organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-18-Meth­­oxy­coronaridine hydro­chloride

aDepartment of Chemistry, University of Vermont, 82 University Place, Burlington, VT 05405, USA
*Correspondence e-mail: rory.waterman@uvm.edu

(Received 16 February 2012; accepted 6 March 2012; online 10 March 2012)

In the crystal structure of the racemic title compound, C22H29N2O3+·Cl, both NH groups form N—H⋯Cl hydrogen bonds with the chloride counter-ion, forming translational chains along the a axis.

Related literature

The title compound is a prospective anti-addictive and anti­leishmaniasis agent. For the synsthesis of the free base along with some bio-activity studies, see: Bandarage et al. (1995[Bandarage, U., Kuehne, M. E. & Glick, S. (1995). Tetrahedron, 55, 9405-9424.]). For a study of related systems, see: Kuehne et al. (2003[Kuehne, M. E., He, L., Jokiel, P. A., Pace, C. J., Fleck, M. W., Maisonneuve, I. M., Glick, S. D. & Bidlack, J. M. (2003). J. Med. Chem. 46, 2716-2730.]).

[Scheme 1]

Experimental

Crystal data
  • C22H29N2O3+·Cl

  • Mr = 404.92

  • Monoclinic, P 21 /n

  • a = 9.3692 (14) Å

  • b = 20.161 (3) Å

  • c = 11.6281 (18) Å

  • β = 110.221 (2)°

  • V = 2061.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 125 K

  • 0.21 × 0.17 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.983

  • 22802 measured reflections

  • 4374 independent reflections

  • 2620 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.118

  • S = 1.01

  • 4374 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl 1.01 (3) 2.09 (3) 3.054 (2) 160 (3)
N1—H1⋯Cli 0.93 (3) 2.25 (3) 3.157 (2) 165 (2)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

18-Methoxycoronaridine hydrochloride is a compound under investigation for anti-addictive and anti-leishmaniasis activity (Bandarage, et al., 1995) that has prompted a further study on additional, related systems (Kuehne, et al., 2003). Its structure is presented herein to aid these studies. The hydrochloride salt is readily obtained from pure 18-methoxycoronaridine by reaction with anhydrous hydrochloric acid. Though this salt readily crystalizes from a variety of solvents, it was found that ethanol/THF was the optimal system for affording X-ray quality samples. Desipte the conditions, no evidence for decarbomethoxylation was observed.

Related literature top

The title compound is a prospective anti-addictive and antileishmaniasis agent. For the synsthesis of the free base along with some bio-activity studies, see: Bandarage et al. (1995). For a study of related systems, see: Kuehne et al. (2003).

Experimental top

18-Methoxycoronaridine was prepared according to the literature procedure (Bandarage et al., 1995) and treated in dichloromethane solution with excess of anhydrous HCl. The solvent was removed under reduced pressure, and the the residue was washed with benzene that gave the pure 18-methoxycoronaridine hydrochloride (sub: 195–197 C). X-ray quality crystals were grown from a methanol/THF solvent mixutre.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogens on carbon atoms were placed in calculated positions and refined using a riding model at C—H = 0.95, 0.98 or 1.00 Å and Uiso(H) = 1.2, 1.5 or 1.2 τimes Ueq(C) of the aryl, methyl and methine C-atoms, respectively. Methyl hydrogen atoms were set in staggered orientation and not optimized rotationally.

Structure description top

18-Methoxycoronaridine hydrochloride is a compound under investigation for anti-addictive and anti-leishmaniasis activity (Bandarage, et al., 1995) that has prompted a further study on additional, related systems (Kuehne, et al., 2003). Its structure is presented herein to aid these studies. The hydrochloride salt is readily obtained from pure 18-methoxycoronaridine by reaction with anhydrous hydrochloric acid. Though this salt readily crystalizes from a variety of solvents, it was found that ethanol/THF was the optimal system for affording X-ray quality samples. Desipte the conditions, no evidence for decarbomethoxylation was observed.

The title compound is a prospective anti-addictive and antileishmaniasis agent. For the synsthesis of the free base along with some bio-activity studies, see: Bandarage et al. (1995). For a study of related systems, see: Kuehne et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of 18-methoxycoronaridine hydrochloride with elipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity except for H1 and H4.
(1RS,13RS,17SR)-1-(methoxycarbonyl)-17-(2-methoxyethyl)- 3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca- 2(10),4,6,8-tetraen-13-ium chloride top
Crystal data top
C22H29N2O3+·ClF(000) = 864
Mr = 404.92Dx = 1.305 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4279 reflections
a = 9.3692 (14) Åθ = 2.5–26.9°
b = 20.161 (3) ŵ = 0.21 mm1
c = 11.6281 (18) ÅT = 125 K
β = 110.221 (2)°Plate, colourless
V = 2061.1 (5) Å30.21 × 0.17 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4374 independent reflections
Radiation source: fine-focus sealed tube2620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
φ and ω scansθmax = 26.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.958, Tmax = 0.983k = 2525
22802 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.8261P]
where P = (Fo2 + 2Fc2)/3
4374 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C22H29N2O3+·ClV = 2061.1 (5) Å3
Mr = 404.92Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3692 (14) ŵ = 0.21 mm1
b = 20.161 (3) ÅT = 125 K
c = 11.6281 (18) Å0.21 × 0.17 × 0.08 mm
β = 110.221 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4374 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2620 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.983Rint = 0.100
22802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
4374 reflectionsΔρmin = 0.32 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Suitable crystals were mounted in a nylon loop with Paratone-N cryoprotectant oil and data collected on a Bruker APEX 2 CCD platform diffractometer. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F2 with SHELXTL Version 6.14 (Sheldrick, 2008).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.6298 (3)0.03049 (13)0.2437 (2)0.0159 (6)
C30.3327 (3)0.04266 (13)0.4114 (2)0.0204 (6)
H11A0.23180.05090.47450.024*
H11B0.38740.00990.44410.024*
C50.2795 (3)0.05676 (13)0.2987 (2)0.0195 (6)
H10A0.19360.06320.26870.023*
H10B0.24560.07200.38490.023*
C60.4102 (3)0.10020 (13)0.2237 (2)0.0194 (6)
H12C0.42990.09180.13570.023*
H12D0.37960.14720.24020.023*
C70.5551 (3)0.08957 (13)0.2490 (2)0.0178 (6)
C80.6388 (3)0.13907 (13)0.2870 (2)0.0177 (6)
C90.6179 (3)0.20695 (13)0.3122 (2)0.0224 (6)
H12A0.53470.22980.30150.027*
C100.7204 (3)0.24016 (14)0.3529 (3)0.0268 (7)
H12B0.70630.28610.37140.032*
C110.8452 (3)0.20713 (14)0.3674 (2)0.0249 (7)
H11E0.91440.23130.39490.030*
C120.8691 (3)0.14076 (13)0.3427 (2)0.0204 (6)
H18A0.95340.11860.35280.024*
C130.7655 (3)0.10689 (13)0.3021 (2)0.0179 (6)
C140.4234 (3)0.10731 (13)0.3792 (2)0.0180 (6)
H10C0.41450.13230.45570.022*
C150.3613 (3)0.14888 (13)0.2976 (2)0.0198 (6)
H19A0.24910.15180.33430.024*
H19B0.40340.19440.28980.024*
C160.5960 (3)0.03842 (12)0.2080 (2)0.0152 (6)
C170.5909 (3)0.09052 (13)0.3084 (2)0.0178 (6)
H11C0.64680.13100.26990.021*
H11D0.63930.07220.36490.021*
C180.2695 (3)0.19660 (14)0.0775 (3)0.0237 (6)
H11H0.23840.22290.15410.028*
H11I0.18820.20000.04150.028*
C190.2917 (3)0.12482 (13)0.1052 (2)0.0212 (6)
H11F0.19270.10620.15750.025*
H11G0.32580.09950.02750.025*
C200.4076 (3)0.11564 (12)0.1697 (2)0.0170 (6)
H18B0.50470.13680.11700.020*
C210.4422 (3)0.04253 (13)0.1856 (2)0.0172 (6)
H17A0.44780.01670.11080.021*
C220.7202 (3)0.05207 (13)0.0837 (2)0.0165 (6)
C980.9699 (3)0.08902 (16)0.0188 (3)0.0345 (8)
H12E1.05600.10860.00150.052*
H12F1.00040.04620.06000.052*
H12G0.93810.11890.07190.052*
C990.3917 (4)0.28863 (14)0.0384 (3)0.0377 (8)
H11J0.48890.30440.09630.057*
H11K0.31360.29120.07660.057*
H11L0.36170.31640.03540.057*
N10.7580 (2)0.04105 (11)0.27505 (19)0.0167 (5)
N40.3142 (2)0.01673 (11)0.29607 (19)0.0174 (5)
H40.214 (4)0.0360 (15)0.299 (3)0.048 (10)*
O10.4075 (2)0.22182 (9)0.00591 (17)0.0262 (5)
O20.7097 (2)0.03754 (9)0.01348 (16)0.0256 (5)
O30.84383 (19)0.07907 (9)0.09564 (16)0.0246 (5)
Cl0.02001 (7)0.05216 (3)0.35272 (6)0.02537 (18)
H10.824 (3)0.0090 (14)0.285 (2)0.027 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0138 (13)0.0207 (15)0.0116 (12)0.0009 (11)0.0022 (10)0.0002 (11)
C30.0189 (14)0.0267 (16)0.0138 (13)0.0020 (12)0.0034 (11)0.0005 (11)
C50.0169 (14)0.0194 (15)0.0208 (14)0.0057 (12)0.0049 (11)0.0016 (12)
C60.0181 (14)0.0185 (15)0.0218 (14)0.0031 (11)0.0070 (11)0.0004 (12)
C70.0169 (14)0.0206 (15)0.0143 (13)0.0019 (11)0.0032 (11)0.0017 (11)
C80.0166 (14)0.0199 (15)0.0132 (13)0.0003 (11)0.0011 (11)0.0018 (11)
C90.0188 (15)0.0226 (16)0.0223 (15)0.0011 (12)0.0027 (12)0.0009 (12)
C100.0295 (17)0.0168 (15)0.0300 (17)0.0018 (12)0.0052 (13)0.0031 (13)
C110.0215 (15)0.0263 (17)0.0246 (16)0.0081 (12)0.0051 (13)0.0018 (12)
C120.0133 (14)0.0265 (16)0.0192 (14)0.0028 (11)0.0030 (11)0.0002 (12)
C130.0152 (14)0.0218 (15)0.0135 (13)0.0018 (11)0.0009 (11)0.0001 (11)
C140.0174 (13)0.0205 (15)0.0147 (13)0.0023 (11)0.0039 (11)0.0026 (11)
C150.0162 (14)0.0202 (15)0.0209 (14)0.0022 (11)0.0038 (11)0.0034 (12)
C160.0108 (13)0.0189 (15)0.0140 (13)0.0011 (10)0.0018 (10)0.0008 (11)
C170.0170 (14)0.0197 (15)0.0170 (14)0.0015 (11)0.0062 (11)0.0001 (11)
C180.0190 (15)0.0273 (16)0.0254 (15)0.0024 (12)0.0085 (12)0.0014 (13)
C190.0179 (14)0.0253 (16)0.0204 (15)0.0014 (12)0.0065 (12)0.0016 (12)
C200.0141 (13)0.0195 (15)0.0159 (13)0.0011 (11)0.0035 (11)0.0024 (11)
C210.0134 (13)0.0230 (16)0.0133 (13)0.0013 (11)0.0021 (10)0.0004 (11)
C220.0151 (13)0.0151 (14)0.0192 (14)0.0010 (11)0.0059 (11)0.0007 (11)
C980.0188 (16)0.052 (2)0.0237 (16)0.0125 (14)0.0035 (13)0.0020 (15)
C990.051 (2)0.0228 (18)0.044 (2)0.0058 (15)0.0223 (17)0.0096 (15)
N10.0133 (11)0.0181 (13)0.0187 (12)0.0011 (9)0.0052 (9)0.0012 (9)
N40.0141 (12)0.0219 (13)0.0135 (11)0.0006 (9)0.0013 (9)0.0005 (9)
O10.0247 (11)0.0212 (11)0.0329 (12)0.0015 (8)0.0103 (9)0.0061 (9)
O20.0212 (10)0.0398 (13)0.0148 (10)0.0043 (9)0.0049 (8)0.0033 (9)
O30.0162 (10)0.0372 (12)0.0175 (10)0.0087 (8)0.0019 (8)0.0009 (8)
Cl0.0161 (3)0.0283 (4)0.0299 (4)0.0018 (3)0.0056 (3)0.0024 (3)
Geometric parameters (Å, º) top
C2—C71.372 (4)C15—H19B0.9900
C2—N11.387 (3)C16—C221.535 (3)
C2—C161.514 (3)C16—C211.552 (3)
C3—N41.504 (3)C16—C171.559 (3)
C3—C141.530 (3)C17—H11C0.9900
C3—H11A0.9900C17—H11D0.9900
C3—H11B0.9900C18—O11.416 (3)
C5—C61.513 (3)C18—C191.512 (4)
C5—N41.515 (3)C18—H11H0.9900
C5—H10A0.9900C18—H11I0.9900
C5—H10B0.9900C19—C201.530 (3)
C6—C71.500 (3)C19—H11F0.9900
C6—H12C0.9900C19—H11G0.9900
C6—H12D0.9900C20—C211.534 (4)
C7—C81.430 (4)C20—H18B1.0000
C8—C91.399 (4)C21—N41.515 (3)
C8—C131.416 (4)C21—H17A1.0000
C9—C101.381 (4)C22—O21.204 (3)
C9—H12A0.9500C22—O31.330 (3)
C10—C111.406 (4)C98—O31.456 (3)
C10—H12B0.9500C98—H12E0.9800
C11—C121.371 (4)C98—H12F0.9800
C11—H11E0.9500C98—H12G0.9800
C12—C131.396 (4)C99—O11.420 (3)
C12—H18A0.9500C99—H11J0.9800
C13—N11.372 (3)C99—H11K0.9800
C14—C151.524 (4)C99—H11L0.9800
C14—C171.537 (3)N1—H10.93 (3)
C14—H10C1.0000N4—Cl3.054 (2)
C15—C201.550 (3)N4—H41.01 (3)
C15—H19A0.9900
C7—C2—N1109.2 (2)C14—C17—C16108.1 (2)
C7—C2—C16131.0 (2)C14—C17—H11C110.1
N1—C2—C16119.7 (2)C16—C17—H11C110.1
N4—C3—C14107.7 (2)C14—C17—H11D110.1
N4—C3—H11A110.2C16—C17—H11D110.1
C14—C3—H11A110.2H11C—C17—H11D108.4
N4—C3—H11B110.2O1—C18—C19109.2 (2)
C14—C3—H11B110.2O1—C18—H11H109.8
H11A—C3—H11B108.5C19—C18—H11H109.8
C6—C5—N4115.4 (2)O1—C18—H11I109.8
C6—C5—H10A108.4C19—C18—H11I109.8
N4—C5—H10A108.4H11H—C18—H11I108.3
C6—C5—H10B108.4C18—C19—C20113.2 (2)
N4—C5—H10B108.4C18—C19—H11F108.9
H10A—C5—H10B107.5C20—C19—H11F108.9
C7—C6—C5114.3 (2)C18—C19—H11G108.9
C7—C6—H12C108.7C20—C19—H11G108.9
C5—C6—H12C108.7H11F—C19—H11G107.8
C7—C6—H12D108.7C19—C20—C21113.0 (2)
C5—C6—H12D108.7C19—C20—C15114.1 (2)
H12C—C6—H12D107.6C21—C20—C15107.5 (2)
C2—C7—C8107.1 (2)C19—C20—H18B107.3
C2—C7—C6126.7 (2)C21—C20—H18B107.3
C8—C7—C6126.2 (2)C15—C20—H18B107.3
C9—C8—C13119.0 (2)N4—C21—C20107.1 (2)
C9—C8—C7134.0 (2)N4—C21—C16110.39 (19)
C13—C8—C7106.9 (2)C20—C21—C16108.6 (2)
C10—C9—C8118.8 (3)N4—C21—H17A110.2
C10—C9—H12A120.6C20—C21—H17A110.2
C8—C9—H12A120.6C16—C21—H17A110.2
C9—C10—C11121.1 (3)O2—C22—O3123.7 (2)
C9—C10—H12B119.4O2—C22—C16124.0 (2)
C11—C10—H12B119.4O3—C22—C16112.3 (2)
C12—C11—C10121.3 (3)O3—C98—H12E109.5
C12—C11—H11E119.3O3—C98—H12F109.5
C10—C11—H11E119.3H12E—C98—H12F109.5
C11—C12—C13117.8 (3)O3—C98—H12G109.5
C11—C12—H18A121.1H12E—C98—H12G109.5
C13—C12—H18A121.1H12F—C98—H12G109.5
N1—C13—C12130.4 (2)O1—C99—H11J109.5
N1—C13—C8107.7 (2)O1—C99—H11K109.5
C12—C13—C8121.9 (2)H11J—C99—H11K109.5
C15—C14—C3108.7 (2)O1—C99—H11L109.5
C15—C14—C17109.0 (2)H11J—C99—H11L109.5
C3—C14—C17108.8 (2)H11K—C99—H11L109.5
C15—C14—H10C110.1C13—N1—C2109.0 (2)
C3—C14—H10C110.1C13—N1—H1123.8 (17)
C17—C14—H10C110.1C2—N1—H1126.9 (17)
C14—C15—C20108.6 (2)C3—N4—C21109.59 (19)
C14—C15—H19A110.0C3—N4—C5114.3 (2)
C20—C15—H19A110.0C21—N4—C5117.03 (19)
C14—C15—H19B110.0C3—N4—Cl98.72 (14)
C20—C15—H19B110.0C21—N4—Cl123.72 (15)
H19A—C15—H19B108.3C5—N4—Cl91.58 (13)
C2—C16—C22105.1 (2)C3—N4—H4103.3 (18)
C2—C16—C21112.9 (2)C21—N4—H4110.6 (18)
C22—C16—C21106.13 (19)C5—N4—H4100.7 (18)
C2—C16—C17111.6 (2)Cl—N4—H413.3 (18)
C22—C16—C17113.6 (2)C18—O1—C99111.6 (2)
C21—C16—C17107.45 (19)C22—O3—C98114.9 (2)
N4—C5—C6—C751.3 (3)C18—C19—C20—C1562.8 (3)
N1—C2—C7—C80.9 (3)C14—C15—C20—C19147.6 (2)
C16—C2—C7—C8179.2 (2)C14—C15—C20—C2121.4 (3)
N1—C2—C7—C6179.1 (2)C19—C20—C21—N480.5 (2)
C16—C2—C7—C62.7 (4)C15—C20—C21—N446.3 (3)
C5—C6—C7—C254.5 (4)C19—C20—C21—C16160.3 (2)
C5—C6—C7—C8123.3 (3)C15—C20—C21—C1672.9 (2)
C2—C7—C8—C9177.7 (3)C2—C16—C21—N454.3 (3)
C6—C7—C8—C90.4 (5)C22—C16—C21—N4168.9 (2)
C2—C7—C8—C130.7 (3)C17—C16—C21—N469.2 (2)
C6—C7—C8—C13178.9 (2)C2—C16—C21—C20171.4 (2)
C13—C8—C9—C101.0 (4)C22—C16—C21—C2074.0 (2)
C7—C8—C9—C10177.3 (3)C17—C16—C21—C2047.9 (2)
C8—C9—C10—C110.9 (4)C2—C16—C22—O288.7 (3)
C9—C10—C11—C120.5 (4)C21—C16—C22—O231.2 (3)
C10—C11—C12—C130.2 (4)C17—C16—C22—O2149.1 (3)
C11—C12—C13—N1177.4 (2)C2—C16—C22—O388.4 (2)
C11—C12—C13—C80.3 (4)C21—C16—C22—O3151.7 (2)
C9—C8—C13—N1178.4 (2)C17—C16—C22—O333.8 (3)
C7—C8—C13—N10.3 (3)C12—C13—N1—C2177.2 (3)
C9—C8—C13—C120.8 (4)C8—C13—N1—C20.2 (3)
C7—C8—C13—C12178.0 (2)C7—C2—N1—C130.7 (3)
N4—C3—C14—C1544.1 (3)C16—C2—N1—C13179.2 (2)
N4—C3—C14—C1774.5 (2)C14—C3—N4—C2125.3 (3)
C3—C14—C15—C2071.2 (3)C14—C3—N4—C5158.9 (2)
C17—C14—C15—C2047.2 (3)C14—C3—N4—Cl105.34 (18)
C7—C2—C16—C22108.9 (3)C20—C21—N4—C375.1 (2)
N1—C2—C16—C2269.2 (3)C16—C21—N4—C342.9 (3)
C7—C2—C16—C216.4 (4)C20—C21—N4—C5152.6 (2)
N1—C2—C16—C21175.5 (2)C16—C21—N4—C589.4 (2)
C7—C2—C16—C17127.5 (3)C20—C21—N4—Cl40.4 (2)
N1—C2—C16—C1754.4 (3)C16—C21—N4—Cl158.41 (15)
C15—C14—C17—C1672.0 (3)C6—C5—N4—C3105.4 (2)
C3—C14—C17—C1646.4 (3)C6—C5—N4—C2124.7 (3)
C2—C16—C17—C14103.9 (2)C6—C5—N4—Cl154.30 (19)
C22—C16—C17—C14137.5 (2)C19—C18—O1—C99178.0 (2)
C21—C16—C17—C1420.4 (3)O2—C22—O3—C981.2 (4)
O1—C18—C19—C2063.6 (3)C16—C22—O3—C98175.9 (2)
C18—C19—C20—C21174.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1.01 (3)2.09 (3)3.054 (2)160 (3)
N1—H1···Cli0.93 (3)2.25 (3)3.157 (2)165 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC22H29N2O3+·Cl
Mr404.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)125
a, b, c (Å)9.3692 (14), 20.161 (3), 11.6281 (18)
β (°) 110.221 (2)
V3)2061.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.21 × 0.17 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.958, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
22802, 4374, 2620
Rint0.100
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.118, 1.01
No. of reflections4374
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1.01 (3)2.09 (3)3.054 (2)160 (3)
N1—H1···Cli0.93 (3)2.25 (3)3.157 (2)165 (2)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

X-ray facilities were provided by the NSF (CHE-1039436 to RW).

References

First citationBandarage, U., Kuehne, M. E. & Glick, S. (1995). Tetrahedron, 55, 9405–9424.  Web of Science CrossRef Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKuehne, M. E., He, L., Jokiel, P. A., Pace, C. J., Fleck, M. W., Maisonneuve, I. M., Glick, S. D. & Bidlack, J. M. (2003). J. Med. Chem. 46, 2716–2730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds