organic compounds
4,7,8-Trimethyl-2H-chromen-2-one
aInstitute of Materials and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China, and bInstitute of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
*Correspondence e-mail: yangjxmail@sohu.com
The molecule of the title compound, C12H12O2, is essentially planar, with a maximum deviation from the mean plane of all non-H atoms of 0.038 (1) Å for the methyl C atom in the 8-position. The is characterized by antiparallel π–π stacking along the c axis, with centroid–centroid distances as short as 3.866 (1) Å. In the crystal, C—H⋯O hydrogen bonds connect the molecules across the stacks into ribbons in the a-axis direction.
Related literature
For general background to the pharmacological activity of coumarin derivatives, see: Xie et al. (2001); Tanitame et al. (2004); Shao et al. (1997); Rendenbach-Müller et al. (1994); Pochet et al. (1996). For a related structure, see: Gowda et al. (2010).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812009646/ld2048sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009646/ld2048Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812009646/ld2048Isup3.cml
2,3-Dimethyl phenol (10.50 mmol) was slowly added at 278–288 K to a mixture of para-toluenesulfonic acid (0.5 g) and acetylacetic ester (10.50 mmol) while stirring for 30 min. The reaction mixture was stirred continuously for 12 more hours at room temperature and then poured into ice–water mixture (100 ml). The obtained solid was filtered off, washed with cold water and dried at room temperature. Colorless crystals of the title compound suitable for X-ray structure analysis were obtained by slow evaporation of a solution in the mixture of ethanol/ether over a period of two days.
H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding mode with Uiso(H) = 1.2Ueq(C) (aromatic) and Uiso(H) = 1.5Ueq(C) (methyl). The positions of the methyl H atoms were optimized rotationally.
Coumarin derivatives exhibit a wide variety of pharmacological activities including anti-HIV (Xie et al., 2001), antibacterial (Tanitame et al., 2004), antioxidant (Shao et al., 1997), antithrombotic (Rendenbach-Müller et al., 1994) and antiinflammatory (Pochet et al., 1996) activities.
The molecular structure is shown in Fig. 1. In the crystal the molecules are linked by C—H···O hydrogen bonds to form ribbon-like motives (Table 1 and Fig. 2).
For general background to thepharmacological activity of coumarin derivatives, see: Xie et al. (2001); Tanitame et al. (2004); Shao et al. (1997); Rendenbach-Müller et al. (1994); Pochet et al. (1996). For a related structure, see: Gowda et al. (2010).
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C12H12O2 | F(000) = 400 |
Mr = 188.22 | Dx = 1.322 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.276 (3) Å | Cell parameters from 3283 reflections |
b = 18.075 (6) Å | θ = 2.3–30.0° |
c = 7.246 (3) Å | µ = 0.09 mm−1 |
β = 97.055 (5)° | T = 153 K |
V = 945.8 (6) Å3 | Prism, colorless |
Z = 4 | 0.44 × 0.31 × 0.26 mm |
Rigaku AFC10/Saturn724+ diffractometer | 2176 reflections with I > 2σ(I) |
Radiation source: Rotating Anode | Rint = 0.028 |
Graphite monochromator | θmax = 30.1°, θmin = 3.1° |
Detector resolution: 28.5714 pixels mm-1 | h = −9→10 |
phi and ω scans | k = −24→25 |
8545 measured reflections | l = −10→10 |
2747 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0269P)2 + 0.551P] where P = (Fo2 + 2Fc2)/3 |
2747 reflections | (Δ/σ)max = 0.001 |
130 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C12H12O2 | V = 945.8 (6) Å3 |
Mr = 188.22 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.276 (3) Å | µ = 0.09 mm−1 |
b = 18.075 (6) Å | T = 153 K |
c = 7.246 (3) Å | 0.44 × 0.31 × 0.26 mm |
β = 97.055 (5)° |
Rigaku AFC10/Saturn724+ diffractometer | 2176 reflections with I > 2σ(I) |
8545 measured reflections | Rint = 0.028 |
2747 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.28 e Å−3 |
2747 reflections | Δρmin = −0.33 e Å−3 |
130 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H2 | 0.8364 | 0.0375 | 0.9962 | 0.029* | |
H5 | 0.4346 | 0.2356 | 0.8389 | 0.030* | |
H6 | 0.4708 | 0.3629 | 0.8497 | 0.030* | |
H10A | 0.5336 | 0.0381 | 0.8616 | 0.035* | |
H10B | 0.4726 | 0.1097 | 0.7392 | 0.035* | |
H10C | 0.4183 | 0.1026 | 0.9459 | 0.035* | |
H11A | 0.6432 | 0.4698 | 0.9153 | 0.037* | |
H11B | 0.8581 | 0.4625 | 0.8914 | 0.037* | |
H11C | 0.7941 | 0.4634 | 1.0949 | 0.037* | |
H12A | 1.1505 | 0.3139 | 1.1756 | 0.036* | |
H12B | 1.0632 | 0.3953 | 1.1693 | 0.036* | |
H12C | 1.1483 | 0.3633 | 0.9921 | 0.036* | |
C1 | 1.01364 (18) | 0.12436 (7) | 1.07922 (18) | 0.0243 (3) | |
C2 | 0.84235 (18) | 0.08992 (7) | 1.00252 (18) | 0.0244 (3) | |
C3 | 0.69054 (18) | 0.12937 (7) | 0.93951 (18) | 0.0224 (3) | |
C4 | 0.69972 (17) | 0.20939 (7) | 0.94548 (17) | 0.0207 (2) | |
C5 | 0.55137 (18) | 0.25623 (7) | 0.88512 (19) | 0.0248 (3) | |
C6 | 0.57298 (19) | 0.33200 (7) | 0.89207 (19) | 0.0251 (3) | |
C7 | 0.74262 (18) | 0.36425 (7) | 0.96038 (18) | 0.0234 (3) | |
C8 | 0.89411 (18) | 0.31925 (7) | 1.02295 (18) | 0.0221 (3) | |
C9 | 0.86750 (17) | 0.24271 (7) | 1.01382 (17) | 0.0206 (2) | |
C10 | 0.51347 (19) | 0.09170 (8) | 0.8651 (2) | 0.0296 (3) | |
C11 | 0.7611 (2) | 0.44726 (7) | 0.9660 (2) | 0.0305 (3) | |
C12 | 1.08022 (19) | 0.35066 (8) | 1.0964 (2) | 0.0299 (3) | |
O1 | 1.02050 (12) | 0.20031 (5) | 1.07807 (13) | 0.0240 (2) | |
O2 | 1.15405 (14) | 0.09227 (6) | 1.14331 (15) | 0.0338 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0259 (6) | 0.0213 (6) | 0.0259 (6) | 0.0034 (5) | 0.0042 (5) | −0.0003 (5) |
C2 | 0.0277 (7) | 0.0189 (6) | 0.0268 (6) | −0.0011 (5) | 0.0041 (5) | −0.0012 (5) |
C3 | 0.0246 (6) | 0.0225 (6) | 0.0205 (6) | −0.0035 (5) | 0.0040 (5) | −0.0007 (5) |
C4 | 0.0213 (6) | 0.0211 (6) | 0.0200 (6) | −0.0004 (4) | 0.0038 (5) | −0.0002 (5) |
C5 | 0.0202 (6) | 0.0273 (6) | 0.0262 (6) | −0.0003 (5) | 0.0001 (5) | 0.0003 (5) |
C6 | 0.0238 (6) | 0.0258 (6) | 0.0254 (6) | 0.0048 (5) | 0.0014 (5) | 0.0024 (5) |
C7 | 0.0276 (6) | 0.0204 (6) | 0.0223 (6) | 0.0014 (5) | 0.0039 (5) | 0.0018 (5) |
C8 | 0.0223 (6) | 0.0222 (6) | 0.0220 (6) | −0.0010 (5) | 0.0028 (5) | 0.0000 (5) |
C9 | 0.0196 (6) | 0.0209 (6) | 0.0214 (6) | 0.0018 (4) | 0.0025 (5) | 0.0007 (5) |
C10 | 0.0283 (7) | 0.0267 (7) | 0.0329 (7) | −0.0080 (5) | 0.0006 (6) | −0.0005 (6) |
C11 | 0.0366 (8) | 0.0209 (6) | 0.0335 (8) | 0.0024 (5) | 0.0016 (6) | 0.0023 (5) |
C12 | 0.0265 (7) | 0.0257 (7) | 0.0359 (7) | −0.0052 (5) | −0.0021 (6) | −0.0010 (6) |
O1 | 0.0205 (4) | 0.0212 (4) | 0.0296 (5) | 0.0020 (3) | −0.0004 (4) | 0.0000 (4) |
O2 | 0.0287 (5) | 0.0271 (5) | 0.0439 (6) | 0.0075 (4) | −0.0030 (4) | −0.0006 (4) |
C1—C2 | 1.4421 (19) | C8—C12 | 1.5042 (18) |
C2—H2 | 0.9500 | C10—H10A | 0.9800 |
C2—C3 | 1.3465 (18) | C10—H10B | 0.9800 |
C3—C4 | 1.4484 (18) | C10—H10C | 0.9800 |
C3—C10 | 1.4979 (18) | C11—H11A | 0.9800 |
C4—C5 | 1.3990 (18) | C11—H11B | 0.9800 |
C4—C9 | 1.3964 (17) | C11—H11C | 0.9800 |
C5—H5 | 0.9500 | C12—H12A | 0.9800 |
C5—C6 | 1.3788 (19) | C12—H12B | 0.9800 |
C6—H6 | 0.9500 | C12—H12C | 0.9800 |
C6—C7 | 1.3994 (19) | O1—C1 | 1.3739 (16) |
C7—C8 | 1.3998 (18) | O1—C9 | 1.3842 (15) |
C7—C11 | 1.5067 (19) | O2—C1 | 1.2163 (16) |
C8—C9 | 1.3973 (18) | ||
O1—C1—C2 | 117.34 (11) | C9—C8—C12 | 120.26 (12) |
O2—C1—C2 | 125.95 (13) | C4—C9—C8 | 123.63 (11) |
O2—C1—O1 | 116.71 (12) | O1—C9—C4 | 120.83 (11) |
C1—C2—H2 | 118.8 | O1—C9—C8 | 115.54 (11) |
C3—C2—H2 | 118.8 | H10A—C10—H10B | 109.5 |
C3—C2—C1 | 122.43 (12) | H10A—C10—H10C | 109.5 |
C2—C3—C4 | 119.07 (12) | H10B—C10—H10C | 109.5 |
C2—C3—C10 | 120.99 (12) | C3—C10—H10A | 109.5 |
C4—C3—C10 | 119.94 (12) | C3—C10—H10B | 109.5 |
C5—C4—C3 | 124.33 (12) | C3—C10—H10C | 109.5 |
C9—C4—C3 | 118.45 (11) | H11A—C11—H11B | 109.5 |
C9—C4—C5 | 117.21 (12) | H11A—C11—H11C | 109.5 |
C4—C5—H5 | 119.7 | H11B—C11—H11C | 109.5 |
C6—C5—H5 | 119.7 | C7—C11—H11A | 109.5 |
C6—C5—C4 | 120.63 (12) | C7—C11—H11B | 109.5 |
C5—C6—H6 | 119.4 | C7—C11—H11C | 109.5 |
C5—C6—C7 | 121.22 (12) | H12A—C12—H12B | 109.5 |
C7—C6—H6 | 119.4 | H12A—C12—H12C | 109.5 |
C6—C7—C8 | 119.86 (12) | H12B—C12—H12C | 109.5 |
C6—C7—C11 | 119.76 (12) | C8—C12—H12A | 109.5 |
C8—C7—C11 | 120.39 (12) | C8—C12—H12B | 109.5 |
C7—C8—C12 | 122.29 (12) | C8—C12—H12C | 109.5 |
C9—C8—C7 | 117.45 (12) | C1—O1—C9 | 121.80 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.95 | 2.56 | 3.460 (2) | 159 |
C10—H10C···O2ii | 0.98 | 2.54 | 3.493 (2) | 164 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C12H12O2 |
Mr | 188.22 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 153 |
a, b, c (Å) | 7.276 (3), 18.075 (6), 7.246 (3) |
β (°) | 97.055 (5) |
V (Å3) | 945.8 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.44 × 0.31 × 0.26 |
Data collection | |
Diffractometer | Rigaku AFC10/Saturn724+ |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8545, 2747, 2176 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.112, 1.00 |
No. of reflections | 2747 |
No. of parameters | 130 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.33 |
Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.95 | 2.56 | 3.460 (2) | 159 |
C10—H10C···O2ii | 0.98 | 2.54 | 3.493 (2) | 164 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) x−1, y, z. |
Acknowledgements
The authors are grateful to the National Natural Science Foundation of China (No. 20962007) and the Creative Talents Plan of the Hainan University 211 Project.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gowda, R., Gowda, K. V. A., Basanagouda, M. & Kulkarni, M. V. (2010). Acta Cryst. E66, o3352. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pochet, L., Doucet, C., Schynts, M., Thierry, N., Boggeto, N., Pirotte, B., Jiang, K. Y., Masereel, B., Tulio, P. D., Delarge, J. & Reboud-Ravaux, M. (1996). J. Med. Chem. 39, 2579–2585. CrossRef CAS PubMed Web of Science Google Scholar
Rendenbach-Müller, B., Schelcker, R., Traut, M. & Weifenbach, H. (1994). Bioorg. Med. Chem. Lett. 4, 1195–1198. CrossRef Web of Science Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Shao, X., Ekstrand, D. H. L., Bhikhabhai, R., Kallander, C. F. R. & Gronowitz, J. S. (1997). Antivir. Chem. Chemother. 8, 149–159. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanitame, A., Oyamada, Y., Ofuji, K., Kyoya, Y., Suzuki, K., Ito, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). J. Med. Chem. 47, 3693–, 3696. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, L., Takeuchi, Y., Cosentino, L. M., McPhail, A. T. & Lee, K. H. (2001). J. Med. Chem. 44, 664–671. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarin derivatives exhibit a wide variety of pharmacological activities including anti-HIV (Xie et al., 2001), antibacterial (Tanitame et al., 2004), antioxidant (Shao et al., 1997), antithrombotic (Rendenbach-Müller et al., 1994) and antiinflammatory (Pochet et al., 1996) activities.
The molecular structure is shown in Fig. 1. In the crystal the molecules are linked by C—H···O hydrogen bonds to form ribbon-like motives (Table 1 and Fig. 2).