organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4-Di­chloro­phen­yl)-5-(2-nitro­anilino)-1H-pyrazole-4-carbo­nitrile

aCollege of Pharmacy, Liaoning University, Shenyang 110036, People's Republic of China, bTianjin Key Laboratory of Molecular Design and Drug Discovery, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China, and cShenlong Pharmaceutical Limited Company, Shenyang 110141, People's Republic of China
*Correspondence e-mail: caizq@tjipr.com

(Received 7 March 2012; accepted 16 March 2012; online 24 March 2012)

In the title compound, C16H9Cl2N5O2, the folded mol­ecular conformation is characterized by a dihedral angle between the two benzene rings of 74.03 (5)°. An intra­molecular N—H⋯O hydrogen bond is observed between the H atom of the amide group and a nitro-group O atom. Inter­molecular C—H⋯O and N—H⋯N hydrogen bonds feature in the crystal packing.

Related literature

For general background to N-1-diaryl-1H-pyrazol-5-amine derivatives as synthetic inter­mediates in the preparation of medicinal compounds and the synthesis of the title compound, see: Markwalder et al. (2004[Markwalder, J. A., Arnone, M. R., Benfield, P. A., Boisclair, M., Burton, C. R., Chang, C. H., Cox, S. S., Czerniak, P. M., Dean, C. L., Doleniak, D., Grafstrom, R., Harrison, B. A., Kaltenbach, R. F., Nugiel, D. A., Rossi, K. A., Sherk, S. R., Sisk, L. M., Stouten, P., Trainor, G. L., Worland, P. & Seitz, S. P. (2004). J. Med. Chem. 47, 5894-5911.]); Mehdi et al. (2010[Mehdi, B., Ghodsieh, B., Maryam, V., Ali, S., Mehdi, P., Mansour, M., Parvaneh, P. & Maryam, A. (2010). Tetrahedron, 60, 2897-2902.]). For the pharmacological activity of the 5-amino­pyrazole nucleus, see: Nils et al. (2010[Nils, G., Lars, B., Heinrich, M., Dirk, S., Nicole, T., Klemens, L., Raimund, K. & Peter, K. (2010). Bioorg. Med. Chem. Lett. 20, 5891-5894.]); Aymn et al. (2005[Aymn, E. R., Ahmed, H. S., Mohamed, I. H. & Hassan, M. A. (2005). Acta Chim. Slov. 52, 429-434.]).

[Scheme 1]

Experimental

Crystal data
  • C16H9Cl2N5O2

  • Mr = 374.18

  • Orthorhombic, P b c n

  • a = 13.878 (3) Å

  • b = 13.475 (3) Å

  • c = 17.421 (4) Å

  • V = 3257.7 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)[Rigaku/MSC (2005). Crystal Structure. Rigaku/MSC, The Woodlands, Texas, USA.] Tmin = 0.921, Tmax = 0.951

  • 31011 measured reflections

  • 3888 independent reflections

  • 2738 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.142

  • S = 1.04

  • 3888 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.93 2.51 3.050 (3) 117
C5—H5⋯O1ii 0.93 2.58 3.374 (3) 143
N4—H4⋯N3iii 0.82 (3) 2.62 (3) 3.201 (3) 129 (2)
N4—H4⋯O1 0.82 (3) 2.02 (3) 2.608 (2) 128 (2)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) -x+1, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2005)[Rigaku/MSC (2005). Crystal Structure. Rigaku/MSC, The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-1-Diaryl-1H-pyrazol-5-amine derivatives possess therapeutic value. They are synthetic intermediates in the preparation of medicinal compounds (Markwalder et al., 2004; Mehdi et al., 2010). 5-Aminopyrazole nucleus is associated with several pharmacological activities such as selective adenosine A1 receptor antagonists (Nils et al., 2010) and antimicrobial activity (Aymn et al., 2005). In view of this biological importance a part of our ongoing studies of pyrazole derivatives includes the crystal structure determination of the title compound. The folded molecular conformation is characterised by the dihedral angle between the two benzene rings of 74.03 (5) ° (Fig. 1). Intramolecular N—H···O hydrogen bond between the hydrogen of the amide group and the nitro group O atom is observed. The crystal packing is stabilised by intermolecular C—H···O and N—H···N hydrogen bonds (Table 1).

Related literature top

For general background to N-1-diaryl-1H-pyrazol-5-amine derivatives as synthetic intermediates in the preparation of medicinal compounds and the synthesis of the title compound, see: Markwalder et al. (2004); Mehdi et al. (2010). For the pharmacological activity of the 5-aminopyrazole nucleus, see: Nils et al. (2010); Aymn et al. (2005).

Experimental top

To a mixture of 5-amino-1-(2,4-dichlorophenyl)-1H-pyrazole-4-carbonitrile (3.0 g, 11.85 mmol) and o-nitrochlorobenzene (3.74 g, 23.74 mmol) in dimethyl sulfoxide (10 mL) lithium hydroxide monohydrate (0.74 g, 17.87 mmol) was added. The solution was heated at 343 K for 4.5 h. After cooling to 293 K, 50 mL of water was added to the reaction mixture. The resulting precipitate was collected by filtration, washed with ethanol to yield the title compound as a brown yellow solid (3.28 g, 73.95%). Crystals suitable for X-ray analysis were obtained from ethanol:acetone (1:1) solution by slow evaporation.

Refinement top

All H atoms were geometrically positioned (C—H 0.93–0.98 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

N-1-Diaryl-1H-pyrazol-5-amine derivatives possess therapeutic value. They are synthetic intermediates in the preparation of medicinal compounds (Markwalder et al., 2004; Mehdi et al., 2010). 5-Aminopyrazole nucleus is associated with several pharmacological activities such as selective adenosine A1 receptor antagonists (Nils et al., 2010) and antimicrobial activity (Aymn et al., 2005). In view of this biological importance a part of our ongoing studies of pyrazole derivatives includes the crystal structure determination of the title compound. The folded molecular conformation is characterised by the dihedral angle between the two benzene rings of 74.03 (5) ° (Fig. 1). Intramolecular N—H···O hydrogen bond between the hydrogen of the amide group and the nitro group O atom is observed. The crystal packing is stabilised by intermolecular C—H···O and N—H···N hydrogen bonds (Table 1).

For general background to N-1-diaryl-1H-pyrazol-5-amine derivatives as synthetic intermediates in the preparation of medicinal compounds and the synthesis of the title compound, see: Markwalder et al. (2004); Mehdi et al. (2010). For the pharmacological activity of the 5-aminopyrazole nucleus, see: Nils et al. (2010); Aymn et al. (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of C16H9Cl2N5O2 with all non-H atom-labelling scheme and ellipsoids drawn at the 50% probability level.
1-(2,4-Dichlorophenyl)-5-(2-nitroanilino)-1H-pyrazole-4-carbonitrile top
Crystal data top
C16H9Cl2N5O2F(000) = 1520
Mr = 374.18Dx = 1.526 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2n2abCell parameters from 7017 reflections
a = 13.878 (3) Åθ = 2.4–28.0°
b = 13.475 (3) ŵ = 0.42 mm1
c = 17.421 (4) ÅT = 293 K
V = 3257.7 (11) Å3Prism, yellow
Z = 80.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
3888 independent reflections
Radiation source: rotating anode2738 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.050
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1716
Tmin = 0.921, Tmax = 0.951l = 2222
31011 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0759P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3888 reflectionsΔρmax = 0.24 e Å3
231 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0166 (13)
Crystal data top
C16H9Cl2N5O2V = 3257.7 (11) Å3
Mr = 374.18Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 13.878 (3) ŵ = 0.42 mm1
b = 13.475 (3) ÅT = 293 K
c = 17.421 (4) Å0.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
3888 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2738 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.951Rint = 0.050
31011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
3888 reflectionsΔρmin = 0.24 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15552 (5)0.60779 (4)0.46994 (4)0.0673 (2)
Cl20.14562 (5)0.48959 (6)0.30041 (5)0.0881 (3)
O10.35014 (15)0.63038 (12)0.30863 (12)0.0858 (6)
O20.41521 (15)0.62525 (14)0.19700 (10)0.0914 (6)
N10.20172 (14)0.33598 (13)0.53423 (10)0.0540 (5)
N20.20985 (13)0.39203 (11)0.46920 (9)0.0467 (4)
N30.54146 (17)0.37889 (14)0.51865 (12)0.0667 (5)
N40.32727 (13)0.46781 (13)0.38776 (9)0.0477 (4)
N50.37959 (14)0.58365 (14)0.25298 (11)0.0609 (5)
C10.09266 (15)0.51444 (13)0.42412 (12)0.0481 (5)
C20.00946 (15)0.53705 (15)0.38503 (13)0.0558 (6)
H2A0.01280.60210.38300.067*
C30.04013 (16)0.46247 (16)0.34907 (13)0.0556 (6)
C40.00852 (16)0.36558 (16)0.35107 (13)0.0575 (6)
H4A0.04280.31580.32610.069*
C50.07443 (15)0.34366 (14)0.39045 (12)0.0521 (5)
H50.09620.27850.39250.063*
C60.12581 (15)0.41746 (14)0.42708 (11)0.0446 (5)
C70.30239 (15)0.41365 (13)0.45245 (11)0.0438 (5)
C80.35782 (15)0.37153 (15)0.50928 (12)0.0476 (5)
C90.29092 (16)0.32434 (15)0.55794 (11)0.0536 (5)
H90.30790.28900.60180.064*
C100.45966 (19)0.37500 (15)0.51458 (12)0.0516 (5)
C110.34423 (13)0.42402 (14)0.31790 (11)0.0407 (4)
C120.33508 (16)0.32211 (15)0.30894 (12)0.0559 (6)
H120.31640.28380.35080.067*
C130.35285 (19)0.27656 (18)0.24013 (15)0.0735 (7)
H130.34550.20820.23600.088*
C140.3815 (2)0.3305 (2)0.17670 (14)0.0750 (7)
H140.39420.29880.13040.090*
C150.39084 (16)0.4299 (2)0.18286 (12)0.0608 (6)
H150.40980.46700.14040.073*
C160.37242 (14)0.47708 (15)0.25204 (11)0.0453 (5)
H40.3360 (18)0.528 (2)0.3926 (15)0.077 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0852 (5)0.0448 (3)0.0719 (4)0.0062 (3)0.0050 (3)0.0152 (3)
Cl20.0593 (4)0.1038 (6)0.1013 (6)0.0108 (3)0.0192 (4)0.0065 (4)
O10.1372 (18)0.0455 (10)0.0746 (13)0.0036 (9)0.0066 (11)0.0082 (9)
O20.1296 (16)0.0868 (13)0.0577 (11)0.0414 (11)0.0163 (11)0.0338 (9)
N10.0691 (13)0.0515 (10)0.0413 (9)0.0029 (8)0.0045 (8)0.0103 (7)
N20.0577 (11)0.0429 (9)0.0394 (9)0.0014 (7)0.0013 (7)0.0059 (6)
N30.0697 (15)0.0613 (12)0.0691 (14)0.0055 (10)0.0084 (10)0.0057 (9)
N40.0668 (11)0.0363 (9)0.0401 (9)0.0063 (8)0.0028 (8)0.0020 (7)
N50.0745 (13)0.0594 (12)0.0488 (12)0.0166 (10)0.0150 (10)0.0172 (9)
C10.0547 (13)0.0399 (10)0.0499 (12)0.0017 (9)0.0047 (10)0.0043 (8)
C20.0593 (14)0.0464 (12)0.0617 (14)0.0075 (10)0.0046 (11)0.0014 (10)
C30.0485 (13)0.0607 (14)0.0576 (14)0.0001 (10)0.0000 (10)0.0011 (10)
C40.0570 (14)0.0552 (13)0.0603 (14)0.0137 (11)0.0003 (11)0.0063 (10)
C50.0603 (13)0.0374 (10)0.0586 (13)0.0049 (9)0.0041 (11)0.0001 (9)
C60.0504 (12)0.0412 (10)0.0421 (11)0.0031 (8)0.0036 (9)0.0022 (8)
C70.0556 (13)0.0383 (10)0.0375 (10)0.0000 (8)0.0012 (9)0.0007 (7)
C80.0616 (14)0.0411 (10)0.0400 (11)0.0023 (9)0.0034 (9)0.0011 (8)
C90.0733 (16)0.0472 (12)0.0401 (11)0.0021 (10)0.0014 (10)0.0068 (8)
C100.0625 (16)0.0450 (11)0.0472 (12)0.0066 (10)0.0054 (10)0.0006 (8)
C110.0394 (10)0.0420 (10)0.0406 (10)0.0025 (8)0.0020 (8)0.0023 (8)
C120.0729 (14)0.0439 (11)0.0511 (13)0.0054 (10)0.0077 (11)0.0017 (9)
C130.097 (2)0.0552 (15)0.0684 (17)0.0038 (12)0.0093 (14)0.0156 (12)
C140.0862 (18)0.0849 (19)0.0540 (15)0.0084 (15)0.0118 (13)0.0203 (13)
C150.0567 (14)0.0836 (17)0.0422 (12)0.0094 (12)0.0042 (10)0.0003 (11)
C160.0428 (11)0.0514 (11)0.0419 (11)0.0071 (9)0.0053 (8)0.0061 (8)
Geometric parameters (Å, º) top
Cl1—C11.726 (2)C4—C51.372 (3)
Cl2—C31.731 (2)C4—H4A0.9300
O1—N51.226 (3)C5—C61.380 (3)
O2—N51.229 (2)C5—H50.9300
N1—C91.314 (3)C7—C81.376 (3)
N1—N21.366 (2)C8—C91.409 (3)
N2—C71.349 (3)C8—C101.417 (3)
N2—C61.420 (3)C9—H90.9300
N3—C101.139 (3)C11—C121.388 (3)
N4—C111.373 (2)C11—C161.407 (3)
N4—C71.386 (2)C12—C131.369 (3)
N4—H40.82 (3)C12—H120.9300
N5—C161.440 (3)C13—C141.381 (3)
C1—C21.375 (3)C13—H130.9300
C1—C61.386 (3)C14—C151.350 (3)
C2—C31.370 (3)C14—H140.9300
C2—H2A0.9300C15—C161.386 (3)
C3—C41.378 (3)C15—H150.9300
C9—N1—N2104.40 (16)N2—C7—C8106.71 (18)
C7—N2—N1112.17 (16)N2—C7—N4121.77 (18)
C7—N2—C6128.19 (16)C8—C7—N4131.51 (19)
N1—N2—C6119.60 (17)C7—C8—C9104.52 (19)
C11—N4—C7122.49 (17)C7—C8—C10126.21 (19)
C11—N4—H4119.2 (18)C9—C8—C10129.26 (19)
C7—N4—H4118.1 (18)N1—C9—C8112.19 (18)
O1—N5—O2121.8 (2)N1—C9—H9123.9
O1—N5—C16119.88 (18)C8—C9—H9123.9
O2—N5—C16118.3 (2)N3—C10—C8179.2 (2)
C2—C1—C6120.40 (18)N4—C11—C12120.61 (17)
C2—C1—Cl1119.47 (15)N4—C11—C16123.50 (17)
C6—C1—Cl1120.13 (17)C12—C11—C16115.88 (18)
C3—C2—C1119.08 (19)C13—C12—C11121.7 (2)
C3—C2—H2A120.5C13—C12—H12119.1
C1—C2—H2A120.5C11—C12—H12119.1
C2—C3—C4121.6 (2)C12—C13—C14121.1 (2)
C2—C3—Cl2119.61 (17)C12—C13—H13119.5
C4—C3—Cl2118.80 (17)C14—C13—H13119.5
C5—C4—C3118.9 (2)C15—C14—C13119.1 (2)
C5—C4—H4A120.5C15—C14—H14120.4
C3—C4—H4A120.5C13—C14—H14120.4
C4—C5—C6120.63 (19)C14—C15—C16120.4 (2)
C4—C5—H5119.7C14—C15—H15119.8
C6—C5—H5119.7C16—C15—H15119.8
C5—C6—C1119.4 (2)C15—C16—C11121.82 (19)
C5—C6—N2119.31 (17)C15—C16—N5117.01 (19)
C1—C6—N2121.28 (17)C11—C16—N5121.12 (18)
C9—N1—N2—C70.7 (2)N4—C7—C8—C9178.5 (2)
C9—N1—N2—C6178.77 (16)N2—C7—C8—C10179.56 (19)
C6—C1—C2—C30.0 (3)N4—C7—C8—C100.3 (4)
Cl1—C1—C2—C3179.77 (17)N2—N1—C9—C80.3 (2)
C1—C2—C3—C40.1 (3)C7—C8—C9—N10.3 (2)
C1—C2—C3—Cl2179.38 (17)C10—C8—C9—N1179.1 (2)
C2—C3—C4—C50.3 (3)C7—C8—C10—N345 (19)
Cl2—C3—C4—C5179.17 (17)C9—C8—C10—N3136 (19)
C3—C4—C5—C60.4 (3)C7—N4—C11—C121.3 (3)
C4—C5—C6—C10.3 (3)C7—N4—C11—C16177.99 (18)
C4—C5—C6—N2178.21 (19)N4—C11—C12—C13179.1 (2)
C2—C1—C6—C50.1 (3)C16—C11—C12—C130.2 (3)
Cl1—C1—C6—C5179.68 (16)C11—C12—C13—C140.5 (4)
C2—C1—C6—N2177.94 (18)C12—C13—C14—C150.8 (4)
Cl1—C1—C6—N21.8 (3)C13—C14—C15—C160.3 (4)
C7—N2—C6—C5110.9 (2)C14—C15—C16—C110.4 (3)
N1—N2—C6—C566.7 (2)C14—C15—C16—N5177.1 (2)
C7—N2—C6—C171.2 (3)N4—C11—C16—C15178.6 (2)
N1—N2—C6—C1111.1 (2)C12—C11—C16—C150.7 (3)
N1—N2—C7—C80.9 (2)N4—C11—C16—N53.9 (3)
C6—N2—C7—C8178.74 (17)C12—C11—C16—N5176.78 (18)
N1—N2—C7—N4178.39 (17)O1—N5—C16—C15168.9 (2)
C6—N2—C7—N40.6 (3)O2—N5—C16—C1510.8 (3)
C11—N4—C7—N288.3 (2)O1—N5—C16—C118.7 (3)
C11—N4—C7—C890.8 (3)O2—N5—C16—C11171.6 (2)
N2—C7—C8—C90.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.513.050 (3)117
C5—H5···O1ii0.932.583.374 (3)143
N4—H4···N3iii0.82 (3)2.62 (3)3.201 (3)129 (2)
N4—H4···O10.82 (3)2.02 (3)2.608 (2)128 (2)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H9Cl2N5O2
Mr374.18
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)13.878 (3), 13.475 (3), 17.421 (4)
V3)3257.7 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.921, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
31011, 3888, 2738
Rint0.050
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 1.04
No. of reflections3888
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.513.050 (3)117.2
C5—H5···O1ii0.932.583.374 (3)143.4
N4—H4···N3iii0.82 (3)2.62 (3)3.201 (3)129 (2)
N4—H4···O10.82 (3)2.02 (3)2.608 (2)128 (2)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the State Key Laboratory of Elemento-organic Chemistry, Nankai University, for the X-ray data collection.

References

First citationAymn, E. R., Ahmed, H. S., Mohamed, I. H. & Hassan, M. A. (2005). Acta Chim. Slov. 52, 429–434.  Google Scholar
First citationMarkwalder, J. A., Arnone, M. R., Benfield, P. A., Boisclair, M., Burton, C. R., Chang, C. H., Cox, S. S., Czerniak, P. M., Dean, C. L., Doleniak, D., Grafstrom, R., Harrison, B. A., Kaltenbach, R. F., Nugiel, D. A., Rossi, K. A., Sherk, S. R., Sisk, L. M., Stouten, P., Trainor, G. L., Worland, P. & Seitz, S. P. (2004). J. Med. Chem. 47, 5894–5911.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMehdi, B., Ghodsieh, B., Maryam, V., Ali, S., Mehdi, P., Mansour, M., Parvaneh, P. & Maryam, A. (2010). Tetrahedron, 60, 2897–2902.  Google Scholar
First citationNils, G., Lars, B., Heinrich, M., Dirk, S., Nicole, T., Klemens, L., Raimund, K. & Peter, K. (2010). Bioorg. Med. Chem. Lett. 20, 5891–5894.  Web of Science PubMed Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). Crystal Structure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds