metal-organic compounds
Tricarbonylchlorido(η5-cyclopentadienyl)molybdenum(II)
aUniversity of the Western Cape, Private Bag X17, Bellville 7535, South Africa
*Correspondence e-mail: monani@uwc.ac.za
The structure of the title compound, [Mo(C5H5)Cl(CO)3], reveals a pseudo-square-pyramidal piano-stool coordination around the MoII ion, which is surrounded by a cyclopentadienyl ring, three carbonyl groups and a chloride ligand.
Related literature
For related structures, see: Chaiwasie & Fenn (1968); Churchill & Bueno (1981); Albright et al. (1978); Mays & Robb (1968). For applications of this class of compounds, see: Arzoumanian (1998); Freund et al. (2006); Karunadasa et al. (2010). For the synthesis, see: Amor et al. (2000); Atwood & Barbour (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812008471/kp2389sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812008471/kp2389Isup2.hkl
A solution of cyclopentadienyl molybdenum (II) tricarbonyl dimer, [Cp (CO)3Mo]2, (0.506 g, 1.03 mmol) in THF (10 mL) was added to Na/Hg amalgam in a Schlenck tube with a tap at the bottom. The mixture was stirred until the brick red solution of, [Cp(CO)3Mo]2 turned pale-green to confirm the formation of [Cp(CO)3Mo]- anions. The reduced dimer solution was filtered under nitrogen to another Schlenk tube. An excess CCl4 was added and vigorously stired for 30 min. The solvent was removed under vaccum to give a light yellow solid. Yield:0.55 g (61%). The solution of the product in a minimum volume of dichloromethane was allowed to undergo a slow diffusion in an excess of hexane at 277 K for a few days. Block red single crystals suitable for X-ray analysis were obtained.
All non-hydrogen atoms were refined anisotropically. All the hydrogen peaks could be found in the difference electron density maps but were finally placed in idealized positions and refined in riding models with Uiso assigned 1.2 times those of their parent atoms and the constraint distances of C—H equal to 0.95 Å. The structure was refined to
factor of 0.0221.The oxo-complexes of transition metals, group 6 are very useful in various catalytic applications. Among the numerous transition metal-oxo compounds that have been used as catalysts, molybdenum is probably the element that stands out as the most investigated for oxygen atom transfer reactions (Arzoumanian 1998). Remarkably, most recently, molybdenum derivative has been used to generate hydrogen from water (Karunadasa et al., 2010). While investigating catalytic epoxidation reactions (Freund et al., 2006), we prepared transition metalcarbonyl complexes containing nitrogen bases, chloro- and cyclopentadienyl(Cp)ligands. This compound could easily be oxidized to the dioxo-molybdenum (IV)complexes without losing the attached ligands. Trying to grow crystals of this complex by slow diffusion in a fridge, the titled compound was obtained insted, probably as a decomposition product. In the titled compound, the ligands display a piano stool arrangement. Notably, the carbonyls and the chloride ligands are spaced by the average angle of 77.49°. The Mo-C2 bond trans to the chloride, Cl1, atom [1.980 (2) Å] is noticeably shorter than the others, Mo–C1, 2.014 (2) and M–C3, 2.008 (2) Å, possibly due to the well-known trans effect. The distance between the Mo atom and the C5, C6 and C7 atoms are observed to be shorter than those between Mo and C4 and C8 because of the electronic repulsion between the electronegative Cl atom and the cyclopentadienyl ring electrons. The molecular structure of the title compound (I) is a new polymorph and differ from the structures reported (Chaiwasie et al. 1968; Churchill et al. 1981; Albright et al. 1978; Mays et al.1968). For example, the cell dimensions reported by Chaiwasie et al. (1968) is significantly different from our values (see crystal data).
For related structures, see: Chaiwasie & Fenn(1968); Churchill & Bueno (1981); Albright et al. (1978); Mays & Robb (1968). For applications of this class of compounds, see: Arzoumanian (1998); Freund et al. (2006); Karunadasa et al. (2010). For related literature [on what subject?], see: Amor et al. (2000); Atwood & Barbour (2003).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A view of the molecular structure with numbering scheme. Displacement ellipsoids are drawn at the 40% probability level for non-H atoms. |
[Mo(C5H5)Cl(CO)3] | F(000) = 544 |
Mr = 280.51 | F(000) = 544 |
Monoclinic, P21/n | Dx = 1.979 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4958 (6) Å | Cell parameters from 10440 reflections |
b = 11.7671 (10) Å | θ = 3.3–28.4° |
c = 12.5080 (11) Å | µ = 1.65 mm−1 |
β = 100.064 (2)° | T = 173 K |
V = 941.36 (14) Å3 | Block, red |
Z = 4 | 0.11 × 0.06 × 0.04 mm |
Bruker Kappa DUO APEXII diffractometer | 2355 independent reflections |
Radiation source: fine-focus sealed tube | 1953 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
0.5° φ 0.5° φ scans and ω scans | θmax = 28.4°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −8→8 |
Tmin = 0.840, Tmax = 0.937 | k = −15→15 |
10440 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.017P)2 + 0.2175P] where P = (Fo2 + 2Fc2)/3 |
2355 reflections | (Δ/σ)max = 0.002 |
118 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Mo(C5H5)Cl(CO)3] | V = 941.36 (14) Å3 |
Mr = 280.51 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.4958 (6) Å | µ = 1.65 mm−1 |
b = 11.7671 (10) Å | T = 173 K |
c = 12.5080 (11) Å | 0.11 × 0.06 × 0.04 mm |
β = 100.064 (2)° |
Bruker Kappa DUO APEXII diffractometer | 2355 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 1953 reflections with I > 2σ(I) |
Tmin = 0.840, Tmax = 0.937 | Rint = 0.035 |
10440 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.32 e Å−3 |
2355 reflections | Δρmin = −0.30 e Å−3 |
118 parameters |
Experimental. crystal mounted on a cryoloop |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.09443 (3) | 0.787273 (14) | 0.244289 (15) | 0.02342 (6) | |
Cl1 | 0.41891 (9) | 0.66982 (5) | 0.25627 (6) | 0.04278 (15) | |
O1 | 0.0004 (3) | 0.58701 (16) | 0.39597 (16) | 0.0539 (5) | |
O2 | −0.1151 (3) | 0.91712 (18) | 0.41495 (16) | 0.0580 (5) | |
O3 | 0.4393 (3) | 0.95672 (15) | 0.35712 (18) | 0.0560 (5) | |
C1 | 0.0387 (4) | 0.6605 (2) | 0.34363 (19) | 0.0355 (5) | |
C2 | −0.0421 (4) | 0.8694 (2) | 0.35115 (19) | 0.0366 (5) | |
C3 | 0.3158 (4) | 0.89401 (19) | 0.3179 (2) | 0.0344 (5) | |
C4 | −0.1349 (4) | 0.7141 (2) | 0.09365 (19) | 0.0388 (6) | |
H4 | −0.1983 | 0.6414 | 0.0946 | 0.047* | |
C5 | −0.2134 (4) | 0.8169 (2) | 0.1275 (2) | 0.0363 (5) | |
H5 | −0.3391 | 0.8258 | 0.1557 | 0.044* | |
C6 | −0.0732 (4) | 0.90483 (19) | 0.1122 (2) | 0.0385 (6) | |
H6 | −0.0886 | 0.9832 | 0.1273 | 0.046* | |
C7 | 0.0940 (4) | 0.8552 (2) | 0.07028 (19) | 0.0419 (6) | |
H7 | 0.2126 | 0.8937 | 0.0531 | 0.050* | |
C8 | 0.0520 (4) | 0.7379 (2) | 0.05865 (19) | 0.0446 (6) | |
H8 | 0.1380 | 0.6837 | 0.0312 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.02314 (10) | 0.02310 (9) | 0.02324 (10) | −0.00117 (7) | 0.00194 (7) | 0.00350 (8) |
Cl1 | 0.0329 (3) | 0.0364 (3) | 0.0588 (4) | 0.0086 (2) | 0.0075 (3) | 0.0075 (3) |
O1 | 0.0611 (13) | 0.0507 (11) | 0.0479 (11) | −0.0172 (9) | 0.0045 (10) | 0.0232 (9) |
O2 | 0.0513 (12) | 0.0742 (14) | 0.0516 (12) | 0.0026 (10) | 0.0174 (10) | −0.0223 (11) |
O3 | 0.0424 (11) | 0.0369 (10) | 0.0785 (15) | −0.0112 (8) | −0.0177 (10) | 0.0079 (10) |
C1 | 0.0326 (13) | 0.0396 (13) | 0.0320 (13) | −0.0052 (10) | −0.0005 (11) | 0.0033 (10) |
C2 | 0.0300 (13) | 0.0454 (14) | 0.0330 (13) | −0.0002 (11) | 0.0018 (11) | −0.0007 (12) |
C3 | 0.0275 (12) | 0.0299 (12) | 0.0426 (14) | 0.0008 (9) | −0.0028 (11) | 0.0081 (11) |
C4 | 0.0473 (15) | 0.0336 (12) | 0.0294 (12) | −0.0057 (11) | −0.0105 (11) | 0.0013 (11) |
C5 | 0.0310 (13) | 0.0451 (14) | 0.0286 (12) | 0.0008 (10) | −0.0066 (11) | 0.0023 (11) |
C6 | 0.0492 (15) | 0.0291 (12) | 0.0312 (13) | 0.0024 (10) | −0.0096 (12) | 0.0081 (10) |
C7 | 0.0450 (15) | 0.0535 (15) | 0.0261 (12) | −0.0093 (12) | 0.0031 (11) | 0.0133 (12) |
C8 | 0.0574 (18) | 0.0514 (16) | 0.0226 (12) | 0.0123 (13) | 0.0008 (12) | −0.0036 (11) |
Mo1—C2 | 1.980 (2) | O3—C3 | 1.136 (3) |
Mo1—C3 | 2.008 (2) | C4—C8 | 1.390 (4) |
Mo1—C1 | 2.014 (2) | C4—C5 | 1.407 (3) |
Mo1—C6 | 2.280 (2) | C4—H4 | 0.9500 |
Mo1—C5 | 2.288 (2) | C5—C6 | 1.413 (3) |
Mo1—C7 | 2.318 (2) | C5—H5 | 0.9500 |
Mo1—C4 | 2.352 (2) | C6—C7 | 1.412 (4) |
Mo1—C8 | 2.363 (2) | C6—H6 | 0.9500 |
Mo1—Cl1 | 2.5030 (6) | C7—C8 | 1.410 (4) |
O1—C1 | 1.138 (3) | C7—H7 | 0.9500 |
O2—C2 | 1.145 (3) | C8—H8 | 0.9500 |
C2—Mo1—C3 | 75.80 (10) | C8—Mo1—Cl1 | 82.84 (7) |
C2—Mo1—C1 | 78.15 (10) | O1—C1—Mo1 | 176.8 (2) |
C3—Mo1—C1 | 111.84 (10) | O2—C2—Mo1 | 177.9 (2) |
C2—Mo1—C6 | 88.85 (10) | O3—C3—Mo1 | 177.9 (2) |
C3—Mo1—C6 | 99.54 (9) | C8—C4—C5 | 107.7 (2) |
C1—Mo1—C6 | 141.41 (9) | C8—C4—Mo1 | 73.28 (14) |
C2—Mo1—C5 | 84.97 (10) | C5—C4—Mo1 | 69.89 (13) |
C3—Mo1—C5 | 132.35 (9) | C8—C4—H4 | 126.2 |
C1—Mo1—C5 | 106.00 (9) | C5—C4—H4 | 126.2 |
C6—Mo1—C5 | 36.04 (8) | Mo1—C4—H4 | 122.4 |
C2—Mo1—C7 | 122.57 (10) | C4—C5—C6 | 108.2 (2) |
C3—Mo1—C7 | 95.63 (9) | C4—C5—Mo1 | 74.84 (14) |
C1—Mo1—C7 | 149.74 (10) | C6—C5—Mo1 | 71.69 (14) |
C6—Mo1—C7 | 35.74 (9) | C4—C5—H5 | 125.9 |
C5—Mo1—C7 | 59.35 (9) | C6—C5—H5 | 125.9 |
C2—Mo1—C4 | 115.08 (9) | Mo1—C5—H5 | 119.4 |
C3—Mo1—C4 | 154.06 (9) | C7—C6—C5 | 107.7 (2) |
C1—Mo1—C4 | 93.79 (9) | C7—C6—Mo1 | 73.59 (14) |
C6—Mo1—C4 | 59.08 (9) | C5—C6—Mo1 | 72.27 (13) |
C5—Mo1—C4 | 35.26 (9) | C7—C6—H6 | 126.2 |
C7—Mo1—C4 | 58.49 (9) | C5—C6—H6 | 126.2 |
C2—Mo1—C8 | 142.61 (10) | Mo1—C6—H6 | 119.8 |
C3—Mo1—C8 | 123.76 (10) | C8—C7—C6 | 107.2 (2) |
C1—Mo1—C8 | 114.93 (10) | C8—C7—Mo1 | 74.20 (14) |
C6—Mo1—C8 | 58.54 (9) | C6—C7—Mo1 | 70.67 (13) |
C5—Mo1—C8 | 58.07 (9) | C8—C7—H7 | 126.4 |
C7—Mo1—C8 | 35.04 (9) | C6—C7—H7 | 126.4 |
C4—Mo1—C8 | 34.29 (9) | Mo1—C7—H7 | 120.6 |
C2—Mo1—Cl1 | 134.49 (7) | C4—C8—C7 | 109.2 (2) |
C3—Mo1—Cl1 | 77.86 (7) | C4—C8—Mo1 | 72.43 (14) |
C1—Mo1—Cl1 | 78.15 (7) | C7—C8—Mo1 | 70.76 (13) |
C6—Mo1—Cl1 | 131.96 (7) | C4—C8—H8 | 125.4 |
C5—Mo1—Cl1 | 139.05 (7) | C7—C8—H8 | 125.4 |
C7—Mo1—Cl1 | 96.29 (7) | Mo1—C8—H8 | 123.0 |
C4—Mo1—Cl1 | 104.76 (6) | ||
C2—Mo1—C1—O1 | 111 (4) | C4—C5—C6—C7 | −0.9 (3) |
C3—Mo1—C1—O1 | −180 (100) | Mo1—C5—C6—C7 | 65.60 (17) |
C6—Mo1—C1—O1 | 38 (4) | C4—C5—C6—Mo1 | −66.49 (17) |
C5—Mo1—C1—O1 | 30 (4) | C2—Mo1—C6—C7 | 161.76 (16) |
C7—Mo1—C1—O1 | −26 (4) | C3—Mo1—C6—C7 | 86.37 (16) |
C4—Mo1—C1—O1 | −4 (4) | C1—Mo1—C6—C7 | −129.00 (18) |
C8—Mo1—C1—O1 | −32 (4) | C5—Mo1—C6—C7 | −115.2 (2) |
Cl1—Mo1—C1—O1 | −108 (4) | C4—Mo1—C6—C7 | −77.83 (16) |
C3—Mo1—C2—O2 | −31 (6) | C8—Mo1—C6—C7 | −37.53 (15) |
C1—Mo1—C2—O2 | 86 (6) | Cl1—Mo1—C6—C7 | 4.16 (18) |
C6—Mo1—C2—O2 | −131 (6) | C2—Mo1—C6—C5 | −83.02 (16) |
C5—Mo1—C2—O2 | −167 (6) | C3—Mo1—C6—C5 | −158.41 (15) |
C7—Mo1—C2—O2 | −119 (6) | C1—Mo1—C6—C5 | −13.8 (2) |
C4—Mo1—C2—O2 | 174 (6) | C7—Mo1—C6—C5 | 115.2 (2) |
C8—Mo1—C2—O2 | −159 (6) | C4—Mo1—C6—C5 | 37.39 (14) |
Cl1—Mo1—C2—O2 | 26 (6) | C8—Mo1—C6—C5 | 77.69 (16) |
C2—Mo1—C3—O3 | −94 (6) | Cl1—Mo1—C6—C5 | 119.38 (14) |
C1—Mo1—C3—O3 | −165 (6) | C5—C6—C7—C8 | 1.0 (3) |
C6—Mo1—C3—O3 | −7 (6) | Mo1—C6—C7—C8 | 65.74 (17) |
C5—Mo1—C3—O3 | −24 (6) | C5—C6—C7—Mo1 | −64.72 (17) |
C7—Mo1—C3—O3 | 28 (6) | C2—Mo1—C7—C8 | −136.98 (16) |
C4—Mo1—C3—O3 | 25 (7) | C3—Mo1—C7—C8 | 146.30 (16) |
C8—Mo1—C3—O3 | 51 (6) | C1—Mo1—C7—C8 | −9.3 (3) |
Cl1—Mo1—C3—O3 | 124 (6) | C6—Mo1—C7—C8 | −115.2 (2) |
C2—Mo1—C4—C8 | 150.55 (15) | C5—Mo1—C7—C8 | −76.95 (17) |
C3—Mo1—C4—C8 | 40.5 (3) | C4—Mo1—C7—C8 | −35.54 (15) |
C1—Mo1—C4—C8 | −130.76 (16) | Cl1—Mo1—C7—C8 | 67.94 (15) |
C6—Mo1—C4—C8 | 78.38 (16) | C2—Mo1—C7—C6 | −21.80 (19) |
C5—Mo1—C4—C8 | 116.6 (2) | C3—Mo1—C7—C6 | −98.53 (16) |
C7—Mo1—C4—C8 | 36.33 (15) | C1—Mo1—C7—C6 | 105.9 (2) |
Cl1—Mo1—C4—C8 | −52.03 (15) | C5—Mo1—C7—C6 | 38.23 (14) |
C2—Mo1—C4—C5 | 33.94 (18) | C4—Mo1—C7—C6 | 79.64 (16) |
C3—Mo1—C4—C5 | −76.1 (3) | C8—Mo1—C7—C6 | 115.2 (2) |
C1—Mo1—C4—C5 | 112.63 (15) | Cl1—Mo1—C7—C6 | −176.89 (14) |
C6—Mo1—C4—C5 | −38.23 (14) | C5—C4—C8—C7 | 0.2 (3) |
C7—Mo1—C4—C5 | −80.28 (16) | Mo1—C4—C8—C7 | −61.57 (17) |
C8—Mo1—C4—C5 | −116.6 (2) | C5—C4—C8—Mo1 | 61.80 (16) |
Cl1—Mo1—C4—C5 | −168.64 (13) | C6—C7—C8—C4 | −0.8 (3) |
C8—C4—C5—C6 | 0.4 (3) | Mo1—C7—C8—C4 | 62.62 (18) |
Mo1—C4—C5—C6 | 64.41 (17) | C6—C7—C8—Mo1 | −63.39 (17) |
C8—C4—C5—Mo1 | −64.00 (17) | C2—Mo1—C8—C4 | −47.2 (2) |
C2—Mo1—C5—C4 | −149.49 (16) | C3—Mo1—C8—C4 | −160.02 (14) |
C3—Mo1—C5—C4 | 144.94 (15) | C1—Mo1—C8—C4 | 56.46 (17) |
C1—Mo1—C5—C4 | −73.36 (16) | C6—Mo1—C8—C4 | −80.10 (16) |
C6—Mo1—C5—C4 | 115.5 (2) | C5—Mo1—C8—C4 | −37.46 (14) |
C7—Mo1—C5—C4 | 77.63 (16) | C7—Mo1—C8—C4 | −118.4 (2) |
C8—Mo1—C5—C4 | 36.40 (14) | Cl1—Mo1—C8—C4 | 129.80 (14) |
Cl1—Mo1—C5—C4 | 16.90 (19) | C2—Mo1—C8—C7 | 71.2 (2) |
C2—Mo1—C5—C6 | 94.97 (16) | C3—Mo1—C8—C7 | −41.62 (19) |
C3—Mo1—C5—C6 | 29.4 (2) | C1—Mo1—C8—C7 | 174.86 (15) |
C1—Mo1—C5—C6 | 171.11 (15) | C6—Mo1—C8—C7 | 38.30 (15) |
C7—Mo1—C5—C6 | −37.90 (15) | C5—Mo1—C8—C7 | 80.93 (17) |
C4—Mo1—C5—C6 | −115.5 (2) | C4—Mo1—C8—C7 | 118.4 (2) |
C8—Mo1—C5—C6 | −79.13 (16) | Cl1—Mo1—C8—C7 | −111.81 (16) |
Cl1—Mo1—C5—C6 | −98.64 (15) |
Experimental details
Crystal data | |
Chemical formula | [Mo(C5H5)Cl(CO)3] |
Mr | 280.51 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 6.4958 (6), 11.7671 (10), 12.5080 (11) |
β (°) | 100.064 (2) |
V (Å3) | 941.36 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.65 |
Crystal size (mm) | 0.11 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Bruker Kappa DUO APEXII |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.840, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10440, 2355, 1953 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.046, 1.01 |
No. of reflections | 2355 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.30 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).
Acknowledgements
We acknowlege the finacial support from the NRF (THUTHUKA), the University of the Western Cape and Sanate Research.
References
Albright, M. J., Glick, M. D. & Oliver, J. P. (1978). J. Organomet. Chem. 161, 221–231. CSD CrossRef CAS Web of Science Google Scholar
Amor, F., Royo, P., Spaniol, T. P. & Okuda, J. (2000). J. Organomet. Chem. 604, 126–131. Web of Science CSD CrossRef CAS Google Scholar
Arzoumanian, H. (1998). Coord. Chem. Rev. 178–180, 191–202. Web of Science CrossRef CAS Google Scholar
Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8. Web of Science CrossRef CAS Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chaiwasie, S. & Fenn, R. H. (1968). Acta Cryst. B24, 525–529. CSD CrossRef IUCr Journals Web of Science Google Scholar
Churchill, M. R. & Bueno, C. (1981). Inorg. Chem. 20, 2197–2202. Google Scholar
Freund, C., Abrantes, M. & Kühn, F. E. (2006). J. Organomet. Chem. 691, 3718–3729. Web of Science CrossRef CAS Google Scholar
Karunadasa, H. I., Chang, C. J. & Long, J. R. (2010). Nature (London), 464, 1329–1323. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mays, M. J. & Robb, J. D. (1968). J. Chem. Soc. A, pp. 329–332. CrossRef Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The oxo-complexes of transition metals, group 6 are very useful in various catalytic applications. Among the numerous transition metal-oxo compounds that have been used as catalysts, molybdenum is probably the element that stands out as the most investigated for oxygen atom transfer reactions (Arzoumanian 1998). Remarkably, most recently, molybdenum derivative has been used to generate hydrogen from water (Karunadasa et al., 2010). While investigating catalytic epoxidation reactions (Freund et al., 2006), we prepared transition metalcarbonyl complexes containing nitrogen bases, chloro- and cyclopentadienyl(Cp)ligands. This compound could easily be oxidized to the dioxo-molybdenum (IV)complexes without losing the attached ligands. Trying to grow crystals of this complex by slow diffusion in a fridge, the titled compound was obtained insted, probably as a decomposition product. In the titled compound, the ligands display a piano stool arrangement. Notably, the carbonyls and the chloride ligands are spaced by the average angle of 77.49°. The Mo-C2 bond trans to the chloride, Cl1, atom [1.980 (2) Å] is noticeably shorter than the others, Mo–C1, 2.014 (2) and M–C3, 2.008 (2) Å, possibly due to the well-known trans effect. The distance between the Mo atom and the C5, C6 and C7 atoms are observed to be shorter than those between Mo and C4 and C8 because of the electronic repulsion between the electronegative Cl atom and the cyclopentadienyl ring electrons. The molecular structure of the title compound (I) is a new polymorph and differ from the structures reported (Chaiwasie et al. 1968; Churchill et al. 1981; Albright et al. 1978; Mays et al.1968). For example, the cell dimensions reported by Chaiwasie et al. (1968) is significantly different from our values (see crystal data).