline-2-thione has received attention as s sulfur donor subunit (Cho et al., 1993, 2001). Thus, we reported novel macrocycles that incorporated 5-amino-3H-1,3,4-thiadizoline-2-thiones (Cho et al., 2002, 2006). The title compound is an intermediate to prepare the macrocyclic compounds with the ring closure reaction of two terminal amino groups.

Two five-membered 1,3,4-thiadiazol-2-yl units are planar, with r.m.s. deviations of 0.015 and 0.024 Å from the corresponding squares plane defined by the seven constituent atoms. The bond distances of C9—N13 and C11—N12 [1.294 (2) and 1.316 (3) Å]; C17—N21 and C19—N20 [1.285 (3) and 1.306 (3) Å] in two thiadiazole rings (S8—N14 atoms and S16—N22 atoms) are comparable with those of other thiadiazole compounds for double bond character (Kang, Cho & Jang, 2012; Kang, Cho & Jeon, 2012). The dihedral angles between m-xylene and two thiadiazole rings are 54.28 (4) and 76.56 (3)° (Fig. 1). Two terminal thiadiazole rings are not parallel, with a dihedral angle of 27.77 (4)°. The crystal structure is stabilized by the intermolecular N—H···N hydrogen bonds, which link the molecules into one-dimensional chains along the b-axis (Table 1 and Fig. 2).

Related literature top

For the synthesis and reactivity of thiadiazole derivatives, see: Cho et al. (1993, 2001) and for the synthesis and reactivity of macrocyclic compounds with thiadiazole derivatives, see: Cho et al. (2002, 2006). For related structures of thiadiazole derivatives, see: Kang, Cho & Jang (2012); Kang, Cho & Jeon (2012).

Experimental top

α,α'-Dibromoxylene (1.5 g, 5.8 mmol) was added to a solution of 5-amino-3H-1,3,4-thiadizoline-2-thione (1.4 g, 10.6 mmol) dissolved in EtOH (50 ml)-KOH (0.63 g, 11.2 mmol). The resulting mixture was heated under reflux until the reactant was disappeared on TLC. The solvent was evaporated under reduced pressure to leave a solid residue, which was washed with water. The crude product was recrystallized from methanol (product yield 93%). Colourless crystals of (I) were obtained from its DMSO solution by slow evaporation of the solvent at room temperature, m.p. 202–205 °C, Rf, 0.13 (n-hexane: EA: ethanol = 5: 3: 1 v/v). 1H NMR (DMSO-d6, p.p.m.) 7.35 (b, 4H, 2NH2), 7.27–7.23 (m, 4H, C6H4), 4.29 (s, 4H, 2CH2); 13C NMR (DMSO-d6, p.p.m.): 169.9 (C=N), 149.4 (C—S), 137.3, 129.5, 128.6, 128.1 (C6H4), 38.3 (SCH2). FABHRMS Cald. for C12H12N6S4 369.0085; found 369.0082

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(carrier C or N).

Structure description top

Polydentate macrocyclic compounds containing heterocyclic rings as a subunit possessed a variety of interesting properties. The 5-amino-3H-1,3,4-thiadizoline-2-thione has received attention as s sulfur donor subunit (Cho et al., 1993, 2001). Thus, we reported novel macrocycles that incorporated 5-amino-3H-1,3,4-thiadizoline-2-thiones (Cho et al., 2002, 2006). The title compound is an intermediate to prepare the macrocyclic compounds with the ring closure reaction of two terminal amino groups.

Two five-membered 1,3,4-thiadiazol-2-yl units are planar, with r.m.s. deviations of 0.015 and 0.024 Å from the corresponding squares plane defined by the seven constituent atoms. The bond distances of C9—N13 and C11—N12 [1.294 (2) and 1.316 (3) Å]; C17—N21 and C19—N20 [1.285 (3) and 1.306 (3) Å] in two thiadiazole rings (S8—N14 atoms and S16—N22 atoms) are comparable with those of other thiadiazole compounds for double bond character (Kang, Cho & Jang, 2012; Kang, Cho & Jeon, 2012). The dihedral angles between m-xylene and two thiadiazole rings are 54.28 (4) and 76.56 (3)° (Fig. 1). Two terminal thiadiazole rings are not parallel, with a dihedral angle of 27.77 (4)°. The crystal structure is stabilized by the intermolecular N—H···N hydrogen bonds, which link the molecules into one-dimensional chains along the b-axis (Table 1 and Fig. 2).

For the synthesis and reactivity of thiadiazole derivatives, see: Cho et al. (1993, 2001) and for the synthesis and reactivity of macrocyclic compounds with thiadiazole derivatives, see: Cho et al. (2002, 2006). For related structures of thiadiazole derivatives, see: Kang, Cho & Jang (2012); Kang, Cho & Jeon (2012).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing molecules linked by intermolecular N—H···N hydrogen bonds (dashed lines).
5-({3-[(5-Amino-1,3,4-thiadiazol-2-yl)sulfanylmethyl]benzyl}sulfanyl)-1,3,4- thiadiazol-2-amine top
Crystal data top
C12H12N6S4F(000) = 1520
Mr = 368.52Dx = 1.588 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3247 reflections
a = 16.3579 (10) Åθ = 2.5–22.1°
b = 6.1382 (4) ŵ = 0.62 mm1
c = 30.7095 (18) ÅT = 296 K
β = 90.373 (1)°Block, colourless
V = 3083.4 (3) Å30.14 × 0.12 × 0.06 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
φ and ω scansθmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2121
Tmin = 0.91, Tmax = 0.96k = 88
22777 measured reflectionsl = 4040
3836 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.028P)2]
where P = (Fo2 + 2Fc2)/3
3836 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C12H12N6S4V = 3083.4 (3) Å3
Mr = 368.52Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.3579 (10) ŵ = 0.62 mm1
b = 6.1382 (4) ÅT = 296 K
c = 30.7095 (18) Å0.14 × 0.12 × 0.06 mm
β = 90.373 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3836 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2387 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.96Rint = 0.082
22777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 0.88Δρmax = 0.27 e Å3
3836 reflectionsΔρmin = 0.35 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07088 (13)0.5674 (4)0.54356 (7)0.0349 (5)
C20.04110 (13)0.4333 (3)0.57612 (7)0.0355 (5)
H20.06090.29170.57840.043*
C30.01744 (12)0.5042 (4)0.60545 (7)0.0354 (5)
C40.04693 (13)0.7144 (4)0.60143 (8)0.0427 (6)
H40.08570.76580.62090.051*
C50.01915 (14)0.8485 (4)0.56860 (8)0.0462 (6)
H50.04060.98810.56570.055*
C60.04010 (14)0.7777 (4)0.54005 (7)0.0428 (6)
H60.05940.87060.51850.051*
C70.13626 (13)0.4864 (4)0.51346 (7)0.0400 (5)
H7A0.13060.56020.48570.048*
H7B0.1280.3320.50840.048*
S80.24002 (3)0.52863 (9)0.534089 (19)0.03947 (16)
C90.24017 (12)0.3680 (3)0.58115 (7)0.0327 (5)
S100.22830 (4)0.08693 (9)0.580246 (18)0.03689 (15)
C110.24370 (12)0.0940 (4)0.63625 (7)0.0324 (5)
N120.25717 (11)0.2911 (3)0.65155 (6)0.0376 (4)
N130.25390 (10)0.4480 (3)0.61950 (6)0.0357 (4)
N140.24306 (11)0.0849 (3)0.66089 (6)0.0426 (5)
H14A0.25180.07520.68850.051*
H14B0.23390.210.64920.051*
C150.04979 (13)0.3540 (4)0.64040 (7)0.0430 (6)
H15A0.09090.25990.62740.052*
H15B0.07660.44180.66240.052*
S160.02620 (4)0.18512 (10)0.66701 (2)0.04862 (18)
C170.07177 (13)0.3682 (3)0.70332 (7)0.0363 (5)
S180.06869 (4)0.64865 (10)0.69824 (2)0.04757 (18)
C190.12945 (13)0.6580 (4)0.74495 (7)0.0391 (5)
N200.14884 (12)0.4662 (3)0.76028 (6)0.0430 (5)
N210.11434 (12)0.2993 (3)0.73582 (6)0.0455 (5)
N220.15219 (12)0.8447 (3)0.76364 (6)0.0564 (6)
H22A0.18120.84280.78710.068*
H22B0.13780.96690.75220.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0349 (12)0.0417 (14)0.0280 (12)0.0008 (10)0.0064 (10)0.0027 (10)
C20.0362 (12)0.0349 (13)0.0352 (13)0.0035 (10)0.0030 (10)0.0004 (10)
C30.0317 (12)0.0423 (14)0.0321 (12)0.0024 (10)0.0065 (10)0.0041 (10)
C40.0346 (13)0.0476 (15)0.0459 (15)0.0054 (11)0.0044 (11)0.0113 (12)
C50.0479 (14)0.0370 (14)0.0536 (16)0.0071 (11)0.0094 (13)0.0018 (12)
C60.0462 (14)0.0424 (15)0.0396 (14)0.0021 (11)0.0070 (12)0.0072 (11)
C70.0456 (13)0.0470 (14)0.0274 (12)0.0006 (11)0.0020 (10)0.0012 (10)
S80.0410 (3)0.0396 (3)0.0378 (3)0.0032 (3)0.0021 (3)0.0052 (3)
C90.0325 (12)0.0314 (12)0.0342 (12)0.0007 (9)0.0004 (10)0.0016 (10)
S100.0477 (3)0.0329 (3)0.0300 (3)0.0021 (3)0.0028 (3)0.0039 (2)
C110.0291 (11)0.0390 (13)0.0293 (12)0.0001 (10)0.0014 (9)0.0001 (10)
N120.0464 (11)0.0360 (11)0.0303 (10)0.0010 (9)0.0045 (9)0.0034 (8)
N130.0402 (11)0.0322 (11)0.0346 (11)0.0009 (8)0.0033 (9)0.0035 (8)
N140.0574 (13)0.0386 (11)0.0317 (11)0.0075 (10)0.0053 (9)0.0026 (9)
C150.0394 (13)0.0529 (15)0.0368 (13)0.0049 (11)0.0008 (11)0.0068 (11)
S160.0673 (4)0.0363 (4)0.0422 (4)0.0041 (3)0.0036 (3)0.0014 (3)
C170.0404 (13)0.0365 (13)0.0320 (13)0.0004 (10)0.0039 (10)0.0041 (10)
S180.0620 (4)0.0349 (3)0.0455 (4)0.0020 (3)0.0187 (3)0.0072 (3)
C190.0411 (13)0.0430 (15)0.0331 (13)0.0007 (11)0.0043 (10)0.0065 (11)
N200.0550 (13)0.0369 (12)0.0370 (11)0.0018 (10)0.0075 (10)0.0058 (9)
N210.0605 (13)0.0370 (12)0.0389 (12)0.0034 (10)0.0054 (10)0.0045 (9)
N220.0771 (16)0.0392 (12)0.0525 (14)0.0017 (11)0.0322 (12)0.0058 (10)
Geometric parameters (Å, º) top
C1—C21.386 (3)S10—C111.737 (2)
C1—C61.390 (3)C11—N121.316 (3)
C1—C71.503 (3)C11—N141.334 (3)
C2—C31.389 (3)N12—N131.378 (2)
C2—H20.93N14—H14A0.86
C3—C41.383 (3)N14—H14B0.86
C3—C151.513 (3)C15—S161.810 (2)
C4—C51.381 (3)C15—H15A0.97
C4—H40.93C15—H15B0.97
C5—C61.381 (3)S16—C171.747 (2)
C5—H50.93C17—N211.285 (3)
C6—H60.93C17—S181.729 (2)
C7—S81.826 (2)S18—C191.741 (2)
C7—H7A0.97C19—N201.306 (3)
C7—H7B0.97C19—N221.333 (3)
S8—C91.749 (2)N20—N211.388 (2)
C9—N131.294 (2)N22—H22A0.86
C9—S101.737 (2)N22—H22B0.86
C2—C1—C6118.6 (2)C9—S10—C1186.78 (10)
C2—C1—C7120.16 (19)N12—C11—N14123.81 (19)
C6—C1—C7121.2 (2)N12—C11—S10113.52 (16)
C1—C2—C3121.9 (2)N14—C11—S10122.66 (17)
C1—C2—H2119C11—N12—N13112.45 (17)
C3—C2—H2119C9—N13—N12113.00 (17)
C4—C3—C2118.4 (2)C11—N14—H14A120
C4—C3—C15120.6 (2)C11—N14—H14B120
C2—C3—C15121.0 (2)H14A—N14—H14B120
C5—C4—C3120.3 (2)C3—C15—S16115.29 (15)
C5—C4—H4119.8C3—C15—H15A108.5
C3—C4—H4119.8S16—C15—H15A108.5
C4—C5—C6120.8 (2)C3—C15—H15B108.5
C4—C5—H5119.6S16—C15—H15B108.5
C6—C5—H5119.6H15A—C15—H15B107.5
C5—C6—C1119.9 (2)C17—S16—C15102.05 (11)
C5—C6—H6120N21—C17—S18114.41 (17)
C1—C6—H6120N21—C17—S16120.73 (17)
C1—C7—S8113.78 (15)S18—C17—S16124.80 (13)
C1—C7—H7A108.8C17—S18—C1986.69 (11)
S8—C7—H7A108.8N20—C19—N22123.6 (2)
C1—C7—H7B108.8N20—C19—S18113.79 (17)
S8—C7—H7B108.8N22—C19—S18122.63 (17)
H7A—C7—H7B107.7C19—N20—N21111.92 (18)
C9—S8—C7101.71 (10)C17—N21—N20113.17 (18)
N13—C9—S10114.22 (16)C19—N22—H22A120
N13—C9—S8122.50 (16)C19—N22—H22B120
S10—C9—S8123.17 (12)H22A—N22—H22B120
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···N20i0.862.273.005 (3)144
N14—H14B···N13ii0.862.313.142 (2)162
N22—H22A···N12iii0.862.153.007 (3)171
N22—H22B···N21iv0.862.142.982 (3)168
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y1, z; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H12N6S4
Mr368.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)16.3579 (10), 6.1382 (4), 30.7095 (18)
β (°) 90.373 (1)
V3)3083.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.14 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.91, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
22777, 3836, 2387
Rint0.082
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.077, 0.88
No. of reflections3836
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.35

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···N20i0.862.273.005 (3)144
N14—H14B···N13ii0.862.313.142 (2)162
N22—H22A···N12iii0.862.153.007 (3)171
N22—H22B···N21iv0.862.142.982 (3)168
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y1, z; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z.
 

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, N. S., Hwang, H. J., Kim, J. G. & Suh, I. H. (2001). Heterocycles, 55, 579–587.  Google Scholar
First citationCho, N. S., Kim, G. N. & Parkanyi, C. (1993). J. Heterocycl. Chem. 30, 397–401.  CrossRef CAS Google Scholar
First citationCho, N. S., Oh, J. G., Hwang, H. J., Kim, J. G. & Suh, I. H. (2002). Heterocycles, 57, 1919–1933.  CAS Google Scholar
First citationCho, N. S., Park, M. S., Kim, Y. H., Yu, Y. A., Kwon, H. S. & Kim, Y. J. (2006). Heterocycles, 68, 811–819.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKang, S. K., Cho, N. S. & Jang, S. (2012). Acta Cryst. E68, o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds