organic compounds
5-({3-[(5-Amino-1,3,4-thiadiazol-2-yl)sulfanylmethyl]benzyl}sulfanyl)-1,3,4-thiadiazol-2-amine
aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr
In the title compound, C12H12N6S4, the two terminal thiadiazole rings are twisted with respect to the central benzene ring, making dihedral angles of 54.28 (4) and 76.56 (3)°. The dihedral angle between the two thiadiazole rings is 27.77 (4)°. Intermolecular N—H⋯N hydrogen bonds stabilize the crystal packing, linking the molecules into a tape along the b axis.
Related literature
For the synthesis and reactivity of thiadiazole derivatives, see: Cho et al. (1993, 2001) and for the synthesis and reactivity of macrocyclic compounds with thiadiazole derivatives, see: Cho et al. (2002, 2006). For related structures of thiadiazole derivatives, see: Kang, Cho & Jang (2012); Kang, Cho & Jeon (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812013116/is5100sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812013116/is5100Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812013116/is5100Isup3.cml
α,α'-Dibromoxylene (1.5 g, 5.8 mmol) was added to a solution of 5-amino-3H-1,3,4-thiadizoline-2-thione (1.4 g, 10.6 mmol) dissolved in EtOH (50 ml)-KOH (0.63 g, 11.2 mmol). The resulting mixture was heated under reflux until the reactant was disappeared on TLC. The solvent was evaporated under reduced pressure to leave a solid residue, which was washed with water. The crude product was recrystallized from methanol (product yield 93%). Colourless crystals of (I) were obtained from its DMSO solution by slow evaporation of the solvent at room temperature, m.p. 202–205 °C, Rf, 0.13 (n-hexane: EA: ethanol = 5: 3: 1 v/v). 1H NMR (DMSO-d6, p.p.m.) 7.35 (b, 4H, 2NH2), 7.27–7.23 (m, 4H, C6H4), 4.29 (s, 4H, 2CH2); 13C NMR (DMSO-d6, p.p.m.): 169.9 (C=N), 149.4 (C—S), 137.3, 129.5, 128.6, 128.1 (C6H4), 38.3 (SCH2). FABHRMS Cald. for C12H12N6S4 369.0085; found 369.0082
H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(carrier C or N).
Polydentate macrocyclic compounds containing heterocyclic rings as a subunit possessed a variety of interesting properties. The 5-amino-3H-1,3,4-thiadizoline-2-thione has received attention as s sulfur donor subunit (Cho et al., 1993, 2001). Thus, we reported novel macrocycles that incorporated 5-amino-3H-1,3,4-thiadizoline-2-thiones (Cho et al., 2002, 2006). The title compound is an intermediate to prepare the macrocyclic compounds with the ring closure reaction of two terminal amino groups.
Two five-membered 1,3,4-thiadiazol-2-yl units are planar, with r.m.s. deviations of 0.015 and 0.024 Å from the corresponding squares plane defined by the seven constituent atoms. The bond distances of C9—N13 and C11—N12 [1.294 (2) and 1.316 (3) Å]; C17—N21 and C19—N20 [1.285 (3) and 1.306 (3) Å] in two thiadiazole rings (S8—N14 atoms and S16—N22 atoms) are comparable with those of other thiadiazole compounds for double bond character (Kang, Cho & Jang, 2012; Kang, Cho & Jeon, 2012). The dihedral angles between m-xylene and two thiadiazole rings are 54.28 (4) and 76.56 (3)° (Fig. 1). Two terminal thiadiazole rings are not parallel, with a dihedral angle of 27.77 (4)°. The
is stabilized by the intermolecular N—H···N hydrogen bonds, which link the molecules into one-dimensional chains along the b-axis (Table 1 and Fig. 2).For the synthesis and reactivity of thiadiazole derivatives, see: Cho et al. (1993, 2001) and for the synthesis and reactivity of macrocyclic compounds with thiadiazole derivatives, see: Cho et al. (2002, 2006). For related structures of thiadiazole derivatives, see: Kang, Cho & Jang (2012); Kang, Cho & Jeon (2012).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H12N6S4 | F(000) = 1520 |
Mr = 368.52 | Dx = 1.588 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3247 reflections |
a = 16.3579 (10) Å | θ = 2.5–22.1° |
b = 6.1382 (4) Å | µ = 0.62 mm−1 |
c = 30.7095 (18) Å | T = 296 K |
β = 90.373 (1)° | Block, colourless |
V = 3083.4 (3) Å3 | 0.14 × 0.12 × 0.06 mm |
Z = 8 |
Bruker SMART CCD area-detector diffractometer | 2387 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
φ and ω scans | θmax = 28.3°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −21→21 |
Tmin = 0.91, Tmax = 0.96 | k = −8→8 |
22777 measured reflections | l = −40→40 |
3836 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 0.88 | w = 1/[σ2(Fo2) + (0.028P)2] where P = (Fo2 + 2Fc2)/3 |
3836 reflections | (Δ/σ)max = 0.001 |
199 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C12H12N6S4 | V = 3083.4 (3) Å3 |
Mr = 368.52 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.3579 (10) Å | µ = 0.62 mm−1 |
b = 6.1382 (4) Å | T = 296 K |
c = 30.7095 (18) Å | 0.14 × 0.12 × 0.06 mm |
β = 90.373 (1)° |
Bruker SMART CCD area-detector diffractometer | 3836 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 2387 reflections with I > 2σ(I) |
Tmin = 0.91, Tmax = 0.96 | Rint = 0.082 |
22777 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 0.88 | Δρmax = 0.27 e Å−3 |
3836 reflections | Δρmin = −0.35 e Å−3 |
199 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.07088 (13) | 0.5674 (4) | 0.54356 (7) | 0.0349 (5) | |
C2 | 0.04110 (13) | 0.4333 (3) | 0.57612 (7) | 0.0355 (5) | |
H2 | 0.0609 | 0.2917 | 0.5784 | 0.043* | |
C3 | −0.01744 (12) | 0.5042 (4) | 0.60545 (7) | 0.0354 (5) | |
C4 | −0.04693 (13) | 0.7144 (4) | 0.60143 (8) | 0.0427 (6) | |
H4 | −0.0857 | 0.7658 | 0.6209 | 0.051* | |
C5 | −0.01915 (14) | 0.8485 (4) | 0.56860 (8) | 0.0462 (6) | |
H5 | −0.0406 | 0.9881 | 0.5657 | 0.055* | |
C6 | 0.04010 (14) | 0.7777 (4) | 0.54005 (7) | 0.0428 (6) | |
H6 | 0.0594 | 0.8706 | 0.5185 | 0.051* | |
C7 | 0.13626 (13) | 0.4864 (4) | 0.51346 (7) | 0.0400 (5) | |
H7A | 0.1306 | 0.5602 | 0.4857 | 0.048* | |
H7B | 0.128 | 0.332 | 0.5084 | 0.048* | |
S8 | 0.24002 (3) | 0.52863 (9) | 0.534089 (19) | 0.03947 (16) | |
C9 | 0.24017 (12) | 0.3680 (3) | 0.58115 (7) | 0.0327 (5) | |
S10 | 0.22830 (4) | 0.08693 (9) | 0.580246 (18) | 0.03689 (15) | |
C11 | 0.24370 (12) | 0.0940 (4) | 0.63625 (7) | 0.0324 (5) | |
N12 | 0.25717 (11) | 0.2911 (3) | 0.65155 (6) | 0.0376 (4) | |
N13 | 0.25390 (10) | 0.4480 (3) | 0.61950 (6) | 0.0357 (4) | |
N14 | 0.24306 (11) | −0.0849 (3) | 0.66089 (6) | 0.0426 (5) | |
H14A | 0.2518 | −0.0752 | 0.6885 | 0.051* | |
H14B | 0.2339 | −0.21 | 0.6492 | 0.051* | |
C15 | −0.04979 (13) | 0.3540 (4) | 0.64040 (7) | 0.0430 (6) | |
H15A | −0.0909 | 0.2599 | 0.6274 | 0.052* | |
H15B | −0.0766 | 0.4418 | 0.6624 | 0.052* | |
S16 | 0.02620 (4) | 0.18512 (10) | 0.66701 (2) | 0.04862 (18) | |
C17 | 0.07177 (13) | 0.3682 (3) | 0.70332 (7) | 0.0363 (5) | |
S18 | 0.06869 (4) | 0.64865 (10) | 0.69824 (2) | 0.04757 (18) | |
C19 | 0.12945 (13) | 0.6580 (4) | 0.74495 (7) | 0.0391 (5) | |
N20 | 0.14884 (12) | 0.4662 (3) | 0.76028 (6) | 0.0430 (5) | |
N21 | 0.11434 (12) | 0.2993 (3) | 0.73582 (6) | 0.0455 (5) | |
N22 | 0.15219 (12) | 0.8447 (3) | 0.76364 (6) | 0.0564 (6) | |
H22A | 0.1812 | 0.8428 | 0.7871 | 0.068* | |
H22B | 0.1378 | 0.9669 | 0.7522 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0349 (12) | 0.0417 (14) | 0.0280 (12) | −0.0008 (10) | −0.0064 (10) | −0.0027 (10) |
C2 | 0.0362 (12) | 0.0349 (13) | 0.0352 (13) | 0.0035 (10) | −0.0030 (10) | −0.0004 (10) |
C3 | 0.0317 (12) | 0.0423 (14) | 0.0321 (12) | −0.0024 (10) | −0.0065 (10) | −0.0041 (10) |
C4 | 0.0346 (13) | 0.0476 (15) | 0.0459 (15) | 0.0054 (11) | −0.0044 (11) | −0.0113 (12) |
C5 | 0.0479 (14) | 0.0370 (14) | 0.0536 (16) | 0.0071 (11) | −0.0094 (13) | −0.0018 (12) |
C6 | 0.0462 (14) | 0.0424 (15) | 0.0396 (14) | −0.0021 (11) | −0.0070 (12) | 0.0072 (11) |
C7 | 0.0456 (13) | 0.0470 (14) | 0.0274 (12) | −0.0006 (11) | −0.0020 (10) | 0.0012 (10) |
S8 | 0.0410 (3) | 0.0396 (3) | 0.0378 (3) | −0.0032 (3) | 0.0021 (3) | 0.0052 (3) |
C9 | 0.0325 (12) | 0.0314 (12) | 0.0342 (12) | 0.0007 (9) | −0.0004 (10) | −0.0016 (10) |
S10 | 0.0477 (3) | 0.0329 (3) | 0.0300 (3) | −0.0021 (3) | −0.0028 (3) | −0.0039 (2) |
C11 | 0.0291 (11) | 0.0390 (13) | 0.0293 (12) | 0.0001 (10) | −0.0014 (9) | 0.0001 (10) |
N12 | 0.0464 (11) | 0.0360 (11) | 0.0303 (10) | −0.0010 (9) | −0.0045 (9) | −0.0034 (8) |
N13 | 0.0402 (11) | 0.0322 (11) | 0.0346 (11) | 0.0009 (8) | −0.0033 (9) | −0.0035 (8) |
N14 | 0.0574 (13) | 0.0386 (11) | 0.0317 (11) | −0.0075 (10) | −0.0053 (9) | 0.0026 (9) |
C15 | 0.0394 (13) | 0.0529 (15) | 0.0368 (13) | −0.0049 (11) | 0.0008 (11) | −0.0068 (11) |
S16 | 0.0673 (4) | 0.0363 (4) | 0.0422 (4) | −0.0041 (3) | −0.0036 (3) | 0.0014 (3) |
C17 | 0.0404 (13) | 0.0365 (13) | 0.0320 (13) | −0.0004 (10) | 0.0039 (10) | 0.0041 (10) |
S18 | 0.0620 (4) | 0.0349 (3) | 0.0455 (4) | −0.0020 (3) | −0.0187 (3) | 0.0072 (3) |
C19 | 0.0411 (13) | 0.0430 (15) | 0.0331 (13) | −0.0007 (11) | −0.0043 (10) | 0.0065 (11) |
N20 | 0.0550 (13) | 0.0369 (12) | 0.0370 (11) | 0.0018 (10) | −0.0075 (10) | 0.0058 (9) |
N21 | 0.0605 (13) | 0.0370 (12) | 0.0389 (12) | 0.0034 (10) | −0.0054 (10) | 0.0045 (9) |
N22 | 0.0771 (16) | 0.0392 (12) | 0.0525 (14) | −0.0017 (11) | −0.0322 (12) | 0.0058 (10) |
C1—C2 | 1.386 (3) | S10—C11 | 1.737 (2) |
C1—C6 | 1.390 (3) | C11—N12 | 1.316 (3) |
C1—C7 | 1.503 (3) | C11—N14 | 1.334 (3) |
C2—C3 | 1.389 (3) | N12—N13 | 1.378 (2) |
C2—H2 | 0.93 | N14—H14A | 0.86 |
C3—C4 | 1.383 (3) | N14—H14B | 0.86 |
C3—C15 | 1.513 (3) | C15—S16 | 1.810 (2) |
C4—C5 | 1.381 (3) | C15—H15A | 0.97 |
C4—H4 | 0.93 | C15—H15B | 0.97 |
C5—C6 | 1.381 (3) | S16—C17 | 1.747 (2) |
C5—H5 | 0.93 | C17—N21 | 1.285 (3) |
C6—H6 | 0.93 | C17—S18 | 1.729 (2) |
C7—S8 | 1.826 (2) | S18—C19 | 1.741 (2) |
C7—H7A | 0.97 | C19—N20 | 1.306 (3) |
C7—H7B | 0.97 | C19—N22 | 1.333 (3) |
S8—C9 | 1.749 (2) | N20—N21 | 1.388 (2) |
C9—N13 | 1.294 (2) | N22—H22A | 0.86 |
C9—S10 | 1.737 (2) | N22—H22B | 0.86 |
C2—C1—C6 | 118.6 (2) | C9—S10—C11 | 86.78 (10) |
C2—C1—C7 | 120.16 (19) | N12—C11—N14 | 123.81 (19) |
C6—C1—C7 | 121.2 (2) | N12—C11—S10 | 113.52 (16) |
C1—C2—C3 | 121.9 (2) | N14—C11—S10 | 122.66 (17) |
C1—C2—H2 | 119 | C11—N12—N13 | 112.45 (17) |
C3—C2—H2 | 119 | C9—N13—N12 | 113.00 (17) |
C4—C3—C2 | 118.4 (2) | C11—N14—H14A | 120 |
C4—C3—C15 | 120.6 (2) | C11—N14—H14B | 120 |
C2—C3—C15 | 121.0 (2) | H14A—N14—H14B | 120 |
C5—C4—C3 | 120.3 (2) | C3—C15—S16 | 115.29 (15) |
C5—C4—H4 | 119.8 | C3—C15—H15A | 108.5 |
C3—C4—H4 | 119.8 | S16—C15—H15A | 108.5 |
C4—C5—C6 | 120.8 (2) | C3—C15—H15B | 108.5 |
C4—C5—H5 | 119.6 | S16—C15—H15B | 108.5 |
C6—C5—H5 | 119.6 | H15A—C15—H15B | 107.5 |
C5—C6—C1 | 119.9 (2) | C17—S16—C15 | 102.05 (11) |
C5—C6—H6 | 120 | N21—C17—S18 | 114.41 (17) |
C1—C6—H6 | 120 | N21—C17—S16 | 120.73 (17) |
C1—C7—S8 | 113.78 (15) | S18—C17—S16 | 124.80 (13) |
C1—C7—H7A | 108.8 | C17—S18—C19 | 86.69 (11) |
S8—C7—H7A | 108.8 | N20—C19—N22 | 123.6 (2) |
C1—C7—H7B | 108.8 | N20—C19—S18 | 113.79 (17) |
S8—C7—H7B | 108.8 | N22—C19—S18 | 122.63 (17) |
H7A—C7—H7B | 107.7 | C19—N20—N21 | 111.92 (18) |
C9—S8—C7 | 101.71 (10) | C17—N21—N20 | 113.17 (18) |
N13—C9—S10 | 114.22 (16) | C19—N22—H22A | 120 |
N13—C9—S8 | 122.50 (16) | C19—N22—H22B | 120 |
S10—C9—S8 | 123.17 (12) | H22A—N22—H22B | 120 |
D—H···A | D—H | H···A | D···A | D—H···A |
N14—H14A···N20i | 0.86 | 2.27 | 3.005 (3) | 144 |
N14—H14B···N13ii | 0.86 | 2.31 | 3.142 (2) | 162 |
N22—H22A···N12iii | 0.86 | 2.15 | 3.007 (3) | 171 |
N22—H22B···N21iv | 0.86 | 2.14 | 2.982 (3) | 168 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x, y−1, z; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C12H12N6S4 |
Mr | 368.52 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 16.3579 (10), 6.1382 (4), 30.7095 (18) |
β (°) | 90.373 (1) |
V (Å3) | 3083.4 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.62 |
Crystal size (mm) | 0.14 × 0.12 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.91, 0.96 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22777, 3836, 2387 |
Rint | 0.082 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.077, 0.88 |
No. of reflections | 3836 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.35 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N14—H14A···N20i | 0.86 | 2.27 | 3.005 (3) | 144 |
N14—H14B···N13ii | 0.86 | 2.31 | 3.142 (2) | 162 |
N22—H22A···N12iii | 0.86 | 2.15 | 3.007 (3) | 171 |
N22—H22B···N21iv | 0.86 | 2.14 | 2.982 (3) | 168 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x, y−1, z; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x, y+1, z. |
References
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cho, N. S., Hwang, H. J., Kim, J. G. & Suh, I. H. (2001). Heterocycles, 55, 579–587. Google Scholar
Cho, N. S., Kim, G. N. & Parkanyi, C. (1993). J. Heterocycl. Chem. 30, 397–401. CrossRef CAS Google Scholar
Cho, N. S., Oh, J. G., Hwang, H. J., Kim, J. G. & Suh, I. H. (2002). Heterocycles, 57, 1919–1933. CAS Google Scholar
Cho, N. S., Park, M. S., Kim, Y. H., Yu, Y. A., Kwon, H. S. & Kim, Y. J. (2006). Heterocycles, 68, 811–819. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kang, S. K., Cho, N. S. & Jang, S. (2012). Acta Cryst. E68, o503. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o544. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polydentate macrocyclic compounds containing heterocyclic rings as a subunit possessed a variety of interesting properties. The 5-amino-3H-1,3,4-thiadizoline-2-thione has received attention as s sulfur donor subunit (Cho et al., 1993, 2001). Thus, we reported novel macrocycles that incorporated 5-amino-3H-1,3,4-thiadizoline-2-thiones (Cho et al., 2002, 2006). The title compound is an intermediate to prepare the macrocyclic compounds with the ring closure reaction of two terminal amino groups.
Two five-membered 1,3,4-thiadiazol-2-yl units are planar, with r.m.s. deviations of 0.015 and 0.024 Å from the corresponding squares plane defined by the seven constituent atoms. The bond distances of C9—N13 and C11—N12 [1.294 (2) and 1.316 (3) Å]; C17—N21 and C19—N20 [1.285 (3) and 1.306 (3) Å] in two thiadiazole rings (S8—N14 atoms and S16—N22 atoms) are comparable with those of other thiadiazole compounds for double bond character (Kang, Cho & Jang, 2012; Kang, Cho & Jeon, 2012). The dihedral angles between m-xylene and two thiadiazole rings are 54.28 (4) and 76.56 (3)° (Fig. 1). Two terminal thiadiazole rings are not parallel, with a dihedral angle of 27.77 (4)°. The crystal structure is stabilized by the intermolecular N—H···N hydrogen bonds, which link the molecules into one-dimensional chains along the b-axis (Table 1 and Fig. 2).