organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6β-Methyl-3,20-dioxopregn-4-en-17-yl acetate

aQianjiang Colloge, Hangzhou Normal University, Hangzhou 310012, People's Republic of China
*Correspondence e-mail: Hdliuxf@tom.com

(Received 15 January 2012; accepted 27 February 2012; online 10 March 2012)

The title compound, C24H34O4, is a precursor of Megestrol acetate. Ring A has a half-chair conformation [Q = 0.446 (3) Å, θ = 54.6 (4)° and φ = 9.5 (4)°]. Ring D adopts a 13β-envelope conformation [Q = 0.463 (2) Å and φ = 188.2 (3)°].

Related literature

For the characterization of related structures, see: Evans & Boeyens (1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). Soriano-Garcia et al. (2005[Soriano-Garcia, M., Flores, E., Bratoeff, E., Ramirez, E., Cabeza, M. & Rodriguez, J. G. A. (2005). Anal Sci. X-Ray Struct Anal Online, 21, x27-x28.]). Yousuf et al. (2011[Yousuf, S., Musharraf, S. G., Iqbal, N., Adhikari, A. & Choudhary, M. I. (2011). Acta Cryst. E67, o2918.]). For the physiological properties of the title compound, see: Mishell (1996[Mishell, D. R. Jr (1996). J. Reprod. Med. 41, 381-390.]).

[Scheme 1]

Experimental

Crystal data
  • C24H34O4

  • Mr = 386.51

  • Orthorhombic, P 21 21 21

  • a = 10.0411 (3) Å

  • b = 11.3123 (3) Å

  • c = 18.5549 (7) Å

  • V = 2107.61 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.56 × 0.52 × 0.31 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.946, Tmax = 0.975

  • 20014 measured reflections

  • 2679 independent reflections

  • 2108 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.00

  • 2679 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation,Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

6β-methyl-3,20-dioxopregn-4-ene-17-yl acetate and its derivatives (for example, Megestrol acetate) are important progestines used for the treatment of endomentriosis as well as several other applications (Mishell, 1996).

The structure of the title compound is depicted in Fig.1. Ring A (C1—C5, C10) has a slightly distorted half-chair conformation with Q (total puckering amplitude) = 0.446 (3) Å, theta (azimuthal angle) = 54.6 (4) °, φ (phase angle) = 9.5 (4) °, while ring B (C5—C10) and C (C8,C9, C11—C14) are in chair conformation [ring B: Q = 0.521 (2) Å, theta = 12.7 (2) °, φ = 188.7 (13) °; ring C: Q = 0.564 (2) Å, theta = 2.8 (2) °, φ = 267 (4) °] (Evans & Boeyens, 1989). The five-membered ring D exhibits a 13β-envelope conformation with puckering amplitude Q = 0.463 (2) Å and phase angle= 188.2 (3) °. The crystals are isomorphous to 17alpha-Acetoxy-6-methylene-4-pregnene-3,20-dione (Soriano-Garcia et al., 2005). The crystal structure is also similar to 3alpha-Dimethylamino-20-(N-methylacetamido)pregn-5-ene (Yousuf et al., 2011).

Related literature top

For the characterization of related structures, see: Evans & Boeyens (1989). Soriano-Garcia et al. (2005). Yousuf et al. (2011). For the physiological properties of the title compound, see: Mishell (1996).

Experimental top

The title compound was received from Shanghai Xinhualian Pharmaceutical Co., Ltd. Suitable crystals were obtained by slow evaporation of its ethanol solution at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

6β-methyl-3,20-dioxopregn-4-ene-17-yl acetate and its derivatives (for example, Megestrol acetate) are important progestines used for the treatment of endomentriosis as well as several other applications (Mishell, 1996).

The structure of the title compound is depicted in Fig.1. Ring A (C1—C5, C10) has a slightly distorted half-chair conformation with Q (total puckering amplitude) = 0.446 (3) Å, theta (azimuthal angle) = 54.6 (4) °, φ (phase angle) = 9.5 (4) °, while ring B (C5—C10) and C (C8,C9, C11—C14) are in chair conformation [ring B: Q = 0.521 (2) Å, theta = 12.7 (2) °, φ = 188.7 (13) °; ring C: Q = 0.564 (2) Å, theta = 2.8 (2) °, φ = 267 (4) °] (Evans & Boeyens, 1989). The five-membered ring D exhibits a 13β-envelope conformation with puckering amplitude Q = 0.463 (2) Å and phase angle= 188.2 (3) °. The crystals are isomorphous to 17alpha-Acetoxy-6-methylene-4-pregnene-3,20-dione (Soriano-Garcia et al., 2005). The crystal structure is also similar to 3alpha-Dimethylamino-20-(N-methylacetamido)pregn-5-ene (Yousuf et al., 2011).

For the characterization of related structures, see: Evans & Boeyens (1989). Soriano-Garcia et al. (2005). Yousuf et al. (2011). For the physiological properties of the title compound, see: Mishell (1996).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
6β-Methyl-3,20-dioxopregn-4-en-17-yl acetate top
Crystal data top
C24H34O4F(000) = 840
Mr = 386.51Dx = 1.218 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 14918 reflections
a = 10.0411 (3) Åθ = 3.0–27.4°
b = 11.3123 (3) ŵ = 0.08 mm1
c = 18.5549 (7) ÅT = 296 K
V = 2107.61 (12) Å3Chunk, colorless
Z = 40.56 × 0.52 × 0.31 mm
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
2679 independent reflections
Radiation source: rolling anode2108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 1211
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.946, Tmax = 0.975l = 2424
20014 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.5695P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2679 reflectionsΔρmax = 0.17 e Å3
259 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0057 (12)
Crystal data top
C24H34O4V = 2107.61 (12) Å3
Mr = 386.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.0411 (3) ŵ = 0.08 mm1
b = 11.3123 (3) ÅT = 296 K
c = 18.5549 (7) Å0.56 × 0.52 × 0.31 mm
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
2679 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2108 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.975Rint = 0.035
20014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
2679 reflectionsΔρmin = 0.16 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9284 (2)0.06142 (15)0.53897 (13)0.0759 (7)
O20.6725 (3)0.92350 (17)0.70081 (12)0.0713 (6)
O30.49550 (16)0.66587 (14)0.65423 (9)0.0439 (4)
O40.3669 (2)0.82806 (18)0.65415 (12)0.0655 (6)
C10.8845 (3)0.1906 (2)0.65614 (14)0.0475 (6)
H1A0.90830.21150.70520.057*
H1B0.78890.17850.65470.057*
C20.9537 (3)0.0745 (2)0.63640 (16)0.0572 (7)
H2A1.04870.08250.64450.069*
H2B0.92100.01200.66760.069*
C30.9299 (3)0.0410 (2)0.55974 (17)0.0533 (7)
C40.9105 (3)0.1385 (2)0.50972 (15)0.0499 (6)
H40.89760.11950.46150.060*
C50.9097 (2)0.2534 (2)0.52737 (13)0.0407 (5)
C60.8994 (3)0.3438 (2)0.46795 (14)0.0461 (6)
H60.86110.30280.42630.055*
C70.8027 (3)0.4433 (2)0.48694 (13)0.0447 (6)
H7A0.81070.50550.45120.054*
H7B0.71240.41300.48480.054*
C80.8270 (2)0.49588 (19)0.56153 (12)0.0368 (5)
H80.91570.53200.56290.044*
C90.8186 (2)0.39747 (19)0.61904 (12)0.0373 (5)
H90.72990.36220.61390.045*
C100.9205 (2)0.29462 (19)0.60597 (13)0.0388 (5)
C110.8245 (3)0.4476 (2)0.69591 (12)0.0441 (6)
H11A0.80990.38380.72990.053*
H11B0.91290.47910.70450.053*
C120.7216 (3)0.5454 (2)0.71000 (13)0.0443 (6)
H12A0.63270.51200.70830.053*
H12B0.73540.57790.75780.053*
C130.7333 (2)0.64437 (19)0.65394 (13)0.0362 (5)
C140.7224 (2)0.58932 (19)0.57819 (12)0.0360 (5)
H140.63630.54870.57680.043*
C150.7092 (3)0.69619 (19)0.52808 (13)0.0436 (6)
H15A0.66110.67530.48460.052*
H15B0.79610.72670.51490.052*
C160.6308 (3)0.7875 (2)0.57264 (13)0.0441 (6)
H16A0.54370.80070.55150.053*
H16B0.67820.86220.57400.053*
C170.6167 (2)0.7366 (2)0.64927 (13)0.0393 (5)
C221.0348 (3)0.3910 (3)0.44369 (17)0.0646 (8)
H18A1.07270.43860.48140.097*
H18B1.02370.43830.40110.097*
H18C1.09310.32600.43340.097*
C191.0656 (2)0.3338 (2)0.62124 (16)0.0507 (6)
H19A1.07600.34910.67180.076*
H19B1.08480.40450.59450.076*
H19C1.12570.27230.60680.076*
C180.8651 (3)0.7121 (2)0.66410 (15)0.0493 (6)
H20A0.86740.74630.71140.074*
H20B0.87150.77350.62860.074*
H20C0.93860.65850.65860.074*
C200.6198 (3)0.8284 (2)0.70979 (15)0.0507 (6)
C210.5662 (4)0.7928 (3)0.78251 (15)0.0689 (9)
H22A0.62210.82480.81970.103*
H22B0.56510.70810.78610.103*
H22C0.47730.82270.78800.103*
C230.3771 (3)0.7220 (3)0.65162 (15)0.0502 (6)
C240.2663 (3)0.6356 (3)0.6461 (2)0.0717 (9)
H24A0.18280.67660.64860.108*
H24B0.27220.58000.68510.108*
H24C0.27240.59430.60100.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0979 (17)0.0353 (10)0.0944 (16)0.0064 (10)0.0245 (14)0.0033 (10)
O20.0876 (16)0.0496 (11)0.0766 (14)0.0048 (11)0.0016 (13)0.0149 (10)
O30.0355 (9)0.0459 (9)0.0503 (9)0.0016 (7)0.0036 (8)0.0031 (8)
O40.0601 (12)0.0629 (12)0.0734 (13)0.0205 (10)0.0049 (12)0.0007 (11)
C10.0506 (14)0.0424 (12)0.0495 (14)0.0014 (11)0.0012 (13)0.0087 (11)
C20.0604 (17)0.0420 (13)0.0692 (19)0.0045 (12)0.0028 (14)0.0098 (13)
C30.0484 (15)0.0385 (13)0.0729 (19)0.0019 (11)0.0133 (14)0.0025 (13)
C40.0523 (16)0.0423 (13)0.0552 (15)0.0034 (11)0.0058 (13)0.0045 (11)
C50.0352 (13)0.0393 (11)0.0474 (13)0.0006 (10)0.0043 (11)0.0000 (10)
C60.0541 (15)0.0419 (12)0.0424 (13)0.0001 (11)0.0059 (12)0.0013 (10)
C70.0543 (15)0.0425 (12)0.0373 (12)0.0042 (12)0.0007 (11)0.0025 (10)
C80.0384 (12)0.0354 (11)0.0365 (12)0.0014 (9)0.0027 (10)0.0020 (9)
C90.0364 (12)0.0365 (11)0.0389 (12)0.0004 (9)0.0011 (10)0.0024 (9)
C100.0379 (13)0.0354 (11)0.0432 (13)0.0005 (10)0.0006 (10)0.0024 (10)
C110.0502 (14)0.0445 (13)0.0377 (12)0.0076 (11)0.0003 (11)0.0037 (10)
C120.0511 (15)0.0468 (13)0.0350 (12)0.0062 (11)0.0044 (11)0.0055 (10)
C130.0370 (12)0.0376 (11)0.0341 (11)0.0020 (9)0.0009 (10)0.0020 (9)
C140.0389 (12)0.0350 (11)0.0341 (12)0.0006 (9)0.0001 (10)0.0038 (9)
C150.0525 (14)0.0392 (12)0.0390 (12)0.0024 (11)0.0031 (11)0.0067 (10)
C160.0476 (14)0.0396 (12)0.0452 (13)0.0045 (11)0.0028 (11)0.0075 (10)
C170.0389 (12)0.0382 (11)0.0407 (12)0.0004 (10)0.0004 (11)0.0006 (10)
C220.070 (2)0.0561 (16)0.0677 (19)0.0004 (14)0.0255 (16)0.0074 (15)
C190.0370 (13)0.0499 (14)0.0651 (17)0.0009 (11)0.0039 (12)0.0018 (13)
C180.0437 (14)0.0479 (13)0.0563 (16)0.0037 (11)0.0046 (12)0.0065 (12)
C200.0540 (15)0.0480 (14)0.0502 (15)0.0101 (13)0.0013 (13)0.0058 (12)
C210.087 (2)0.074 (2)0.0448 (16)0.0202 (18)0.0032 (16)0.0082 (14)
C230.0421 (14)0.0628 (17)0.0457 (14)0.0108 (12)0.0045 (12)0.0053 (13)
C240.0409 (15)0.088 (2)0.086 (2)0.0019 (15)0.0033 (16)0.0111 (19)
Geometric parameters (Å, º) top
O1—C31.221 (3)C12—C131.533 (3)
O2—C201.210 (3)C12—H12A0.9700
O3—C231.348 (3)C12—H12B0.9700
O3—C171.459 (3)C13—C181.540 (3)
O4—C231.205 (3)C13—C141.541 (3)
C1—C21.530 (3)C13—C171.571 (3)
C1—C101.544 (3)C14—C151.531 (3)
C1—H1A0.9700C14—H140.9800
C1—H1B0.9700C15—C161.539 (3)
C2—C31.491 (4)C15—H15A0.9700
C2—H2A0.9700C15—H15B0.9700
C2—H2B0.9700C16—C171.540 (3)
C3—C41.455 (4)C16—H16A0.9700
C4—C51.341 (3)C16—H16B0.9700
C4—H40.9300C17—C201.530 (3)
C5—C61.508 (3)C22—H18A0.9600
C5—C101.535 (3)C22—H18B0.9600
C6—C71.527 (3)C22—H18C0.9600
C6—C221.529 (4)C19—H19A0.9600
C6—H60.9800C19—H19B0.9600
C7—C81.526 (3)C19—H19C0.9600
C7—H7A0.9700C18—H20A0.9600
C7—H7B0.9700C18—H20B0.9600
C8—C141.522 (3)C18—H20C0.9600
C8—C91.544 (3)C20—C211.508 (4)
C8—H80.9800C21—H22A0.9600
C9—C111.536 (3)C21—H22B0.9600
C9—C101.568 (3)C21—H22C0.9600
C9—H90.9800C23—C241.485 (4)
C10—C191.549 (3)C24—H24A0.9600
C11—C121.536 (3)C24—H24B0.9600
C11—H11A0.9700C24—H24C0.9600
C11—H11B0.9700
C23—O3—C17118.33 (17)C12—C13—C14108.56 (18)
C2—C1—C10113.8 (2)C18—C13—C14111.9 (2)
C2—C1—H1A108.8C12—C13—C17117.73 (19)
C10—C1—H1A108.8C18—C13—C17108.48 (18)
C2—C1—H1B108.8C14—C13—C1799.50 (18)
C10—C1—H1B108.8C8—C14—C15119.02 (19)
H1A—C1—H1B107.7C8—C14—C13114.65 (19)
C3—C2—C1112.0 (2)C15—C14—C13103.95 (17)
C3—C2—H2A109.2C8—C14—H14106.1
C1—C2—H2A109.2C15—C14—H14106.1
C3—C2—H2B109.2C13—C14—H14106.1
C1—C2—H2B109.2C14—C15—C16104.36 (18)
H2A—C2—H2B107.9C14—C15—H15A110.9
O1—C3—C4121.1 (3)C16—C15—H15A110.9
O1—C3—C2123.0 (3)C14—C15—H15B110.9
C4—C3—C2115.9 (2)C16—C15—H15B110.9
C5—C4—C3125.5 (3)H15A—C15—H15B108.9
C5—C4—H4117.3C15—C16—C17106.98 (18)
C3—C4—H4117.3C15—C16—H16A110.3
C4—C5—C6118.7 (2)C17—C16—H16A110.3
C4—C5—C10121.7 (2)C15—C16—H16B110.3
C6—C5—C10119.59 (19)C17—C16—H16B110.3
C5—C6—C7112.0 (2)H16A—C16—H16B108.6
C5—C6—C22113.0 (2)O3—C17—C20110.0 (2)
C7—C6—C22112.1 (2)O3—C17—C16109.87 (19)
C5—C6—H6106.4C20—C17—C16114.95 (19)
C7—C6—H6106.4O3—C17—C13104.72 (16)
C22—C6—H6106.4C20—C17—C13113.3 (2)
C8—C7—C6113.3 (2)C16—C17—C13103.33 (19)
C8—C7—H7A108.9C6—C22—H18A109.5
C6—C7—H7A108.9C6—C22—H18B109.5
C8—C7—H7B108.9H18A—C22—H18B109.5
C6—C7—H7B108.9C6—C22—H18C109.5
H7A—C7—H7B107.7H18A—C22—H18C109.5
C14—C8—C7110.18 (19)H18B—C22—H18C109.5
C14—C8—C9108.82 (18)C10—C19—H19A109.5
C7—C8—C9109.70 (18)C10—C19—H19B109.5
C14—C8—H8109.4H19A—C19—H19B109.5
C7—C8—H8109.4C10—C19—H19C109.5
C9—C8—H8109.4H19A—C19—H19C109.5
C11—C9—C8111.91 (18)H19B—C19—H19C109.5
C11—C9—C10113.11 (19)C13—C18—H20A109.5
C8—C9—C10113.10 (18)C13—C18—H20B109.5
C11—C9—H9106.0H20A—C18—H20B109.5
C8—C9—H9106.0C13—C18—H20C109.5
C10—C9—H9106.0H20A—C18—H20C109.5
C5—C10—C1108.96 (19)H20B—C18—H20C109.5
C5—C10—C19109.1 (2)O2—C20—C21121.1 (3)
C1—C10—C19109.2 (2)O2—C20—C17120.7 (2)
C5—C10—C9109.04 (19)C21—C20—C17117.9 (2)
C1—C10—C9108.65 (19)C20—C21—H22A109.5
C19—C10—C9111.90 (19)C20—C21—H22B109.5
C12—C11—C9113.5 (2)H22A—C21—H22B109.5
C12—C11—H11A108.9C20—C21—H22C109.5
C9—C11—H11A108.9H22A—C21—H22C109.5
C12—C11—H11B108.9H22B—C21—H22C109.5
C9—C11—H11B108.9O4—C23—O3122.9 (3)
H11A—C11—H11B107.7O4—C23—C24126.4 (3)
C13—C12—C11111.03 (19)O3—C23—C24110.7 (2)
C13—C12—H12A109.4C23—C24—H24A109.5
C11—C12—H12A109.4C23—C24—H24B109.5
C13—C12—H12B109.4H24A—C24—H24B109.5
C11—C12—H12B109.4C23—C24—H24C109.5
H12A—C12—H12B108.0H24A—C24—H24C109.5
C12—C13—C18110.2 (2)H24B—C24—H24C109.5
C10—C1—C2—C354.3 (3)C11—C12—C13—C1454.6 (3)
C1—C2—C3—O1151.0 (3)C11—C12—C13—C17166.5 (2)
C1—C2—C3—C430.0 (3)C7—C8—C14—C1558.9 (3)
O1—C3—C4—C5179.6 (3)C9—C8—C14—C15179.2 (2)
C2—C3—C4—C51.4 (4)C7—C8—C14—C13177.23 (19)
C3—C4—C5—C6175.1 (2)C9—C8—C14—C1356.9 (2)
C3—C4—C5—C104.2 (4)C12—C13—C14—C858.6 (2)
C4—C5—C6—C7137.0 (3)C18—C13—C14—C863.3 (2)
C10—C5—C6—C743.6 (3)C17—C13—C14—C8177.79 (18)
C4—C5—C6—C2295.2 (3)C12—C13—C14—C15169.82 (19)
C10—C5—C6—C2284.1 (3)C18—C13—C14—C1568.3 (2)
C5—C6—C7—C849.1 (3)C17—C13—C14—C1546.2 (2)
C22—C6—C7—C879.2 (3)C8—C14—C15—C16162.4 (2)
C6—C7—C8—C14176.85 (19)C13—C14—C15—C1633.4 (2)
C6—C7—C8—C957.1 (3)C14—C15—C16—C176.7 (3)
C14—C8—C9—C1152.1 (3)C23—O3—C17—C2058.0 (3)
C7—C8—C9—C11172.7 (2)C23—O3—C17—C1669.5 (2)
C14—C8—C9—C10178.72 (19)C23—O3—C17—C13179.9 (2)
C7—C8—C9—C1058.1 (3)C15—C16—C17—O389.6 (2)
C4—C5—C10—C118.7 (3)C15—C16—C17—C20145.7 (2)
C6—C5—C10—C1161.9 (2)C15—C16—C17—C1321.8 (2)
C4—C5—C10—C19100.4 (3)C12—C13—C17—O343.0 (3)
C6—C5—C10—C1979.0 (3)C18—C13—C17—O3169.06 (19)
C4—C5—C10—C9137.2 (2)C14—C13—C17—O373.86 (19)
C6—C5—C10—C943.5 (3)C12—C13—C17—C2076.9 (3)
C2—C1—C10—C547.2 (3)C18—C13—C17—C2049.1 (3)
C2—C1—C10—C1971.8 (3)C14—C13—C17—C20166.2 (2)
C2—C1—C10—C9165.9 (2)C12—C13—C17—C16158.1 (2)
C11—C9—C10—C5178.3 (2)C18—C13—C17—C1675.9 (2)
C8—C9—C10—C549.8 (2)C14—C13—C17—C1641.2 (2)
C11—C9—C10—C163.1 (3)O3—C17—C20—O2148.1 (3)
C8—C9—C10—C1168.4 (2)C16—C17—C20—O223.4 (4)
C11—C9—C10—C1957.5 (3)C13—C17—C20—O295.1 (3)
C8—C9—C10—C1971.0 (3)O3—C17—C20—C2137.2 (3)
C8—C9—C11—C1252.9 (3)C16—C17—C20—C21161.9 (3)
C10—C9—C11—C12177.95 (19)C13—C17—C20—C2179.6 (3)
C9—C11—C12—C1354.2 (3)C17—O3—C23—O49.2 (4)
C11—C12—C13—C1868.4 (2)C17—O3—C23—C24171.3 (2)

Experimental details

Crystal data
Chemical formulaC24H34O4
Mr386.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)10.0411 (3), 11.3123 (3), 18.5549 (7)
V3)2107.61 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.56 × 0.52 × 0.31
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.946, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
20014, 2679, 2108
Rint0.035
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.00
No. of reflections2679
No. of parameters259
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank Mr Jianming Gu for the single-crystal X-ray analysis. They are also grateful for financial support from the Qianjiang College Foundation project subsidization (2008QJSY02 and YS03204033001).

References

First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMishell, D. R. Jr (1996). J. Reprod. Med. 41, 381–390.  CAS PubMed Web of Science Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation,Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoriano-Garcia, M., Flores, E., Bratoeff, E., Ramirez, E., Cabeza, M. & Rodriguez, J. G. A. (2005). Anal Sci. X-Ray Struct Anal Online, 21, x27–x28.  CAS Google Scholar
First citationYousuf, S., Musharraf, S. G., Iqbal, N., Adhikari, A. & Choudhary, M. I. (2011). Acta Cryst. E67, o2918.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds