metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­carbonyl­chlorido(η5-cyclo­penta­dien­yl)molybdenum(II)

aUniversity of the Western Cape, Private Bag X17, Bellville 7535, South Africa
*Correspondence e-mail: monani@uwc.ac.za

(Received 16 February 2012; accepted 25 February 2012; online 3 March 2012)

The structure of the title compound, [Mo(C5H5)Cl(CO)3], reveals a pseudo-square-pyramidal piano-stool coordination around the MoII ion, which is surrounded by a cyclo­penta­dienyl ring, three carbonyl groups and a chloride ligand.

Related literature

For related structures, see: Chaiwasie & Fenn (1968[Chaiwasie, S. & Fenn, R. H. (1968). Acta Cryst. B24, 525-529.]); Churchill & Bueno (1981[Churchill, M. R. & Bueno, C. (1981). Inorg. Chem. 20, 2197-2202.]); Albright et al. (1978)[Albright, M. J., Glick, M. D. & Oliver, J. P. (1978). J. Organomet. Chem. 161, 221-231.]; Mays & Robb (1968[Mays, M. J. & Robb, J. D. (1968). J. Chem. Soc. A, pp. 329-332.]). For applications of this class of compounds, see: Arzoumanian (1998[Arzoumanian, H. (1998). Coord. Chem. Rev. 178-180, 191-202.]); Freund et al. (2006[Freund, C., Abrantes, M. & Kühn, F. E. (2006). J. Organomet. Chem. 691, 3718-3729.]); Karunadasa et al. (2010[Karunadasa, H. I., Chang, C. J. & Long, J. R. (2010). Nature (London), 464, 1329-1323.]). For the synthesis, see: Amor et al. (2000[Amor, F., Royo, P., Spaniol, T. P. & Okuda, J. (2000). J. Organomet. Chem. 604, 126-131.]); Atwood & Barbour (2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C5H5)Cl(CO)3]

  • Mr = 280.51

  • Monoclinic, P 21 /n

  • a = 6.4958 (6) Å

  • b = 11.7671 (10) Å

  • c = 12.5080 (11) Å

  • β = 100.064 (2)°

  • V = 941.36 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 173 K

  • 0.11 × 0.06 × 0.04 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997)[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.] Tmin = 0.840, Tmax = 0.937

  • 10440 measured reflections

  • 2355 independent reflections

  • 1953 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.046

  • S = 1.01

  • 2355 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—C2 1.980 (2)
Mo1—C3 2.008 (2)
Mo1—C1 2.014 (2)
Mo1—Cl1 2.5030 (6)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

The oxo-complexes of transition metals, group 6 are very useful in various catalytic applications. Among the numerous transition metal-oxo compounds that have been used as catalysts, molybdenum is probably the element that stands out as the most investigated for oxygen atom transfer reactions (Arzoumanian 1998). Remarkably, most recently, molybdenum derivative has been used to generate hydrogen from water (Karunadasa et al., 2010). While investigating catalytic epoxidation reactions (Freund et al., 2006), we prepared transition metalcarbonyl complexes containing nitrogen bases, chloro- and cyclopentadienyl(Cp)ligands. This compound could easily be oxidized to the dioxo-molybdenum (IV)complexes without losing the attached ligands. Trying to grow crystals of this complex by slow diffusion in a fridge, the titled compound was obtained insted, probably as a decomposition product. In the titled compound, the ligands display a piano stool arrangement. Notably, the carbonyls and the chloride ligands are spaced by the average angle of 77.49°. The Mo-C2 bond trans to the chloride, Cl1, atom [1.980 (2) Å] is noticeably shorter than the others, Mo–C1, 2.014 (2) and M–C3, 2.008 (2) Å, possibly due to the well-known trans effect. The distance between the Mo atom and the C5, C6 and C7 atoms are observed to be shorter than those between Mo and C4 and C8 because of the electronic repulsion between the electronegative Cl atom and the cyclopentadienyl ring electrons. The molecular structure of the title compound (I) is a new polymorph and differ from the structures reported (Chaiwasie et al. 1968; Churchill et al. 1981; Albright et al. 1978; Mays et al.1968). For example, the cell dimensions reported by Chaiwasie et al. (1968) is significantly different from our values (see crystal data).

Related literature top

For related structures, see: Chaiwasie & Fenn(1968); Churchill & Bueno (1981); Albright et al. (1978); Mays & Robb (1968). For applications of this class of compounds, see: Arzoumanian (1998); Freund et al. (2006); Karunadasa et al. (2010). For related literature [on what subject?], see: Amor et al. (2000); Atwood & Barbour (2003).

Experimental top

A solution of cyclopentadienyl molybdenum (II) tricarbonyl dimer, [Cp (CO)3Mo]2, (0.506 g, 1.03 mmol) in THF (10 mL) was added to Na/Hg amalgam in a Schlenck tube with a tap at the bottom. The mixture was stirred until the brick red solution of, [Cp(CO)3Mo]2 turned pale-green to confirm the formation of [Cp(CO)3Mo]- anions. The reduced dimer solution was filtered under nitrogen to another Schlenk tube. An excess CCl4 was added and vigorously stired for 30 min. The solvent was removed under vaccum to give a light yellow solid. Yield:0.55 g (61%). The solution of the product in a minimum volume of dichloromethane was allowed to undergo a slow diffusion in an excess of hexane at 277 K for a few days. Block red single crystals suitable for X-ray analysis were obtained.

Refinement top

All non-hydrogen atoms were refined anisotropically. All the hydrogen peaks could be found in the difference electron density maps but were finally placed in idealized positions and refined in riding models with Uiso assigned 1.2 times those of their parent atoms and the constraint distances of C—H equal to 0.95 Å. The structure was refined to R factor of 0.0221.

Structure description top

The oxo-complexes of transition metals, group 6 are very useful in various catalytic applications. Among the numerous transition metal-oxo compounds that have been used as catalysts, molybdenum is probably the element that stands out as the most investigated for oxygen atom transfer reactions (Arzoumanian 1998). Remarkably, most recently, molybdenum derivative has been used to generate hydrogen from water (Karunadasa et al., 2010). While investigating catalytic epoxidation reactions (Freund et al., 2006), we prepared transition metalcarbonyl complexes containing nitrogen bases, chloro- and cyclopentadienyl(Cp)ligands. This compound could easily be oxidized to the dioxo-molybdenum (IV)complexes without losing the attached ligands. Trying to grow crystals of this complex by slow diffusion in a fridge, the titled compound was obtained insted, probably as a decomposition product. In the titled compound, the ligands display a piano stool arrangement. Notably, the carbonyls and the chloride ligands are spaced by the average angle of 77.49°. The Mo-C2 bond trans to the chloride, Cl1, atom [1.980 (2) Å] is noticeably shorter than the others, Mo–C1, 2.014 (2) and M–C3, 2.008 (2) Å, possibly due to the well-known trans effect. The distance between the Mo atom and the C5, C6 and C7 atoms are observed to be shorter than those between Mo and C4 and C8 because of the electronic repulsion between the electronegative Cl atom and the cyclopentadienyl ring electrons. The molecular structure of the title compound (I) is a new polymorph and differ from the structures reported (Chaiwasie et al. 1968; Churchill et al. 1981; Albright et al. 1978; Mays et al.1968). For example, the cell dimensions reported by Chaiwasie et al. (1968) is significantly different from our values (see crystal data).

For related structures, see: Chaiwasie & Fenn(1968); Churchill & Bueno (1981); Albright et al. (1978); Mays & Robb (1968). For applications of this class of compounds, see: Arzoumanian (1998); Freund et al. (2006); Karunadasa et al. (2010). For related literature [on what subject?], see: Amor et al. (2000); Atwood & Barbour (2003).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure with numbering scheme. Displacement ellipsoids are drawn at the 40% probability level for non-H atoms.
Tricarbonylchlorido(η5-cyclopentadienyl)molybdenum(II) top
Crystal data top
[Mo(C5H5)Cl(CO)3]F(000) = 544
Mr = 280.51F(000) = 544
Monoclinic, P21/nDx = 1.979 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.4958 (6) ÅCell parameters from 10440 reflections
b = 11.7671 (10) Åθ = 3.3–28.4°
c = 12.5080 (11) ŵ = 1.65 mm1
β = 100.064 (2)°T = 173 K
V = 941.36 (14) Å3Block, red
Z = 40.11 × 0.06 × 0.04 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
2355 independent reflections
Radiation source: fine-focus sealed tube1953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
0.5° φ 0.5° φ scans and ω scansθmax = 28.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 88
Tmin = 0.840, Tmax = 0.937k = 1515
10440 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.017P)2 + 0.2175P]
where P = (Fo2 + 2Fc2)/3
2355 reflections(Δ/σ)max = 0.002
118 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Mo(C5H5)Cl(CO)3]V = 941.36 (14) Å3
Mr = 280.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.4958 (6) ŵ = 1.65 mm1
b = 11.7671 (10) ÅT = 173 K
c = 12.5080 (11) Å0.11 × 0.06 × 0.04 mm
β = 100.064 (2)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
2355 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1953 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.937Rint = 0.035
10440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
2355 reflectionsΔρmin = 0.30 e Å3
118 parameters
Special details top

Experimental. crystal mounted on a cryoloop

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.09443 (3)0.787273 (14)0.244289 (15)0.02342 (6)
Cl10.41891 (9)0.66982 (5)0.25627 (6)0.04278 (15)
O10.0004 (3)0.58701 (16)0.39597 (16)0.0539 (5)
O20.1151 (3)0.91712 (18)0.41495 (16)0.0580 (5)
O30.4393 (3)0.95672 (15)0.35712 (18)0.0560 (5)
C10.0387 (4)0.6605 (2)0.34363 (19)0.0355 (5)
C20.0421 (4)0.8694 (2)0.35115 (19)0.0366 (5)
C30.3158 (4)0.89401 (19)0.3179 (2)0.0344 (5)
C40.1349 (4)0.7141 (2)0.09365 (19)0.0388 (6)
H40.19830.64140.09460.047*
C50.2134 (4)0.8169 (2)0.1275 (2)0.0363 (5)
H50.33910.82580.15570.044*
C60.0732 (4)0.90483 (19)0.1122 (2)0.0385 (6)
H60.08860.98320.12730.046*
C70.0940 (4)0.8552 (2)0.07028 (19)0.0419 (6)
H70.21260.89370.05310.050*
C80.0520 (4)0.7379 (2)0.05865 (19)0.0446 (6)
H80.13800.68370.03120.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02314 (10)0.02310 (9)0.02324 (10)0.00117 (7)0.00194 (7)0.00350 (8)
Cl10.0329 (3)0.0364 (3)0.0588 (4)0.0086 (2)0.0075 (3)0.0075 (3)
O10.0611 (13)0.0507 (11)0.0479 (11)0.0172 (9)0.0045 (10)0.0232 (9)
O20.0513 (12)0.0742 (14)0.0516 (12)0.0026 (10)0.0174 (10)0.0223 (11)
O30.0424 (11)0.0369 (10)0.0785 (15)0.0112 (8)0.0177 (10)0.0079 (10)
C10.0326 (13)0.0396 (13)0.0320 (13)0.0052 (10)0.0005 (11)0.0033 (10)
C20.0300 (13)0.0454 (14)0.0330 (13)0.0002 (11)0.0018 (11)0.0007 (12)
C30.0275 (12)0.0299 (12)0.0426 (14)0.0008 (9)0.0028 (11)0.0081 (11)
C40.0473 (15)0.0336 (12)0.0294 (12)0.0057 (11)0.0105 (11)0.0013 (11)
C50.0310 (13)0.0451 (14)0.0286 (12)0.0008 (10)0.0066 (11)0.0023 (11)
C60.0492 (15)0.0291 (12)0.0312 (13)0.0024 (10)0.0096 (12)0.0081 (10)
C70.0450 (15)0.0535 (15)0.0261 (12)0.0093 (12)0.0031 (11)0.0133 (12)
C80.0574 (18)0.0514 (16)0.0226 (12)0.0123 (13)0.0008 (12)0.0036 (11)
Geometric parameters (Å, º) top
Mo1—C21.980 (2)O3—C31.136 (3)
Mo1—C32.008 (2)C4—C81.390 (4)
Mo1—C12.014 (2)C4—C51.407 (3)
Mo1—C62.280 (2)C4—H40.9500
Mo1—C52.288 (2)C5—C61.413 (3)
Mo1—C72.318 (2)C5—H50.9500
Mo1—C42.352 (2)C6—C71.412 (4)
Mo1—C82.363 (2)C6—H60.9500
Mo1—Cl12.5030 (6)C7—C81.410 (4)
O1—C11.138 (3)C7—H70.9500
O2—C21.145 (3)C8—H80.9500
C2—Mo1—C375.80 (10)C8—Mo1—Cl182.84 (7)
C2—Mo1—C178.15 (10)O1—C1—Mo1176.8 (2)
C3—Mo1—C1111.84 (10)O2—C2—Mo1177.9 (2)
C2—Mo1—C688.85 (10)O3—C3—Mo1177.9 (2)
C3—Mo1—C699.54 (9)C8—C4—C5107.7 (2)
C1—Mo1—C6141.41 (9)C8—C4—Mo173.28 (14)
C2—Mo1—C584.97 (10)C5—C4—Mo169.89 (13)
C3—Mo1—C5132.35 (9)C8—C4—H4126.2
C1—Mo1—C5106.00 (9)C5—C4—H4126.2
C6—Mo1—C536.04 (8)Mo1—C4—H4122.4
C2—Mo1—C7122.57 (10)C4—C5—C6108.2 (2)
C3—Mo1—C795.63 (9)C4—C5—Mo174.84 (14)
C1—Mo1—C7149.74 (10)C6—C5—Mo171.69 (14)
C6—Mo1—C735.74 (9)C4—C5—H5125.9
C5—Mo1—C759.35 (9)C6—C5—H5125.9
C2—Mo1—C4115.08 (9)Mo1—C5—H5119.4
C3—Mo1—C4154.06 (9)C7—C6—C5107.7 (2)
C1—Mo1—C493.79 (9)C7—C6—Mo173.59 (14)
C6—Mo1—C459.08 (9)C5—C6—Mo172.27 (13)
C5—Mo1—C435.26 (9)C7—C6—H6126.2
C7—Mo1—C458.49 (9)C5—C6—H6126.2
C2—Mo1—C8142.61 (10)Mo1—C6—H6119.8
C3—Mo1—C8123.76 (10)C8—C7—C6107.2 (2)
C1—Mo1—C8114.93 (10)C8—C7—Mo174.20 (14)
C6—Mo1—C858.54 (9)C6—C7—Mo170.67 (13)
C5—Mo1—C858.07 (9)C8—C7—H7126.4
C7—Mo1—C835.04 (9)C6—C7—H7126.4
C4—Mo1—C834.29 (9)Mo1—C7—H7120.6
C2—Mo1—Cl1134.49 (7)C4—C8—C7109.2 (2)
C3—Mo1—Cl177.86 (7)C4—C8—Mo172.43 (14)
C1—Mo1—Cl178.15 (7)C7—C8—Mo170.76 (13)
C6—Mo1—Cl1131.96 (7)C4—C8—H8125.4
C5—Mo1—Cl1139.05 (7)C7—C8—H8125.4
C7—Mo1—Cl196.29 (7)Mo1—C8—H8123.0
C4—Mo1—Cl1104.76 (6)
C2—Mo1—C1—O1111 (4)C4—C5—C6—C70.9 (3)
C3—Mo1—C1—O1180 (100)Mo1—C5—C6—C765.60 (17)
C6—Mo1—C1—O138 (4)C4—C5—C6—Mo166.49 (17)
C5—Mo1—C1—O130 (4)C2—Mo1—C6—C7161.76 (16)
C7—Mo1—C1—O126 (4)C3—Mo1—C6—C786.37 (16)
C4—Mo1—C1—O14 (4)C1—Mo1—C6—C7129.00 (18)
C8—Mo1—C1—O132 (4)C5—Mo1—C6—C7115.2 (2)
Cl1—Mo1—C1—O1108 (4)C4—Mo1—C6—C777.83 (16)
C3—Mo1—C2—O231 (6)C8—Mo1—C6—C737.53 (15)
C1—Mo1—C2—O286 (6)Cl1—Mo1—C6—C74.16 (18)
C6—Mo1—C2—O2131 (6)C2—Mo1—C6—C583.02 (16)
C5—Mo1—C2—O2167 (6)C3—Mo1—C6—C5158.41 (15)
C7—Mo1—C2—O2119 (6)C1—Mo1—C6—C513.8 (2)
C4—Mo1—C2—O2174 (6)C7—Mo1—C6—C5115.2 (2)
C8—Mo1—C2—O2159 (6)C4—Mo1—C6—C537.39 (14)
Cl1—Mo1—C2—O226 (6)C8—Mo1—C6—C577.69 (16)
C2—Mo1—C3—O394 (6)Cl1—Mo1—C6—C5119.38 (14)
C1—Mo1—C3—O3165 (6)C5—C6—C7—C81.0 (3)
C6—Mo1—C3—O37 (6)Mo1—C6—C7—C865.74 (17)
C5—Mo1—C3—O324 (6)C5—C6—C7—Mo164.72 (17)
C7—Mo1—C3—O328 (6)C2—Mo1—C7—C8136.98 (16)
C4—Mo1—C3—O325 (7)C3—Mo1—C7—C8146.30 (16)
C8—Mo1—C3—O351 (6)C1—Mo1—C7—C89.3 (3)
Cl1—Mo1—C3—O3124 (6)C6—Mo1—C7—C8115.2 (2)
C2—Mo1—C4—C8150.55 (15)C5—Mo1—C7—C876.95 (17)
C3—Mo1—C4—C840.5 (3)C4—Mo1—C7—C835.54 (15)
C1—Mo1—C4—C8130.76 (16)Cl1—Mo1—C7—C867.94 (15)
C6—Mo1—C4—C878.38 (16)C2—Mo1—C7—C621.80 (19)
C5—Mo1—C4—C8116.6 (2)C3—Mo1—C7—C698.53 (16)
C7—Mo1—C4—C836.33 (15)C1—Mo1—C7—C6105.9 (2)
Cl1—Mo1—C4—C852.03 (15)C5—Mo1—C7—C638.23 (14)
C2—Mo1—C4—C533.94 (18)C4—Mo1—C7—C679.64 (16)
C3—Mo1—C4—C576.1 (3)C8—Mo1—C7—C6115.2 (2)
C1—Mo1—C4—C5112.63 (15)Cl1—Mo1—C7—C6176.89 (14)
C6—Mo1—C4—C538.23 (14)C5—C4—C8—C70.2 (3)
C7—Mo1—C4—C580.28 (16)Mo1—C4—C8—C761.57 (17)
C8—Mo1—C4—C5116.6 (2)C5—C4—C8—Mo161.80 (16)
Cl1—Mo1—C4—C5168.64 (13)C6—C7—C8—C40.8 (3)
C8—C4—C5—C60.4 (3)Mo1—C7—C8—C462.62 (18)
Mo1—C4—C5—C664.41 (17)C6—C7—C8—Mo163.39 (17)
C8—C4—C5—Mo164.00 (17)C2—Mo1—C8—C447.2 (2)
C2—Mo1—C5—C4149.49 (16)C3—Mo1—C8—C4160.02 (14)
C3—Mo1—C5—C4144.94 (15)C1—Mo1—C8—C456.46 (17)
C1—Mo1—C5—C473.36 (16)C6—Mo1—C8—C480.10 (16)
C6—Mo1—C5—C4115.5 (2)C5—Mo1—C8—C437.46 (14)
C7—Mo1—C5—C477.63 (16)C7—Mo1—C8—C4118.4 (2)
C8—Mo1—C5—C436.40 (14)Cl1—Mo1—C8—C4129.80 (14)
Cl1—Mo1—C5—C416.90 (19)C2—Mo1—C8—C771.2 (2)
C2—Mo1—C5—C694.97 (16)C3—Mo1—C8—C741.62 (19)
C3—Mo1—C5—C629.4 (2)C1—Mo1—C8—C7174.86 (15)
C1—Mo1—C5—C6171.11 (15)C6—Mo1—C8—C738.30 (15)
C7—Mo1—C5—C637.90 (15)C5—Mo1—C8—C780.93 (17)
C4—Mo1—C5—C6115.5 (2)C4—Mo1—C8—C7118.4 (2)
C8—Mo1—C5—C679.13 (16)Cl1—Mo1—C8—C7111.81 (16)
Cl1—Mo1—C5—C698.64 (15)

Experimental details

Crystal data
Chemical formula[Mo(C5H5)Cl(CO)3]
Mr280.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)6.4958 (6), 11.7671 (10), 12.5080 (11)
β (°) 100.064 (2)
V3)941.36 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.11 × 0.06 × 0.04
Data collection
DiffractometerBruker Kappa DUO APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.840, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
10440, 2355, 1953
Rint0.035
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.046, 1.01
No. of reflections2355
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Selected bond lengths (Å) top
Mo1—C21.980 (2)Mo1—C12.014 (2)
Mo1—C32.008 (2)Mo1—Cl12.5030 (6)
 

Acknowledgements

We acknowlege the finacial support from the NRF (THUTHUKA), the University of the Western Cape and Sanate Research.

References

First citationAlbright, M. J., Glick, M. D. & Oliver, J. P. (1978). J. Organomet. Chem. 161, 221–231.  CSD CrossRef CAS Web of Science Google Scholar
First citationAmor, F., Royo, P., Spaniol, T. P. & Okuda, J. (2000). J. Organomet. Chem. 604, 126–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationArzoumanian, H. (1998). Coord. Chem. Rev. 178–180, 191–202.  Web of Science CrossRef CAS Google Scholar
First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaiwasie, S. & Fenn, R. H. (1968). Acta Cryst. B24, 525–529.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationChurchill, M. R. & Bueno, C. (1981). Inorg. Chem. 20, 2197–2202.  Google Scholar
First citationFreund, C., Abrantes, M. & Kühn, F. E. (2006). J. Organomet. Chem. 691, 3718–3729.  Web of Science CrossRef CAS Google Scholar
First citationKarunadasa, H. I., Chang, C. J. & Long, J. R. (2010). Nature (London), 464, 1329–1323.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMays, M. J. & Robb, J. D. (1968). J. Chem. Soc. A, pp. 329–332.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds