organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1091-o1092

rac-[3-Hy­droxy-6,9-di­methyl-6-(4-methylpent-3-en-1-yl)-6a,7,8,9,10,10a-hexa­hydro-6H-1,9-epoxybenzo[c]chromen-4-yl](phenyl)methanone

aDepartment Chemistry, Faculty Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, and bDepartment Chemistry, Faculty Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Correspondence e-mail: gwen@science.upm.edu.my

(Received 23 February 2012; accepted 12 March 2012; online 17 March 2012)

The title compound congestiflorone, C28H32O4, which was isolated from the stem bark of Mesua congestiflora, consists of a benzophenone skeleton with two attached pyran rings to which a cyclo­hexane ring and a C6 side chain are bonded. The benzene ring is significantly distorted from planarity (r.m.s. deviation = 0.0007 Å) due to the constraints imposed by junctions with the two pyran rings. The cyclo­hexane ring is in a chair conformation, one pyran ring is in a boat conformation, while the other is a distorted chair. The phenyl and benzene rings make a dihedral angle of 55.85 (9)°. An intra­molecular O—H⋯O hydrogen bond is observed. In the crystal, mol­ecules are linked via C—H⋯O inter­actions.

Related literature

For phytochemical investigations of Mesua congestiflora, see: Awang et al. (2010[Awang, K., Chan, G., Litaudon, M., Ismail, N. H., Martin, M. T. & Gueritte, F. (2010). Bioorg. Med. Chem. 18, 7873-7877.]); Bala & Seshadri (1971[Bala, K. R. & Seshadri, T. R. (1971). Phytochemistry, 10, 1131-1134.]); Ee et al. (2005b[Ee, G. C. L., Lim, C. K., Rahmat, A. & Lee, H. L. (2005b). Trop. Biomed. 22., 99-102.]); Bandaranayak et al. (1975[Bandaranayak, W. M., Selliah, S. S. & Sultanbawa, M. U. S. (1975). Phytochemistry, 14, 265-269.]); Morel et al. (1999[Morel, C., Guilet, D., Oger, J. M., Seraphin, D., Sevenet, T., Wiart, C., Hadi, A. H. A., Richomme, P. & Bruneton, J. (1999). Phytochemistry, 50., 1243-1247.]); Walia & Mukerjee (1984[Walia, S. & Mukerjee, S. K. (1984). Phytochemistry, 23, 1816-1817.]). For the biological activity of Congestiflora species, see: Pinto et al. (1994[Pinto, D. C. G., Fuzzati, N., Pazmino, X. C. & Hostettmann, K. (1994). Phytochemistry, 3. 875-878.]); Ee et al. (2005a[Ee, G. C. L., Lim, C. K., Cheow, Y. L. & Sukari, M. A. (2005a). Malays. J. Sci. 24, 183-185.]); Mazumder et al. (2004[Mazumder, R., Dastidar, S. G., Basu, S. P., Mazumder, A. & Singh, S. K. (2004). Phytother. Res. 18, 824-826.]); Verotta et al. (2004[Verotta, L., Lovaglio, E., Vidari, G., Finzi, P. V., Neri, M. G., Raimondi, A., Parapini, S., Taramelli, D., Riva, A. & Bombardelli, E. (2004). Phytochemistry, 65, 2867-2879.]); Huerta-Reyes et al. (2004[Huerta-Reyes, M., Basualdo Mdel, C., Abe, F., Jimenez-Estrada, M., Soler, C. & Reyes-Chilpa, R. (2004). Biol. Pharm. Bull. 27., 1471-1475.]). For related structures, see: Hua et al. (2008[Hua, S.-Z., Wang, X.-B., Luo, J.-G., Wang, J.-S. & Kong, L.-Y. (2008). Tetrahedron Lett. 49, 5658-5661.]); Liu et al. (2005[Liu, K.-Y., Gao, W.-Y., Zhang, T.-J., Chen, H.-X. & Zhou, B. (2005). Acta Cryst. E61, o391-o392.]). For a description of the Cambridge Structural Database, see Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.])

[Scheme 1]

Experimental

Crystal data
  • C28H32O4

  • Mr = 432.56

  • Triclinic, [P \overline 1]

  • a = 6.2022 (4) Å

  • b = 7.5220 (4) Å

  • c = 24.7673 (15) Å

  • α = 98.410 (5)°

  • β = 94.425 (5)°

  • γ = 94.200 (5)°

  • V = 1135.43 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 150 K

  • 0.29 × 0.09 × 0.05 mm

Data collection
  • Oxford Diffraction Gemin area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.942, Tmax = 0.968

  • 15011 measured reflections

  • 4340 independent reflections

  • 3423 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.00

  • 4321 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H181⋯O1i 1.00 2.60 3.563 (3) 162
O11—H111⋯O1 0.87 1.78 2.551 (3) 145
Symmetry code: (i) x-1, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Mesua congestiflora is native to Indonesia and is also distributed throughout Borneo, Sarawak. Previous phytochemical investigations on the genus show the existence of xanthones (Bandaranayak et al. 1975; Walia & Mukerjee 1984; Ee et al. 2005b), coumarins (Bandaranayak, Selliah et al. 1975; Morel, Guilet et al. 1999; Awang, Chan et al. 2010), terpenoids (Ee et al. 2005a) and essential oils (Bala & Seshadri 1971). These secondary metabolites have been extensively reported for their biological activities; for instance antifungal(Pinto et al. 1994), anticancer(Ee et al. 2005a), antibacterial (Mazumder, Dastidar et al. 2004; Verotta, Lovaglio et al. 2004), and anti-HIV-1(Huerta-Reyes et al. 2004). However, pharmacognosy and preliminary phytochemical analysis on this species have not been reported before.

The title compound (I), congestiflorone C28H32O4 skeleton comprises five 6-membered rings and a 1-methylpent-2-enyl side chain (Fig. 1). The skeleton is similar to that of Sumadain A (Hua, Wang et al. 2008) except for the absence of 2 methylene groups next to the carbonyl group. Dihedral angle of those two benzene rings was 55.85 (9)°. The benzene ring (C9—C10—C12—C13—C21—C22) is not planar (the largest deviation from the best least squares plane is 0.082 (2) Å at C22). This departure from planarity of the ring A might be caused by the constraint of two adjacent pyrane rings which adapt a distorted chair conformation and a boat conformation. The cyclohexane ring adapted a chair conformation and the puckering parameter is Q= 0.5635 (18), θ= 166.13 (18)°, Φ2= 93.4 (8)°. The conformations of pyran and cyclohexane rings are comparable to the structure of Sumadain A (Hua, Wang et al. 2008). The orientation of the 1-methylpent-2-enly (C25—C28) side chain with respect to the cyclohexane ring is indicated by the torsion angle of C19—C25—C26—C27 = 177.17 (16)° and C25—C26—C27—C28=144.0 (2)° [169.5 (3)° and 145.4 (4)° respectively in Hua, Wang et al. 2008]. The structure of the molecule exhibits an intramolecular O—H···O hydrogen bond (Table 1). In the crystal, molecules are linked via a intermolecular C—H···O hydrogen bonding in the a,b-plane (Fig. 2).

The cystallographic data of this crystal structure has been deposited at Cambridge Crystallographic Data Center with deposition number CCDC 849099. (Allen, 2002)

Related literature top

For phytochemical investigations of Mesua congestiflora, see: Awang et al. (2010); Bala & Seshadri (1971); Ee et al. (2005b); Bandaranayak et al. (1975); Morel et al. (1999); Walia & Mukerjee (1984). For the biological activity of Congestiflora species, see: Pinto et al. (1994); Ee et al. (2005a); Mazumder et al. (2004); Verotta et al. (2004); Huerta-Reyes et al. (2004). For related structures, see: Hua et al. (2008); Liu et al. (2005). For a description of the Cambridge Structural Database, see Allen (2002)

Experimental top

The stem bark of Mesua congestiflora was collected from the Sri Aman district in Sarawak, Malaysia. The sample (840 g) was milled, air-dried and ground, the powdered sample was extracted with n-hexane. The extract was dried under reduced pressure in a rotary evaporator to yield the hexane extract (5.50 g). Stepwise gradient systems using hexane/chloroform and chloroform/methanol or hexane/ethyl acetate and ethyl acetate/methanol, were applied for the separation and purification of the extract. Congestiflorone, a yellowish crystals with the melting point of 483 K were isolated. This compound was crystallised from slow evaporation of ethyl acetate at room temperature.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

Mesua congestiflora is native to Indonesia and is also distributed throughout Borneo, Sarawak. Previous phytochemical investigations on the genus show the existence of xanthones (Bandaranayak et al. 1975; Walia & Mukerjee 1984; Ee et al. 2005b), coumarins (Bandaranayak, Selliah et al. 1975; Morel, Guilet et al. 1999; Awang, Chan et al. 2010), terpenoids (Ee et al. 2005a) and essential oils (Bala & Seshadri 1971). These secondary metabolites have been extensively reported for their biological activities; for instance antifungal(Pinto et al. 1994), anticancer(Ee et al. 2005a), antibacterial (Mazumder, Dastidar et al. 2004; Verotta, Lovaglio et al. 2004), and anti-HIV-1(Huerta-Reyes et al. 2004). However, pharmacognosy and preliminary phytochemical analysis on this species have not been reported before.

The title compound (I), congestiflorone C28H32O4 skeleton comprises five 6-membered rings and a 1-methylpent-2-enyl side chain (Fig. 1). The skeleton is similar to that of Sumadain A (Hua, Wang et al. 2008) except for the absence of 2 methylene groups next to the carbonyl group. Dihedral angle of those two benzene rings was 55.85 (9)°. The benzene ring (C9—C10—C12—C13—C21—C22) is not planar (the largest deviation from the best least squares plane is 0.082 (2) Å at C22). This departure from planarity of the ring A might be caused by the constraint of two adjacent pyrane rings which adapt a distorted chair conformation and a boat conformation. The cyclohexane ring adapted a chair conformation and the puckering parameter is Q= 0.5635 (18), θ= 166.13 (18)°, Φ2= 93.4 (8)°. The conformations of pyran and cyclohexane rings are comparable to the structure of Sumadain A (Hua, Wang et al. 2008). The orientation of the 1-methylpent-2-enly (C25—C28) side chain with respect to the cyclohexane ring is indicated by the torsion angle of C19—C25—C26—C27 = 177.17 (16)° and C25—C26—C27—C28=144.0 (2)° [169.5 (3)° and 145.4 (4)° respectively in Hua, Wang et al. 2008]. The structure of the molecule exhibits an intramolecular O—H···O hydrogen bond (Table 1). In the crystal, molecules are linked via a intermolecular C—H···O hydrogen bonding in the a,b-plane (Fig. 2).

The cystallographic data of this crystal structure has been deposited at Cambridge Crystallographic Data Center with deposition number CCDC 849099. (Allen, 2002)

For phytochemical investigations of Mesua congestiflora, see: Awang et al. (2010); Bala & Seshadri (1971); Ee et al. (2005b); Bandaranayak et al. (1975); Morel et al. (1999); Walia & Mukerjee (1984). For the biological activity of Congestiflora species, see: Pinto et al. (1994); Ee et al. (2005a); Mazumder et al. (2004); Verotta et al. (2004); Huerta-Reyes et al. (2004). For related structures, see: Hua et al. (2008); Liu et al. (2005). For a description of the Cambridge Structural Database, see Allen (2002)

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound shows a 50% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond O11-H···O1 is observed.
[Figure 2] Fig. 2. The crystal packing of the title compound is viewed along the a axis. H atoms not involved in hydrogen bonds have been omitted for clarity. Hydrohen bonds are shown in dashed lines.
rac-[3-Hydroxy-6,9-dimethyl-6-(4-methylpent-3-en-1-yl)-6a,7,8,9,10,10a- hexahydro-6H-1,9-epoxybenzo[c]chromen-4-yl](phenyl)methanone top
Crystal data top
C28H32O4Z = 2
Mr = 432.56F(000) = 464
Triclinic, P1Dx = 1.265 Mg m3
Hall symbol: -P 1Melting point: 483 K
a = 6.2022 (4) ÅCu Kα radiation, λ = 1.54180 Å
b = 7.5220 (4) ÅCell parameters from 4627 reflections
c = 24.7673 (15) Åθ = 4–71°
α = 98.410 (5)°µ = 0.66 mm1
β = 94.425 (5)°T = 150 K
γ = 94.200 (5)°Needle, yellow
V = 1135.43 (12) Å30.29 × 0.09 × 0.05 mm
Data collection top
Oxford Diffraction Gemin area-detector
diffractometer
4340 independent reflections
Radiation source: sealed x-ray tube3423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω/2θ scansθmax = 71.2°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
h = 77
Tmin = 0.942, Tmax = 0.968k = 99
15011 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.117 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.61P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4321 reflectionsΔρmax = 0.39 e Å3
289 parametersΔρmin = 0.34 e Å3
0 restraints
Crystal data top
C28H32O4γ = 94.200 (5)°
Mr = 432.56V = 1135.43 (12) Å3
Triclinic, P1Z = 2
a = 6.2022 (4) ÅCu Kα radiation
b = 7.5220 (4) ŵ = 0.66 mm1
c = 24.7673 (15) ÅT = 150 K
α = 98.410 (5)°0.29 × 0.09 × 0.05 mm
β = 94.425 (5)°
Data collection top
Oxford Diffraction Gemin area-detector
diffractometer
4340 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
3423 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.968Rint = 0.034
15011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.00Δρmax = 0.39 e Å3
4321 reflectionsΔρmin = 0.34 e Å3
289 parameters
Special details top

Refinement. For this compound, 15011 numbers of reflections were collected and measured during the refinement. Symmetry related reflections were measured more than once and after merging the symmetry equivalent reflections there were only 4340 reflection left. 19 more reflections were filtered, as σ cutoff was set as -3 and (sinθ/x)set to>0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore numbers of reflection reduced to 4321.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.3916 (2)0.62936 (17)0.77877 (5)0.0320
C21.2067 (3)0.5510 (2)0.76653 (7)0.0250
C31.1384 (3)0.4954 (2)0.70701 (7)0.0263
C40.9367 (3)0.5313 (2)0.68404 (8)0.0291
C50.8872 (3)0.4939 (3)0.62773 (8)0.0365
C61.0351 (4)0.4162 (3)0.59461 (8)0.0431
C71.2346 (4)0.3778 (3)0.61725 (9)0.0447
C81.2880 (3)0.4204 (3)0.67332 (8)0.0355
C91.0615 (3)0.5227 (2)0.80880 (7)0.0235
C101.1140 (3)0.6170 (2)0.86326 (7)0.0255
O111.2907 (2)0.73655 (17)0.87537 (5)0.0336
C120.9944 (3)0.5844 (2)0.90629 (7)0.0267
C130.8146 (3)0.4582 (2)0.89609 (7)0.0239
O140.7243 (2)0.40329 (16)0.93968 (5)0.0282
C150.5848 (3)0.2316 (2)0.92940 (7)0.0255
C160.7221 (3)0.0698 (2)0.91977 (7)0.0263
C170.8289 (3)0.0419 (2)0.86545 (7)0.0251
C180.6761 (3)0.0648 (2)0.81520 (7)0.0224
C190.7858 (3)0.0839 (2)0.76156 (7)0.0235
O200.82634 (19)0.27776 (16)0.75412 (5)0.0252
C210.8751 (3)0.3983 (2)0.80136 (7)0.0220
C220.7405 (3)0.3818 (2)0.84248 (7)0.0222
C230.5588 (3)0.2361 (2)0.82988 (7)0.0217
C240.4288 (3)0.2301 (2)0.87914 (7)0.0252
C250.6276 (3)0.0004 (2)0.71244 (7)0.0263
C260.6933 (3)0.0294 (3)0.65592 (8)0.0363
C270.5303 (3)0.0667 (3)0.61092 (8)0.0320
C280.5695 (3)0.1476 (3)0.56176 (7)0.0294
C290.3899 (3)0.2423 (3)0.52118 (8)0.0404
C300.7924 (3)0.1539 (3)0.54199 (9)0.0430
C311.0059 (3)0.0067 (3)0.75961 (8)0.0304
C320.4671 (3)0.2328 (3)0.98082 (8)0.0319
H410.83140.58320.70730.0367*
H510.74880.52340.61220.0454*
H610.99990.38750.55570.0533*
H711.33670.32320.59420.0547*
H811.42950.39810.68910.0457*
H1211.03610.64400.94230.0345*
H1610.83740.07960.95030.0335*
H1620.62170.03820.92090.0328*
H1710.96030.12940.86790.0317*
H1720.88050.08120.85990.0324*
H1810.56620.04250.80700.0291*
H2310.46190.25840.79770.0269*
H2410.34110.33500.88460.0319*
H2420.32990.11900.87400.0317*
H2510.60910.13240.71370.0342*
H2520.48520.05080.71760.0341*
H2610.83650.01450.65050.0461*
H2620.70550.16030.65350.0467*
H2710.38140.06960.62000.0408*
H2910.39150.19290.48670.0632*
H2920.40650.37130.51410.0633*
H2930.24960.22600.53580.0628*
H3010.79490.10710.50700.0677*
H3020.83010.27770.53630.0685*
H3030.90080.07860.56790.0685*
H3111.05840.01410.72380.0482*
H3121.10940.07720.78790.0485*
H3130.99020.11900.76580.0489*
H3230.36890.12450.97700.0491*
H3220.56680.23571.01340.0499*
H3210.38150.33780.98560.0494*
H1111.37480.72250.84860.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0270 (7)0.0331 (7)0.0343 (7)0.0087 (6)0.0017 (5)0.0060 (6)
C20.0252 (9)0.0171 (9)0.0327 (10)0.0010 (7)0.0009 (7)0.0060 (7)
C30.0282 (9)0.0220 (9)0.0289 (9)0.0045 (7)0.0043 (7)0.0067 (7)
C40.0316 (10)0.0255 (10)0.0307 (10)0.0008 (8)0.0052 (8)0.0064 (8)
C50.0369 (11)0.0391 (12)0.0333 (11)0.0020 (9)0.0017 (8)0.0103 (9)
C60.0479 (13)0.0531 (14)0.0259 (10)0.0068 (11)0.0022 (9)0.0043 (9)
C70.0419 (12)0.0568 (14)0.0341 (11)0.0006 (10)0.0143 (9)0.0010 (10)
C80.0297 (10)0.0410 (12)0.0356 (11)0.0000 (9)0.0073 (8)0.0046 (9)
C90.0252 (9)0.0196 (9)0.0257 (9)0.0003 (7)0.0007 (7)0.0045 (7)
C100.0263 (9)0.0182 (9)0.0308 (10)0.0024 (7)0.0020 (7)0.0047 (7)
O110.0342 (7)0.0309 (7)0.0319 (7)0.0133 (6)0.0005 (6)0.0020 (6)
C120.0331 (10)0.0213 (9)0.0233 (9)0.0015 (8)0.0005 (7)0.0012 (7)
C130.0263 (9)0.0201 (9)0.0254 (9)0.0025 (7)0.0052 (7)0.0020 (7)
O140.0326 (7)0.0272 (7)0.0227 (6)0.0052 (5)0.0049 (5)0.0005 (5)
C150.0246 (9)0.0251 (9)0.0256 (9)0.0033 (7)0.0036 (7)0.0024 (7)
C160.0254 (9)0.0280 (10)0.0257 (9)0.0002 (7)0.0001 (7)0.0071 (7)
C170.0241 (9)0.0220 (9)0.0295 (9)0.0022 (7)0.0025 (7)0.0050 (7)
C180.0211 (8)0.0197 (9)0.0254 (9)0.0023 (7)0.0034 (7)0.0014 (7)
C190.0224 (9)0.0199 (9)0.0264 (9)0.0036 (7)0.0031 (7)0.0003 (7)
O200.0300 (7)0.0226 (6)0.0213 (6)0.0055 (5)0.0033 (5)0.0009 (5)
C210.0234 (8)0.0189 (9)0.0228 (9)0.0008 (7)0.0009 (7)0.0025 (7)
C220.0224 (8)0.0188 (9)0.0254 (9)0.0026 (7)0.0010 (7)0.0035 (7)
C230.0191 (8)0.0231 (9)0.0228 (9)0.0004 (7)0.0006 (7)0.0039 (7)
C240.0220 (9)0.0269 (9)0.0266 (9)0.0012 (7)0.0033 (7)0.0037 (7)
C250.0247 (9)0.0247 (9)0.0270 (9)0.0038 (7)0.0030 (7)0.0013 (7)
C260.0315 (10)0.0470 (13)0.0264 (10)0.0084 (9)0.0046 (8)0.0027 (9)
C270.0267 (9)0.0387 (11)0.0291 (10)0.0007 (8)0.0037 (8)0.0011 (8)
C280.0323 (10)0.0303 (10)0.0254 (9)0.0032 (8)0.0012 (8)0.0040 (8)
C290.0416 (12)0.0440 (13)0.0321 (11)0.0039 (10)0.0013 (9)0.0041 (9)
C300.0398 (12)0.0566 (14)0.0316 (11)0.0061 (10)0.0092 (9)0.0002 (10)
C310.0249 (9)0.0349 (11)0.0296 (10)0.0009 (8)0.0043 (7)0.0015 (8)
C320.0332 (10)0.0350 (11)0.0277 (10)0.0017 (8)0.0076 (8)0.0050 (8)
Geometric parameters (Å, º) top
O1—C21.245 (2)C18—C231.537 (2)
C2—C31.492 (3)C18—H1811.004
C2—C91.461 (2)C19—O201.502 (2)
C3—C41.395 (3)C19—C251.530 (2)
C3—C81.391 (3)C19—C311.523 (2)
C4—C51.388 (3)O20—C211.370 (2)
C4—H410.969C21—C221.379 (2)
C5—C61.382 (3)C22—C231.494 (2)
C5—H510.967C23—C241.518 (2)
C6—C71.386 (3)C23—H2311.003
C6—H610.961C24—H2410.990
C7—C81.387 (3)C24—H2420.986
C7—H710.959C25—C261.529 (2)
C8—H810.969C25—H2511.002
C9—C101.431 (2)C25—H2520.996
C9—C211.416 (2)C26—C271.506 (3)
C10—O111.351 (2)C26—H2610.982
C10—C121.385 (2)C26—H2620.993
O11—H1110.874C27—C281.328 (3)
C12—C131.393 (2)C27—H2710.967
C12—H1210.945C28—C291.503 (3)
C13—O141.357 (2)C28—C301.504 (3)
C13—C221.396 (2)C29—H2910.981
O14—C151.479 (2)C29—H2920.975
C15—C161.536 (2)C29—H2930.977
C15—C241.515 (2)C30—H3010.982
C15—C321.515 (2)C30—H3020.970
C16—C171.539 (2)C30—H3030.978
C16—H1610.991C31—H3110.976
C16—H1620.992C31—H3120.978
C17—C181.543 (2)C31—H3130.979
C17—H1711.001C32—H3230.969
C17—H1720.996C32—H3220.975
C18—C191.559 (2)C32—H3210.982
O1—C2—C3116.89 (16)O20—C19—C31105.61 (13)
O1—C2—C9120.99 (16)C25—C19—C31112.13 (14)
C3—C2—C9122.07 (15)C19—O20—C21115.62 (12)
C2—C3—C4121.53 (16)C9—C21—O20121.81 (15)
C2—C3—C8118.50 (16)C9—C21—C22122.22 (16)
C4—C3—C8119.73 (17)O20—C21—C22115.80 (15)
C3—C4—C5119.91 (18)C13—C22—C21118.67 (16)
C3—C4—H41120.2C13—C22—C23122.24 (15)
C5—C4—H41119.9C21—C22—C23116.14 (15)
C4—C5—C6120.00 (19)C18—C23—C22103.24 (13)
C4—C5—H51119.1C18—C23—C24112.94 (14)
C6—C5—H51120.9C22—C23—C24110.36 (14)
C5—C6—C7120.37 (19)C18—C23—H231110.6
C5—C6—H61120.2C22—C23—H231109.6
C7—C6—H61119.4C24—C23—H231109.9
C6—C7—C8119.9 (2)C23—C24—C15108.64 (14)
C6—C7—H71120.2C23—C24—H241110.7
C8—C7—H71119.9C15—C24—H241109.7
C3—C8—C7120.02 (19)C23—C24—H242110.5
C3—C8—H81119.9C15—C24—H242108.7
C7—C8—H81120.1H241—C24—H242108.4
C2—C9—C10119.22 (15)C19—C25—C26116.47 (15)
C2—C9—C21124.97 (16)C19—C25—H251106.8
C10—C9—C21115.68 (15)C26—C25—H251108.8
C9—C10—O11120.83 (16)C19—C25—H252107.8
C9—C10—C12122.15 (16)C26—C25—H252108.3
O11—C10—C12116.94 (16)H251—C25—H252108.4
C10—O11—H111109.2C25—C26—C27111.43 (16)
C10—C12—C13119.00 (16)C25—C26—H261109.8
C10—C12—H121120.7C27—C26—H261109.3
C13—C12—H121120.2C25—C26—H262109.7
C12—C13—O14118.03 (15)C27—C26—H262109.1
C12—C13—C22120.50 (16)H261—C26—H262107.4
O14—C13—C22121.31 (16)C26—C27—C28127.51 (18)
C13—O14—C15117.10 (13)C26—C27—H271114.7
O14—C15—C16110.88 (14)C28—C27—H271117.8
O14—C15—C24109.24 (14)C27—C28—C29121.68 (18)
C16—C15—C24108.97 (14)C27—C28—C30123.77 (18)
O14—C15—C32103.92 (14)C29—C28—C30114.55 (17)
C16—C15—C32112.01 (15)C28—C29—H291110.1
C24—C15—C32111.74 (15)C28—C29—H292110.3
C15—C16—C17116.82 (14)H291—C29—H292109.4
C15—C16—H161109.1C28—C29—H293109.9
C17—C16—H161108.3H291—C29—H293109.0
C15—C16—H162105.6H292—C29—H293108.0
C17—C16—H162108.1C28—C30—H301110.0
H161—C16—H162108.7C28—C30—H302109.5
C16—C17—C18113.52 (14)H301—C30—H302108.5
C16—C17—H171109.4C28—C30—H303111.4
C18—C17—H171108.8H301—C30—H303107.1
C16—C17—H172108.9H302—C30—H303110.3
C18—C17—H172109.1C19—C31—H311109.0
H171—C17—H172106.9C19—C31—H312109.6
C17—C18—C19116.21 (14)H311—C31—H312108.8
C17—C18—C23108.18 (14)C19—C31—H313109.2
C19—C18—C23106.99 (13)H311—C31—H313110.3
C17—C18—H181108.4H312—C31—H313109.9
C19—C18—H181107.7C15—C32—H323109.1
C23—C18—H181109.2C15—C32—H322112.2
C18—C19—O20111.90 (13)H323—C32—H322108.1
C18—C19—C25108.74 (14)C15—C32—H321109.6
O20—C19—C25104.37 (13)H323—C32—H321108.5
C18—C19—C31113.70 (14)H322—C32—H321109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H181···O1i1.002.603.563 (3)162
O11—H111···O10.871.782.551 (3)145
Symmetry code: (i) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC28H32O4
Mr432.56
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.2022 (4), 7.5220 (4), 24.7673 (15)
α, β, γ (°)98.410 (5), 94.425 (5), 94.200 (5)
V3)1135.43 (12)
Z2
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.29 × 0.09 × 0.05
Data collection
DiffractometerOxford Diffraction Gemin area-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.942, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
15011, 4340, 3423
Rint0.034
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.00
No. of reflections4321
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H181···O1i1.002.603.563 (3)162
O11—H111···O10.871.782.551 (3)145
Symmetry code: (i) x1, y1, z.
 

Acknowledgements

The authors are grateful to the Ministry of Science, Technology and Innovation (MOSTI) for a grant from the escience fund.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAwang, K., Chan, G., Litaudon, M., Ismail, N. H., Martin, M. T. & Gueritte, F. (2010). Bioorg. Med. Chem. 18, 7873–7877.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBala, K. R. & Seshadri, T. R. (1971). Phytochemistry, 10, 1131–1134.  CrossRef CAS Web of Science Google Scholar
First citationBandaranayak, W. M., Selliah, S. S. & Sultanbawa, M. U. S. (1975). Phytochemistry, 14, 265–269.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEe, G. C. L., Lim, C. K., Cheow, Y. L. & Sukari, M. A. (2005a). Malays. J. Sci. 24, 183–185.  Google Scholar
First citationEe, G. C. L., Lim, C. K., Rahmat, A. & Lee, H. L. (2005b). Trop. Biomed. 22., 99–102.  PubMed Google Scholar
First citationHua, S.-Z., Wang, X.-B., Luo, J.-G., Wang, J.-S. & Kong, L.-Y. (2008). Tetrahedron Lett. 49, 5658–5661.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuerta-Reyes, M., Basualdo Mdel, C., Abe, F., Jimenez-Estrada, M., Soler, C. & Reyes-Chilpa, R. (2004). Biol. Pharm. Bull. 27., 1471–1475.  Web of Science PubMed Google Scholar
First citationLiu, K.-Y., Gao, W.-Y., Zhang, T.-J., Chen, H.-X. & Zhou, B. (2005). Acta Cryst. E61, o391–o392.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMazumder, R., Dastidar, S. G., Basu, S. P., Mazumder, A. & Singh, S. K. (2004). Phytother. Res. 18, 824–826.  Web of Science CrossRef PubMed Google Scholar
First citationMorel, C., Guilet, D., Oger, J. M., Seraphin, D., Sevenet, T., Wiart, C., Hadi, A. H. A., Richomme, P. & Bruneton, J. (1999). Phytochemistry, 50., 1243–1247.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPinto, D. C. G., Fuzzati, N., Pazmino, X. C. & Hostettmann, K. (1994). Phytochemistry, 3. 875-878.  Google Scholar
First citationVerotta, L., Lovaglio, E., Vidari, G., Finzi, P. V., Neri, M. G., Raimondi, A., Parapini, S., Taramelli, D., Riva, A. & Bombardelli, E. (2004). Phytochemistry, 65, 2867–2879.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWalia, S. & Mukerjee, S. K. (1984). Phytochemistry, 23, 1816–1817.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1091-o1092
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds