metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m514-m515

{5,5′-Dimeth­­oxy-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methanylyl­­idene)]diphenolato}palladium(II)

aDepartment of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia, bDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, cIbnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 16 March 2012; accepted 26 March 2012; online 31 March 2012)

In the title compound, [Pd(C21H24N2O4)], the complete mol­ecule is generated by crystallographic mirror symmetry with the Pd and three C atoms lying on the mirror plane. The Pd—O and Pd—N distances are 1.9932 (6) and 2.0029 (7) Å, respectively. The dihedral angle between two benzene rings of the ligand is 79.21 (4)°. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ab plane. These planes are further connected by C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For related structures, see: Wan Nazihah Wan Ibrahim et al. (2008[Wan Nazihah Wan Ibrahim, Shamsuddin, M., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m909-m910.]); Montazerozohori et al. (2009[Montazerozohori, M., Habibi, M. H., Hojjati, A., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, o1662-o1663.]). For background to applications of palladium(II) complexes, see: Gupta et al. (2009[Gupta, K. C., Sutar, A. K. & Lin, C. C. (2009). Coord. Chem. Rev. 253, 1926-1946.]); Lu et al. (2010[Lu, J. M., Ma, H., Li, S. S., Ma, D. & Shao, L. X. (2010). Tetrahedron, 66, 5185-5189.]); He & Cai (2011[He, Y. & Cai, C. (2011). Appl. Organomet. Chem. 25, 799-803.]); Garoufis et al. (2008[Garoufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2008). Coord. Chem. Rev. 253, 1384-1397.]); Kumar et al. (2009[Kumar, A., Agarwal, M., Singh, A. K. & Butcher, R. (2009). Inorg. Chim. Acta, 362, 3208-3218.]); Islam et al. (2011[Islam, M., Mondal, P., Roy, A. S., Tuhina, K., Mondal, S. & Hossain, D. (2011). Synth. Commun. 41, 2583-2593.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C21H24N2O4)]

  • Mr = 474.82

  • Orthorhombic, P n m a

  • a = 11.5470 (4) Å

  • b = 20.9656 (7) Å

  • c = 7.8730 (3) Å

  • V = 1905.97 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 100 K

  • 0.27 × 0.24 × 0.18 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.773, Tmax = 0.839

  • 30756 measured reflections

  • 4296 independent reflections

  • 4134 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.043

  • S = 1.13

  • 4296 reflections

  • 134 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.99 2.37 3.3355 (10) 166
C12—H12A⋯O2ii 0.98 2.58 3.3719 (12) 138
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Palladium(II)-Schiff base complexes have found extensive application in catalysis (Gupta et al., 2009; Lu et al., 2010; He and Cai 2011) and biological activities (Garoufis et al., 2008). In particular, they are efficient and powerful phosphine-free catalysts for the formation of new C-C bonds in organic syntheses (Kumar et al., 2009; Islam et al., 2011). The title square-planar complex is analogous to the previously reported complex {2,2'-[(2,2 dimethylpropane-1,3-diyl)-bis(nitrilomethylidyne)]diphenolato}-palladium(II) ethanol hemisolvate (Wan Nazihah Wan Ibrahim et al., 2008) in terms of geometry around the central palladium atom.

In the title compound, the complete molecule (Fig. 1) is generated by crystallographic mirror symmetry with the Pd1, C9, C10 and C11 atoms lying on the mirror plane. All parameters are within normal ranges and comparable with the related structures (Wan Nazihah Wan Ibrahim et al., 2008). The Pd—O and Pd—N distances are 1.9932 (6)Å and 2.0029 (7)Å respectively. The dihedral angle between two benzene ring (C1-C6 & C1A-C6A) is 79.21 (4)°.

In the crystal packing, the molecules are linked by C8—H8A···O1i intermolecular into layers parallel to the ab-plane. These planes are further connected by C12—H12A···O2ii to form a three-dimensional network (Table 1 & Fig. 2).

Related literature top

For related structures, see: Wan Nazihah Wan Ibrahim et al. (2008). For background to applications of palladium(II) complexes, see: Gupta et al. (2009); Lu et al. (2010); He & Cai (2011); Garoufis et al. (2008); Kumar et al. (2009); Islam et al. (2011).

For related literature, see: Cosier & Glazer (1986); Montazerozohori et al. (2009).

Experimental top

The complex obtained was synthesized by dissolving the N,N'-bis(4-methoxy-salicylidene)-2,2-dimethylpropane-1,3-diamine ligand (0.2000 g, 0.54 mmol) in dry acetonitrile (10 ml) in a three necked round bottom flask. Palladium(II) acetate (0.1212 g, 0.54 mmol) which was dissolved separately in dry acetonitrile (10 ml) was then added into the flask containing the ligand solution. The mixture was stirred and refluxed under N2 gas atmosphere for 3 h. The yellow solid formed was separated by vacuum filtration, washed with cold acetonitrile and allowed to dry in vacuo. The solid product was then recrystallized from a mixture of dicholoromethane/methanol (1:1 v/v). Slow evaporation of the solvent at room temperature over several days gave yellow crystals (yield: 78%). Melting point: 596 K-598 K.

Refinement top

All H atoms attached to C atoms were fixed geometrically and refined as riding with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). A rotating group model was applied to the methyl group.

Structure description top

Palladium(II)-Schiff base complexes have found extensive application in catalysis (Gupta et al., 2009; Lu et al., 2010; He and Cai 2011) and biological activities (Garoufis et al., 2008). In particular, they are efficient and powerful phosphine-free catalysts for the formation of new C-C bonds in organic syntheses (Kumar et al., 2009; Islam et al., 2011). The title square-planar complex is analogous to the previously reported complex {2,2'-[(2,2 dimethylpropane-1,3-diyl)-bis(nitrilomethylidyne)]diphenolato}-palladium(II) ethanol hemisolvate (Wan Nazihah Wan Ibrahim et al., 2008) in terms of geometry around the central palladium atom.

In the title compound, the complete molecule (Fig. 1) is generated by crystallographic mirror symmetry with the Pd1, C9, C10 and C11 atoms lying on the mirror plane. All parameters are within normal ranges and comparable with the related structures (Wan Nazihah Wan Ibrahim et al., 2008). The Pd—O and Pd—N distances are 1.9932 (6)Å and 2.0029 (7)Å respectively. The dihedral angle between two benzene ring (C1-C6 & C1A-C6A) is 79.21 (4)°.

In the crystal packing, the molecules are linked by C8—H8A···O1i intermolecular into layers parallel to the ab-plane. These planes are further connected by C12—H12A···O2ii to form a three-dimensional network (Table 1 & Fig. 2).

For related structures, see: Wan Nazihah Wan Ibrahim et al. (2008). For background to applications of palladium(II) complexes, see: Gupta et al. (2009); Lu et al. (2010); He & Cai (2011); Garoufis et al. (2008); Kumar et al. (2009); Islam et al. (2011).

For related literature, see: Cosier & Glazer (1986); Montazerozohori et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
{5,5'-Dimethoxy-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenolato}palladium(II) top
Crystal data top
[Pd(C21H24N2O4)]F(000) = 968
Mr = 474.82Dx = 1.655 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 9824 reflections
a = 11.5470 (4) Åθ = 3.3–35.1°
b = 20.9656 (7) ŵ = 1.00 mm1
c = 7.8730 (3) ÅT = 100 K
V = 1905.97 (12) Å3Block, yellow
Z = 40.27 × 0.24 × 0.18 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4296 independent reflections
Radiation source: fine-focus sealed tube4134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 35.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.773, Tmax = 0.839k = 3333
30756 measured reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0183P)2 + 0.777P]
where P = (Fo2 + 2Fc2)/3
4296 reflections(Δ/σ)max = 0.003
134 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Pd(C21H24N2O4)]V = 1905.97 (12) Å3
Mr = 474.82Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.5470 (4) ŵ = 1.00 mm1
b = 20.9656 (7) ÅT = 100 K
c = 7.8730 (3) Å0.27 × 0.24 × 0.18 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4296 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4134 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.839Rint = 0.020
30756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.13Δρmax = 0.50 e Å3
4296 reflectionsΔρmin = 0.62 e Å3
134 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.535617 (6)0.25000.088830 (10)0.00982 (2)
O10.42276 (5)0.31425 (3)0.17501 (8)0.01411 (10)
O20.12833 (5)0.45403 (3)0.02329 (9)0.01723 (11)
N10.63494 (6)0.31998 (3)0.00483 (9)0.01240 (11)
C10.39331 (7)0.36205 (4)0.07712 (9)0.01203 (11)
C20.27757 (7)0.38427 (4)0.08646 (10)0.01310 (12)
H2A0.22510.36510.16420.016*
C30.24037 (7)0.43360 (4)0.01673 (10)0.01370 (12)
C40.31792 (7)0.46562 (4)0.12613 (11)0.01645 (13)
H4A0.29240.50040.19390.020*
C50.43136 (7)0.44543 (4)0.13264 (11)0.01566 (13)
H5A0.48440.46750.20380.019*
C60.47127 (6)0.39285 (4)0.03651 (10)0.01282 (12)
C70.59049 (7)0.37365 (4)0.05364 (10)0.01349 (12)
H7A0.64150.40330.10590.016*
C80.76027 (6)0.31049 (4)0.02515 (11)0.01447 (13)
H8A0.79640.30830.08870.017*
H8B0.79320.34790.08470.017*
C90.79183 (9)0.25000.12444 (14)0.01195 (16)
C100.73574 (10)0.25000.29972 (15)0.01630 (19)
H10A0.75940.28740.36090.024*
H10B0.65300.25000.28760.024*
C110.92430 (10)0.25000.14109 (16)0.01623 (19)
H11A0.94870.28740.20170.024*
H11B0.95840.25000.02990.024*
C120.04407 (7)0.41728 (5)0.06862 (13)0.01862 (15)
H12A0.03320.43530.04960.028*
H12B0.06220.41850.19020.028*
H12C0.04570.37300.02880.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.00822 (4)0.01192 (4)0.00933 (4)0.0000.00093 (2)0.000
O10.0140 (2)0.0151 (2)0.0133 (2)0.00348 (18)0.00348 (19)0.00199 (19)
O20.0125 (2)0.0189 (3)0.0203 (3)0.0032 (2)0.0008 (2)0.0040 (2)
N10.0097 (2)0.0144 (3)0.0131 (3)0.0006 (2)0.0015 (2)0.0015 (2)
C10.0122 (3)0.0127 (3)0.0112 (3)0.0005 (2)0.0008 (2)0.0011 (2)
C20.0122 (3)0.0141 (3)0.0130 (3)0.0013 (2)0.0015 (2)0.0002 (2)
C30.0129 (3)0.0144 (3)0.0137 (3)0.0016 (2)0.0001 (2)0.0007 (2)
C40.0165 (3)0.0157 (3)0.0172 (3)0.0016 (2)0.0013 (3)0.0036 (3)
C50.0163 (3)0.0145 (3)0.0162 (3)0.0001 (2)0.0027 (3)0.0021 (2)
C60.0121 (3)0.0128 (3)0.0135 (3)0.0000 (2)0.0017 (2)0.0001 (2)
C70.0126 (3)0.0138 (3)0.0140 (3)0.0013 (2)0.0020 (2)0.0007 (2)
C80.0089 (3)0.0173 (3)0.0171 (3)0.0012 (2)0.0013 (2)0.0035 (3)
C90.0088 (4)0.0152 (4)0.0119 (4)0.0000.0012 (3)0.000
C100.0142 (4)0.0232 (5)0.0115 (4)0.0000.0000 (3)0.000
C110.0097 (4)0.0200 (5)0.0189 (5)0.0000.0025 (4)0.000
C120.0132 (3)0.0195 (4)0.0232 (4)0.0009 (3)0.0012 (3)0.0018 (3)
Geometric parameters (Å, º) top
Pd1—O1i1.9932 (6)C5—H5A0.9500
Pd1—O11.9932 (6)C6—C71.4406 (11)
Pd1—N1i2.0029 (7)C7—H7A0.9500
Pd1—N12.0029 (7)C8—C91.5337 (10)
O1—C11.3092 (9)C8—H8A0.9900
O2—C31.3637 (10)C8—H8B0.9900
O2—C121.4366 (11)C9—C101.5244 (16)
N1—C71.2951 (10)C9—C8i1.5336 (10)
N1—C81.4695 (10)C9—C111.5353 (15)
C1—C21.4172 (11)C10—H10A0.9600
C1—C61.4239 (11)C10—H10B0.9600
C2—C31.3835 (11)C11—H11A0.9599
C2—H2A0.9500C11—H11B0.9600
C3—C41.4122 (12)C12—H12A0.9800
C4—C51.3776 (12)C12—H12B0.9800
C4—H4A0.9500C12—H12C0.9800
C5—C61.4144 (11)
O1i—Pd1—O185.03 (3)C1—C6—C7122.43 (7)
O1i—Pd1—N1i90.27 (3)N1—C7—C6126.41 (7)
O1—Pd1—N1i174.10 (3)N1—C7—H7A116.8
O1i—Pd1—N1174.10 (3)C6—C7—H7A116.8
O1—Pd1—N190.27 (3)N1—C8—C9113.67 (7)
N1i—Pd1—N194.20 (4)N1—C8—H8A108.8
C1—O1—Pd1119.13 (5)C9—C8—H8A108.8
C3—O2—C12117.06 (7)N1—C8—H8B108.8
C7—N1—C8118.40 (7)C9—C8—H8B108.8
C7—N1—Pd1121.25 (5)H8A—C8—H8B107.7
C8—N1—Pd1120.32 (5)C10—C9—C8i111.13 (6)
O1—C1—C2117.78 (7)C10—C9—C8111.13 (6)
O1—C1—C6123.55 (7)C8i—C9—C8111.56 (9)
C2—C1—C6118.67 (7)C10—C9—C11110.24 (9)
C3—C2—C1120.53 (7)C8i—C9—C11106.28 (6)
C3—C2—H2A119.7C8—C9—C11106.28 (6)
C1—C2—H2A119.7C9—C10—H10A109.5
O2—C3—C2123.47 (7)C9—C10—H10B109.5
O2—C3—C4115.41 (7)H10A—C10—H10B109.5
C2—C3—C4121.11 (7)C9—C11—H11A109.6
C5—C4—C3118.66 (7)C9—C11—H11B109.3
C5—C4—H4A120.7H11A—C11—H11B109.5
C3—C4—H4A120.7O2—C12—H12A109.5
C4—C5—C6121.96 (7)O2—C12—H12B109.5
C4—C5—H5A119.0H12A—C12—H12B109.5
C6—C5—H5A119.0O2—C12—H12C109.5
C5—C6—C1118.93 (7)H12A—C12—H12C109.5
C5—C6—C7118.62 (7)H12B—C12—H12C109.5
O1i—Pd1—O1—C1132.69 (5)C3—C4—C5—C61.59 (13)
N1—Pd1—O1—C143.75 (6)C4—C5—C6—C13.42 (13)
O1—Pd1—N1—C729.00 (6)C4—C5—C6—C7178.41 (8)
N1i—Pd1—N1—C7147.14 (5)O1—C1—C6—C5177.99 (7)
O1—Pd1—N1—C8153.13 (6)C2—C1—C6—C51.59 (11)
N1i—Pd1—N1—C830.72 (7)O1—C1—C6—C70.11 (12)
Pd1—O1—C1—C2144.53 (6)C2—C1—C6—C7179.69 (7)
Pd1—O1—C1—C635.88 (10)C8—N1—C7—C6176.76 (8)
O1—C1—C2—C3178.41 (7)Pd1—N1—C7—C65.33 (11)
C6—C1—C2—C31.98 (11)C5—C6—C7—N1164.51 (8)
C12—O2—C3—C26.96 (12)C1—C6—C7—N117.38 (13)
C12—O2—C3—C4171.91 (8)C7—N1—C8—C9125.73 (8)
C1—C2—C3—O2174.91 (7)Pd1—N1—C8—C952.19 (9)
C1—C2—C3—C43.90 (12)N1—C8—C9—C1057.06 (10)
O2—C3—C4—C5176.79 (8)N1—C8—C9—C8i67.56 (11)
C2—C3—C4—C52.11 (13)N1—C8—C9—C11177.01 (7)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1ii0.992.373.3355 (10)166
C12—H12A···O2iii0.982.583.3719 (12)138
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pd(C21H24N2O4)]
Mr474.82
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)100
a, b, c (Å)11.5470 (4), 20.9656 (7), 7.8730 (3)
V3)1905.97 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.27 × 0.24 × 0.18
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.773, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
30756, 4296, 4134
Rint0.020
(sin θ/λ)max1)0.809
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.043, 1.13
No. of reflections4296
No. of parameters134
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.62

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.99002.37003.3355 (10)166.00
C12—H12A···O2ii0.98002.58003.3719 (12)138.00
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The Ministry of Higher Education, Malaysia, and Universiti Teknologi Malaysia are acknowledged for financial support through the Research University Grant Vote No. 00H13. SKCS wishes to thank Universiti Malaysia Terengganu for a scholarship and study leave.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaroufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2008). Coord. Chem. Rev. 253, 1384–1397.  Web of Science CrossRef Google Scholar
First citationGupta, K. C., Sutar, A. K. & Lin, C. C. (2009). Coord. Chem. Rev. 253, 1926–1946.  Web of Science CrossRef CAS Google Scholar
First citationHe, Y. & Cai, C. (2011). Appl. Organomet. Chem. 25, 799–803.  Web of Science CrossRef CAS Google Scholar
First citationIslam, M., Mondal, P., Roy, A. S., Tuhina, K., Mondal, S. & Hossain, D. (2011). Synth. Commun. 41, 2583–2593.  Web of Science CrossRef CAS Google Scholar
First citationKumar, A., Agarwal, M., Singh, A. K. & Butcher, R. (2009). Inorg. Chim. Acta, 362, 3208–3218.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, J. M., Ma, H., Li, S. S., Ma, D. & Shao, L. X. (2010). Tetrahedron, 66, 5185–5189.  Web of Science CrossRef CAS Google Scholar
First citationMontazerozohori, M., Habibi, M. H., Hojjati, A., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, o1662–o1663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan Nazihah Wan Ibrahim, Shamsuddin, M., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m909–m910.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m514-m515
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds