organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Fluoro-3-iso­propyl­sulfanyl-7-methyl-1-benzo­furan-2-yl)acetic acid

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 20 February 2012; accepted 24 February 2012; online 3 March 2012)

The title compound, C14H15FO3S, was prepared by alkaline hydrolysis of ethyl 2-(5-fluoro-3-isopropyl­sulfanyl-7-methyl-1-benzofuran-2-yl)acetate. In the crystal, mol­ecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers. These dimers are connected by weak C—H⋯O hydrogen bonds.

Related literature

For background information and the crystal structures of related compounds, see: Seo et al. (2011[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3112.], 2012[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2012). Acta Cryst. E68, o58.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15FO3S

  • Mr = 282.32

  • Triclinic, [P \overline 1]

  • a = 8.4365 (2) Å

  • b = 9.2771 (2) Å

  • c = 9.7956 (2) Å

  • α = 91.404 (1)°

  • β = 91.2710 (1)°

  • γ = 115.111 (1)°

  • V = 693.55 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.35 × 0.32 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.934

  • 12921 measured reflections

  • 3467 independent reflections

  • 2946 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.155

  • S = 1.06

  • 3467 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.86 (4) 1.76 (4) 2.616 (2) 176 (4)
C9—H9B⋯O3ii 0.98 2.56 3.534 (3) 171
Symmetry codes: (i) -x, -y, -z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 2-(5-halo-3-isopropylsulfanyl-1-benzofuran-2-yl)acetic acid derivatives containing 5-fluoro (Seo et al. , 2011) and 5-bromo (Seo et al. , 2012) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.010 (1) Å from the least-squares plane defined by the nine constituent atoms. In the crystal structure, the carboxyl groups are involved in intermolecular O–H···O hydrogen bonds (Fig. 2 & Table 1), which link the molecules into centrosymmetric dimers. These dimers are stuck by weak intermolecular C–H···O hydrogen bonds (Fig. 2 & Table 1).

Related literature top

For background information and the crystal structures of related compounds, see: Seo et al. (2011, 2012).

Experimental top

Ethyl 2-(5-fluoro-3-isopropylsulfanyl-7-methyl-1-benzofuran-2-yl)acetate (372 mg, 1.2 mmol) was added to a solution of potassium hydroxide (336 mg, 6 mmol) in water (10 ml) and methanol (10 ml), and the mixture was refluxed for 6h, then cooled. Water was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH=1 with concentrated hydrochloric acid and then extracted with chloroform. The organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 87%, m.p. 436-437 K; Rf = 0.44 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in diisopropyl ether at room temperature.

Refinement top

H atom in the carboxyl group is found in a different Fourier map and refined freely. The other H atoms of C atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 1.0 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine, and methylene, and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally. The split of C13 atom was ignored because the disordered ellipsoids also split into two.

Structure description top

As a part of our continuing study of 2-(5-halo-3-isopropylsulfanyl-1-benzofuran-2-yl)acetic acid derivatives containing 5-fluoro (Seo et al. , 2011) and 5-bromo (Seo et al. , 2012) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.010 (1) Å from the least-squares plane defined by the nine constituent atoms. In the crystal structure, the carboxyl groups are involved in intermolecular O–H···O hydrogen bonds (Fig. 2 & Table 1), which link the molecules into centrosymmetric dimers. These dimers are stuck by weak intermolecular C–H···O hydrogen bonds (Fig. 2 & Table 1).

For background information and the crystal structures of related compounds, see: Seo et al. (2011, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O–H···O and C–H···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x, - y, - z; (ii) x, y + 1, z; (iii) x, y - 1, z.]
2-(5-Fluoro-3-isopropylsulfanyl-7-methyl-1-benzofuran-2-yl)acetic acid top
Crystal data top
C14H15FO3SZ = 2
Mr = 282.32F(000) = 296
Triclinic, P1Dx = 1.352 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4365 (2) ÅCell parameters from 5886 reflections
b = 9.2771 (2) Åθ = 2.4–28.4°
c = 9.7956 (2) ŵ = 0.25 mm1
α = 91.404 (1)°T = 173 K
β = 91.2710 (1)°Block, colourless
γ = 115.111 (1)°0.35 × 0.32 × 0.28 mm
V = 693.55 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3467 independent reflections
Radiation source: rotating anode2946 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.1°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1112
Tmin = 0.919, Tmax = 0.934l = 1313
12921 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0853P)2 + 0.3723P]
where P = (Fo2 + 2Fc2)/3
3467 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C14H15FO3Sγ = 115.111 (1)°
Mr = 282.32V = 693.55 (3) Å3
Triclinic, P1Z = 2
a = 8.4365 (2) ÅMo Kα radiation
b = 9.2771 (2) ŵ = 0.25 mm1
c = 9.7956 (2) ÅT = 173 K
α = 91.404 (1)°0.35 × 0.32 × 0.28 mm
β = 91.2710 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3467 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2946 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.934Rint = 0.028
12921 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.93 e Å3
3467 reflectionsΔρmin = 0.44 e Å3
179 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64151 (7)0.31790 (6)0.28518 (5)0.03564 (17)
F10.78061 (17)0.98655 (14)0.35845 (16)0.0503 (4)
O10.23013 (17)0.40794 (15)0.34150 (13)0.0310 (3)
O20.1261 (3)0.16845 (17)0.07988 (16)0.0552 (5)
O30.0331 (2)0.07438 (16)0.15984 (16)0.0434 (4)
H3O0.022 (5)0.102 (5)0.082 (4)0.097 (13)*
C10.4901 (2)0.3980 (2)0.30894 (17)0.0273 (4)
C20.5220 (2)0.5633 (2)0.32776 (16)0.0261 (3)
C30.6709 (2)0.7080 (2)0.33113 (19)0.0309 (4)
H30.78520.71410.32030.037*
C40.6403 (3)0.8411 (2)0.3512 (2)0.0343 (4)
C50.4765 (3)0.8394 (2)0.3669 (2)0.0348 (4)
H50.46640.93710.37910.042*
C60.3272 (3)0.6965 (2)0.36477 (18)0.0312 (4)
C70.3583 (2)0.5618 (2)0.34579 (17)0.0273 (4)
C80.3153 (2)0.3132 (2)0.31893 (17)0.0287 (4)
C90.1464 (3)0.6865 (3)0.3815 (2)0.0426 (5)
H9A0.06040.57520.37050.064*
H9B0.12220.74970.31220.064*
H9C0.13860.72830.47280.064*
C100.2049 (3)0.1387 (2)0.30994 (19)0.0349 (4)
H10A0.11390.11150.37920.042*
H10B0.27890.08280.33220.042*
C110.1170 (3)0.0792 (2)0.17141 (19)0.0317 (4)
C120.6510 (5)0.3118 (4)0.0971 (3)0.0624 (8)
H120.52840.25650.05810.075*
C130.7450 (8)0.2152 (6)0.0605 (5)0.124 (2)
H13A0.73670.19600.03880.186*
H13B0.69250.11320.10550.186*
H13C0.86830.27220.09040.186*
C140.7333 (5)0.4753 (4)0.0408 (3)0.0766 (10)
H14A0.85350.53180.07830.115*
H14B0.66520.53440.06630.115*
H14C0.73510.46650.05900.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0454 (3)0.0356 (3)0.0327 (3)0.0233 (2)0.0074 (2)0.00516 (18)
F10.0421 (7)0.0235 (6)0.0731 (9)0.0025 (5)0.0028 (6)0.0043 (6)
O10.0274 (6)0.0274 (6)0.0340 (7)0.0077 (5)0.0037 (5)0.0021 (5)
O20.0785 (12)0.0260 (7)0.0413 (8)0.0041 (7)0.0244 (8)0.0048 (6)
O30.0606 (10)0.0224 (6)0.0362 (8)0.0077 (6)0.0109 (7)0.0002 (5)
C10.0329 (9)0.0237 (8)0.0232 (7)0.0103 (7)0.0018 (6)0.0003 (6)
C20.0304 (9)0.0243 (8)0.0217 (7)0.0101 (7)0.0009 (6)0.0001 (6)
C30.0278 (9)0.0277 (8)0.0334 (9)0.0082 (7)0.0014 (7)0.0006 (7)
C40.0365 (10)0.0232 (8)0.0354 (9)0.0056 (7)0.0011 (7)0.0015 (7)
C50.0436 (11)0.0269 (8)0.0353 (9)0.0164 (8)0.0006 (8)0.0004 (7)
C60.0342 (10)0.0329 (9)0.0287 (8)0.0164 (8)0.0014 (7)0.0023 (7)
C70.0285 (8)0.0261 (8)0.0244 (8)0.0091 (7)0.0034 (6)0.0013 (6)
C80.0324 (9)0.0243 (8)0.0259 (8)0.0088 (7)0.0038 (6)0.0012 (6)
C90.0393 (11)0.0434 (11)0.0521 (12)0.0240 (9)0.0007 (9)0.0072 (9)
C100.0392 (10)0.0245 (8)0.0326 (9)0.0057 (7)0.0070 (8)0.0034 (7)
C110.0328 (9)0.0229 (8)0.0332 (9)0.0061 (7)0.0037 (7)0.0015 (6)
C120.097 (2)0.0646 (16)0.0406 (12)0.0479 (16)0.0232 (13)0.0050 (11)
C130.202 (6)0.151 (4)0.086 (3)0.135 (5)0.063 (3)0.026 (3)
C140.116 (3)0.076 (2)0.0474 (15)0.048 (2)0.0261 (16)0.0178 (14)
Geometric parameters (Å, º) top
S1—C11.7464 (19)C6—C91.502 (3)
S1—C121.847 (3)C8—C101.485 (2)
F1—C41.365 (2)C9—H9A0.9800
O1—C81.368 (2)C9—H9B0.9800
O1—C71.376 (2)C9—H9C0.9800
O2—C111.217 (2)C10—C111.506 (3)
O3—C111.295 (2)C10—H10A0.9900
O3—H3O0.86 (4)C10—H10B0.9900
C1—C81.352 (3)C12—C131.469 (4)
C1—C21.446 (2)C12—C141.501 (4)
C2—C71.390 (3)C12—H121.0000
C2—C31.395 (2)C13—H13A0.9800
C3—C41.375 (3)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
C4—C51.387 (3)C14—H14A0.9800
C5—C61.387 (3)C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C6—C71.390 (3)
C1—S1—C12101.58 (11)C6—C9—H9C109.5
C8—O1—C7105.60 (14)H9A—C9—H9C109.5
C11—O3—H3O110 (3)H9B—C9—H9C109.5
C8—C1—C2105.76 (16)C8—C10—C11113.50 (15)
C8—C1—S1125.54 (14)C8—C10—H10A108.9
C2—C1—S1128.66 (14)C11—C10—H10A108.9
C7—C2—C3119.79 (16)C8—C10—H10B108.9
C7—C2—C1105.53 (15)C11—C10—H10B108.9
C3—C2—C1134.68 (17)H10A—C10—H10B107.7
C4—C3—C2115.14 (17)O2—C11—O3123.96 (17)
C4—C3—H3122.4O2—C11—C10122.48 (16)
C2—C3—H3122.4O3—C11—C10113.55 (16)
F1—C4—C3118.24 (18)C13—C12—C14112.4 (3)
F1—C4—C5116.81 (17)C13—C12—S1107.5 (2)
C3—C4—C5124.94 (17)C14—C12—S1112.2 (2)
C4—C5—C6120.63 (17)C13—C12—H12108.2
C4—C5—H5119.7C14—C12—H12108.2
C6—C5—H5119.7S1—C12—H12108.2
C5—C6—C7114.44 (17)C12—C13—H13A109.5
C5—C6—C9123.24 (18)C12—C13—H13B109.5
C7—C6—C9122.32 (18)H13A—C13—H13B109.5
O1—C7—C2110.54 (15)C12—C13—H13C109.5
O1—C7—C6124.41 (17)H13A—C13—H13C109.5
C2—C7—C6125.04 (17)H13B—C13—H13C109.5
C1—C8—O1112.56 (15)C12—C14—H14A109.5
C1—C8—C10130.95 (18)C12—C14—H14B109.5
O1—C8—C10116.49 (16)H14A—C14—H14B109.5
C6—C9—H9A109.5C12—C14—H14C109.5
C6—C9—H9B109.5H14A—C14—H14C109.5
H9A—C9—H9B109.5H14B—C14—H14C109.5
C12—S1—C1—C891.91 (19)C3—C2—C7—C61.5 (3)
C12—S1—C1—C291.00 (18)C1—C2—C7—C6178.68 (16)
C8—C1—C2—C70.86 (19)C5—C6—C7—O1179.41 (16)
S1—C1—C2—C7178.39 (13)C9—C6—C7—O10.6 (3)
C8—C1—C2—C3178.94 (19)C5—C6—C7—C21.0 (3)
S1—C1—C2—C31.4 (3)C9—C6—C7—C2179.04 (18)
C7—C2—C3—C40.7 (3)C2—C1—C8—O10.5 (2)
C1—C2—C3—C4179.49 (18)S1—C1—C8—O1178.10 (12)
C2—C3—C4—F1178.68 (16)C2—C1—C8—C10179.33 (17)
C2—C3—C4—C50.4 (3)S1—C1—C8—C101.7 (3)
F1—C4—C5—C6178.20 (17)C7—O1—C8—C10.13 (19)
C3—C4—C5—C60.9 (3)C7—O1—C8—C10179.95 (14)
C4—C5—C6—C70.2 (3)C1—C8—C10—C1198.2 (2)
C4—C5—C6—C9179.80 (19)O1—C8—C10—C1182.0 (2)
C8—O1—C7—C20.71 (18)C8—C10—C11—O25.3 (3)
C8—O1—C7—C6178.95 (16)C8—C10—C11—O3174.37 (18)
C3—C2—C7—O1178.85 (15)C1—S1—C12—C13168.1 (3)
C1—C2—C7—O10.98 (19)C1—S1—C12—C1467.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.86 (4)1.76 (4)2.616 (2)176 (4)
C9—H9B···O3ii0.982.563.534 (3)171
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H15FO3S
Mr282.32
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.4365 (2), 9.2771 (2), 9.7956 (2)
α, β, γ (°)91.404 (1), 91.2710 (1), 115.111 (1)
V3)693.55 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.32 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.919, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
12921, 3467, 2946
Rint0.028
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.155, 1.06
No. of reflections3467
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.86 (4)1.76 (4)2.616 (2)176 (4)
C9—H9B···O3ii0.982.563.534 (3)171.1
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3112.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2012). Acta Cryst. E68, o58.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds