organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[(E)-Cyclo­pentyl­­idene]hydrazin-1-yl}benzene­sulfonamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 March 2012; accepted 22 March 2012; online 28 March 2012)

The title mol­ecule, C11H15N3O2S, features a five-membered ring which is twisted about the middle CH2—CH2 bond. The benzene ring is inclined with respect to the imine residue [C—N—N—C torsion angle = 165.4 (2)°]. Supra­molecular layers in the bc plane are formed by hydrogen bonds between the amine H atoms and sulfonamide O and imine N atoms, as well as by a weak hydrazine H-atom inter­molecular inter­action with the second sulfonamide O atom.

Related literature

For background to the biological applications of related sulfonamides, see: Al-Saadi et al. (2008[Al-Saadi, M. S., Rostom, S. A. F. & Faidallah, H. M. (2008). Arch. Pharm. Chem. Life Sci. 341, 181-190.]). For related structures, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.], 2012[Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762-o763.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N3O2S

  • Mr = 253.32

  • Monoclinic, P 21 /c

  • a = 14.1173 (14) Å

  • b = 5.2038 (5) Å

  • c = 16.4239 (19) Å

  • β = 94.019 (10)°

  • V = 1203.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.35 × 0.05 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.914, Tmax = 0.995

  • 4782 measured reflections

  • 2768 independent reflections

  • 2007 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.123

  • S = 1.03

  • 2768 reflections

  • 166 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (1) 2.02 (1) 2.869 (3) 164 (3)
N1—H2⋯N3ii 0.88 (1) 2.13 (1) 2.993 (3) 166 (3)
N2—H3⋯O2iii 0.88 (1) 2.36 (1) 3.220 (3) 166 (3)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamides related to the title compound, 4-(N-cyclopentylidenehydrazino)benzensulfonamide (I), have been shown to display biological activity (Al-Saadi et al., 2008). In continuation of structural studies of these sulfonamides (Asiri et al., 2011; Asiri et al., 2012), the crystal and molecular structure of (I) is reported herein.

In (I), Fig. 1, the five-membered ring is twisted about the C9—C10 bond. The imine residue is not co-planar with the benzene ring with a twist apparent about the N2—C4 bond; the C4—N2—N3—C7 torsion angle is 165.4 (2)°.

The crystal packing is dominated by N—H···O and N—H···N hydrogen bonds. The amino-H atoms form hydrogen bonds with a sulfonamide-O and imine-N atoms. The hydrazine-H atom forms a weak intermolecular interaction with the second sulfonamide-O atom, Table 1. The result is the formation of supramolecular layers in the bc plane, Fig. 2. Layers stack along the a axis with no specific intermolecular interactions between them.

Related literature top

For background to the biological applications of related sulfonamides, see: Al-Saadi et al. (2008). For related structures, see: Asiri et al. (2011, 2012).

Experimental top

Cyclopentanone (0.84 g, 10 mmol) in ethanol was refluxed with p-sulfamylphenylhydrazine (2.2 g, 10 mmol) for 1 h. The reaction mixture was cooled and the precipitated product was collected by filtration, washed with ethanol, dried and recrystallized from its ethanol solution. Yield: 78%. M. pt: 475–477 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined.

Structure description top

Sulfonamides related to the title compound, 4-(N-cyclopentylidenehydrazino)benzensulfonamide (I), have been shown to display biological activity (Al-Saadi et al., 2008). In continuation of structural studies of these sulfonamides (Asiri et al., 2011; Asiri et al., 2012), the crystal and molecular structure of (I) is reported herein.

In (I), Fig. 1, the five-membered ring is twisted about the C9—C10 bond. The imine residue is not co-planar with the benzene ring with a twist apparent about the N2—C4 bond; the C4—N2—N3—C7 torsion angle is 165.4 (2)°.

The crystal packing is dominated by N—H···O and N—H···N hydrogen bonds. The amino-H atoms form hydrogen bonds with a sulfonamide-O and imine-N atoms. The hydrazine-H atom forms a weak intermolecular interaction with the second sulfonamide-O atom, Table 1. The result is the formation of supramolecular layers in the bc plane, Fig. 2. Layers stack along the a axis with no specific intermolecular interactions between them.

For background to the biological applications of related sulfonamides, see: Al-Saadi et al. (2008). For related structures, see: Asiri et al. (2011, 2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the bc plane in (I). The N—H···O and N—H···N hydrogen bonds are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I) showing the stacking of layers along the a axis. The N—H···O and N—H···N interactions are shown as orange and blue dashed lines, respectively.
4-{2-[(E)-Cyclopentylidene]hydrazin-1-yl}benzenesulfonamide top
Crystal data top
C11H15N3O2SF(000) = 536
Mr = 253.32Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1078 reflections
a = 14.1173 (14) Åθ = 2.5–27.5°
b = 5.2038 (5) ŵ = 0.26 mm1
c = 16.4239 (19) ÅT = 100 K
β = 94.019 (10)°Plate, colourless
V = 1203.6 (2) Å30.35 × 0.05 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2768 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2007 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scanh = 1811
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 46
Tmin = 0.914, Tmax = 0.995l = 2121
4782 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.8414P]
where P = (Fo2 + 2Fc2)/3
2768 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.32 e Å3
3 restraintsΔρmin = 0.38 e Å3
Crystal data top
C11H15N3O2SV = 1203.6 (2) Å3
Mr = 253.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1173 (14) ŵ = 0.26 mm1
b = 5.2038 (5) ÅT = 100 K
c = 16.4239 (19) Å0.35 × 0.05 × 0.02 mm
β = 94.019 (10)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2768 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2007 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.995Rint = 0.044
4782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0563 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
2768 reflectionsΔρmin = 0.38 e Å3
166 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28398 (5)0.43647 (12)0.35890 (4)0.01924 (18)
O10.26446 (13)0.1919 (3)0.39559 (13)0.0304 (5)
O20.25331 (13)0.4780 (4)0.27417 (11)0.0276 (5)
N10.23242 (16)0.6501 (4)0.41081 (14)0.0185 (5)
H10.238 (2)0.811 (2)0.3960 (17)0.028 (8)*
H20.244 (2)0.626 (6)0.4636 (7)0.042 (10)*
N20.70084 (16)0.5585 (5)0.36168 (14)0.0238 (5)
H30.7234 (19)0.672 (4)0.3286 (14)0.025 (8)*
N30.76230 (15)0.4003 (4)0.40739 (13)0.0210 (5)
C10.40782 (17)0.4817 (5)0.36814 (15)0.0172 (5)
C20.46722 (18)0.3075 (5)0.41081 (15)0.0192 (6)
H2A0.44060.17090.44010.023*
C30.56513 (18)0.3314 (5)0.41102 (16)0.0199 (6)
H3A0.60540.21140.44000.024*
C40.60411 (18)0.5343 (5)0.36816 (15)0.0182 (5)
C50.54389 (18)0.7151 (5)0.32815 (16)0.0193 (6)
H50.57030.85710.30120.023*
C60.44676 (18)0.6888 (5)0.32749 (15)0.0187 (6)
H60.40630.81080.29960.022*
C70.84829 (18)0.3891 (5)0.38745 (16)0.0202 (6)
C80.92115 (18)0.2283 (6)0.43640 (17)0.0247 (6)
H8A0.89710.05220.44450.030*
H8B0.93780.30700.49040.030*
C91.00726 (19)0.2246 (5)0.38442 (17)0.0252 (6)
H9A1.06730.21500.41930.030*
H9B1.00410.07670.34640.030*
C101.00007 (18)0.4790 (5)0.33771 (17)0.0248 (6)
H10A1.03390.46840.28700.030*
H10B1.02750.62130.37170.030*
C110.89299 (18)0.5202 (5)0.31788 (16)0.0220 (6)
H11A0.87710.70550.31600.026*
H11B0.87180.44050.26500.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0185 (3)0.0147 (3)0.0246 (4)0.0019 (3)0.0025 (3)0.0034 (3)
O10.0247 (11)0.0141 (9)0.0531 (15)0.0038 (8)0.0079 (10)0.0002 (9)
O20.0233 (10)0.0373 (12)0.0215 (10)0.0024 (9)0.0031 (8)0.0091 (9)
N10.0220 (12)0.0134 (11)0.0203 (13)0.0014 (9)0.0032 (10)0.0016 (10)
N20.0204 (12)0.0261 (13)0.0255 (13)0.0024 (11)0.0054 (9)0.0109 (11)
N30.0200 (12)0.0238 (12)0.0191 (12)0.0026 (10)0.0003 (9)0.0055 (10)
C10.0169 (13)0.0186 (13)0.0162 (13)0.0002 (10)0.0021 (10)0.0031 (10)
C20.0242 (14)0.0160 (13)0.0180 (14)0.0013 (11)0.0063 (11)0.0008 (11)
C30.0232 (14)0.0176 (13)0.0189 (14)0.0024 (11)0.0014 (11)0.0027 (11)
C40.0187 (13)0.0201 (13)0.0162 (13)0.0010 (11)0.0029 (10)0.0026 (11)
C50.0229 (14)0.0166 (13)0.0189 (14)0.0014 (11)0.0050 (11)0.0004 (11)
C60.0230 (14)0.0154 (12)0.0175 (13)0.0016 (11)0.0001 (10)0.0009 (11)
C70.0201 (14)0.0214 (14)0.0190 (14)0.0013 (11)0.0006 (10)0.0003 (11)
C80.0210 (14)0.0310 (15)0.0218 (15)0.0034 (12)0.0003 (11)0.0083 (12)
C90.0239 (15)0.0278 (15)0.0237 (15)0.0043 (12)0.0009 (11)0.0027 (12)
C100.0179 (14)0.0315 (16)0.0248 (15)0.0021 (12)0.0003 (11)0.0053 (12)
C110.0191 (14)0.0257 (15)0.0211 (14)0.0011 (11)0.0009 (11)0.0058 (12)
Geometric parameters (Å, º) top
S1—O21.4444 (19)C5—C61.377 (4)
S1—O11.4430 (19)C5—H50.9500
S1—N11.606 (2)C6—H60.9500
S1—C11.760 (3)C7—C81.513 (4)
N1—H10.878 (10)C7—C111.507 (3)
N1—H20.879 (10)C8—C91.534 (4)
N2—N31.379 (3)C8—H8A0.9900
N2—C41.383 (3)C8—H8B0.9900
N2—H30.875 (10)C9—C101.530 (4)
N3—C71.281 (3)C9—H9A0.9900
C1—C21.391 (4)C9—H9B0.9900
C1—C61.400 (4)C10—C111.539 (3)
C2—C31.388 (4)C10—H10A0.9900
C2—H2A0.9500C10—H10B0.9900
C3—C41.403 (4)C11—H11A0.9900
C3—H3A0.9500C11—H11B0.9900
C4—C51.401 (4)
O2—S1—O1118.77 (12)C5—C6—H6120.1
O2—S1—N1106.95 (12)C1—C6—H6120.1
O1—S1—N1106.37 (12)N3—C7—C8120.7 (2)
O2—S1—C1106.97 (12)N3—C7—C11128.9 (2)
O1—S1—C1107.43 (12)C8—C7—C11110.4 (2)
N1—S1—C1110.25 (12)C7—C8—C9104.3 (2)
S1—N1—H1117.4 (19)C7—C8—H8A110.9
S1—N1—H2111 (2)C9—C8—H8A110.9
H1—N1—H2113 (3)C7—C8—H8B110.9
N3—N2—C4119.4 (2)C9—C8—H8B110.9
N3—N2—H3119.8 (19)H8A—C8—H8B108.9
C4—N2—H3120.8 (19)C10—C9—C8103.9 (2)
C7—N3—N2117.3 (2)C10—C9—H9A111.0
C2—C1—C6119.9 (2)C8—C9—H9A111.0
C2—C1—S1121.1 (2)C10—C9—H9B111.0
C6—C1—S1118.9 (2)C8—C9—H9B111.0
C3—C2—C1120.5 (2)H9A—C9—H9B109.0
C3—C2—H2A119.7C9—C10—C11104.9 (2)
C1—C2—H2A119.7C9—C10—H10A110.8
C2—C3—C4119.5 (2)C11—C10—H10A110.8
C2—C3—H3A120.3C9—C10—H10B110.8
C4—C3—H3A120.3C11—C10—H10B110.8
N2—C4—C5118.2 (2)H10A—C10—H10B108.9
N2—C4—C3122.1 (2)C7—C11—C10103.5 (2)
C5—C4—C3119.6 (2)C7—C11—H11A111.1
C6—C5—C4120.6 (2)C10—C11—H11A111.1
C6—C5—H5119.7C7—C11—H11B111.1
C4—C5—H5119.7C10—C11—H11B111.1
C5—C6—C1119.8 (2)H11A—C11—H11B109.0
C4—N2—N3—C7165.4 (2)N2—C4—C5—C6175.1 (2)
O2—S1—C1—C2133.3 (2)C3—C4—C5—C62.9 (4)
O1—S1—C1—C24.8 (2)C4—C5—C6—C10.9 (4)
N1—S1—C1—C2110.7 (2)C2—C1—C6—C51.7 (4)
O2—S1—C1—C642.8 (2)S1—C1—C6—C5174.46 (19)
O1—S1—C1—C6171.4 (2)N2—N3—C7—C8177.6 (2)
N1—S1—C1—C673.1 (2)N2—N3—C7—C112.2 (4)
C6—C1—C2—C32.4 (4)N3—C7—C8—C9169.5 (3)
S1—C1—C2—C3173.71 (19)C11—C7—C8—C910.6 (3)
C1—C2—C3—C40.4 (4)C7—C8—C9—C1028.9 (3)
N3—N2—C4—C5173.1 (2)C8—C9—C10—C1136.8 (3)
N3—N2—C4—C38.9 (4)N3—C7—C11—C10168.0 (3)
C2—C3—C4—N2175.7 (2)C8—C7—C11—C1011.8 (3)
C2—C3—C4—C52.3 (4)C9—C10—C11—C729.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (1)2.02 (1)2.869 (3)164 (3)
N1—H2···N3ii0.88 (1)2.13 (1)2.993 (3)166 (3)
N2—H3···O2iii0.88 (1)2.36 (1)3.220 (3)166 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H15N3O2S
Mr253.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.1173 (14), 5.2038 (5), 16.4239 (19)
β (°) 94.019 (10)
V3)1203.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.35 × 0.05 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.914, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
4782, 2768, 2007
Rint0.044
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.123, 1.03
No. of reflections2768
No. of parameters166
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (1)2.02 (1)2.869 (3)164 (3)
N1—H2···N3ii0.88 (1)2.13 (1)2.993 (3)166 (3)
N2—H3···O2iii0.88 (1)2.36 (1)3.220 (3)166 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Saadi, M. S., Rostom, S. A. F. & Faidallah, H. M. (2008). Arch. Pharm. Chem. Life Sci. 341, 181–190.  CAS Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762–o763.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds