organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1074-o1075

S-Phenyl 4-meth­­oxy­benzo­thio­ate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, Cairo 12311, Egypt, eCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and fX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 January 2012; accepted 7 February 2012; online 17 March 2012)

In the mol­ecule of the title thio­ester, C14H12O2S, the dihedral angle between the phenyl and benzene rings is 71.8 (3)°. The meth­oxy group is essentially coplanar with the benezene ring to which it is bonded, with an r.m.s. deviation of 0.0065 (5) Å for the non-H atoms involved. In the crystal, weak C—H⋯π inter­actions are present.

Related literature

For background to and applications of thio­esters, see: Agapiou & Krische (2003[Agapiou, K. & Krische, M. J. (2003). Org. Lett. 5, 1737-1740.]); Choi et al. (2003[Choi, J., Imai, E., Mihara, M., Oderaotoshi, Y., Minakata, S. & Komatsu, M. (2003). J. Org. Chem. 68, 6164-6171.]); El-Azab & Abdel-Aziz (2012[El-Azab, A. S. & Abdel-Aziz, A. A.-M. (2012). Phosphorus Sulfur Silicon Relat. Elem. In the press.]); Horst et al. (2007[Horst, B., Feringa, B. L. & Minnaard, A. J. (2007). Org. Lett. 9, 3013-3015.]); Howell et al. (2006[Howell, G. P., Fletcher, S. P., Geurts, K., Horst, B. & Feringa, B. L. (2006). J. Am. Chem. Soc. 128, 14977-14985.]); Jew et al. (2003[Jew, S., Park, B., Lim, D., Kim, M. G., Chung, I. K., Kim, J. H., Hong, C. I., Kim, J., Park, H., Lee, J. & Park, H. (2003). Bioorg. Med. Chem. Lett. 13, 609-612.]); Liebeskind & Srogl (2000[Liebeskind, L. S. & Srogl, J. (2000). J. Am. Chem. Soc. 122, 11260-11261.]); McGarvey et al. (1986[McGarvey, G. J., Williams, J. M., Hiner, R. N., Matsubara, Y. & Oh, T. (1986). J. Am. Chem. Soc. 108, 4943-4952.]); Ozaki et al. (2003[Ozaki, S., Adachi, M., Sekiya, S. & Kamikawa, R. (2003). J. Org. Chem. 68, 4586-4589.]); Shah et al. (2002[Shah, S. T. A., Khan, K. M., Heinrich, A. M. & Voelter, W. (2002). Tetrahedron Lett. 43, 8281-8283.]); Yang & Drueckhammer (2001[Yang, W. & Drueckhammer, D. G. (2001). J. Am. Chem. Soc. 123, 11004-11009.]). For related structures and the synthesis of similar compounds, see: Barbero et al. (2003[Barbero, M., Degani, I., Dughera, S. & Fochi, R. (2003). Synthesis, pp. 1225-1230.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O2S

  • Mr = 244.31

  • Orthorhombic, P 21 21 21

  • a = 5.4478 (2) Å

  • b = 8.2149 (3) Å

  • c = 27.3841 (6) Å

  • V = 1225.52 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.23 mm−1

  • T = 296 K

  • 0.58 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.357, Tmax = 0.699

  • 7810 measured reflections

  • 2144 independent reflections

  • 1479 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.199

  • S = 1.22

  • 2144 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1811 Friedel pairs

  • Flack parameter: 0.07 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1i 0.93 2.96 3.658 (6) 133
Symmetry code: (i) [-x-1, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thioesters are one of the most useful building blocks for organic transformations such as in application of C-C coupling for the synthesis of carbonyl compounds in asymmetric aldol reactions. Recently, the α-β-unsaturated thioester analogs have been successfully applied for asymmetric additions which allow the access to chiral intermediates for the synthesis of more complex compounds. Furthermore, they were used in natural product synthesis and also are acting as biologically relevant substances finding application for in vivo tumor suppression (Agapiou & Krische (2003); Barbero et al., 2003; Choi et al., 2003; Horst et al., 2007; Howell et al., 2006; Jew et al., 2003; Liebeskind & Srogl 2000; McGarvey et al., 1986; Ozaki et al., 2003; Shah et al., 2002; Yang & Drueckhammer, 2001). Owing to these applications of thioesters, the title compound (I) was synthesized. The molecule is chiral even though it has no chiral center as its mirror image cannot be superposed onto itself. The absolute configuration and crystal structure are reported. We have examined optically the batch of crystals and the morphology is the same for all the crystals in the batch thereby implying that there is no spontaneous resolution.

In the molecule of (I) shown in Fig. 1, the dihedral angle between the phenyl and benzene rings is 71.8 (3)°. The central O1/C7/S1 plane makes dihedral angles of 10.8 (5) and 81.0 (6)° with the C1–C6 and C8–C13 rings, repectively. The methoxy group of the 4-methoxyphenyl group is essentially co-planar with its bound benezene ring with a r.m.s. deviation of 0.0065 (5) Å for the eight non H atoms (C1/C2/C3/C4/C5/C6/O2/C14) and the torsion angle C14—O2—C4—C3 = -2.1 (8)°. The bond distances in (I) are within normal ranges (Allen et al., 1987).

The crystal structure is consolidated by weak C—H···π interactions (Table 1).

Related literature top

For background to and applications of thioesters, see: Agapiou & Krische (2003); Choi et al. (2003); El-Azab & Abdel-Aziz (2012); Horst et al. (2007); Howell et al. (2006); Jew et al. (2003); Liebeskind & Srogl (2000); McGarvey et al. (1986); Ozaki et al. (2003); Shah et al. (2002); Yang & Drueckhammer (2001). For related structures and the synthesis of similar compounds, see: Barbero et al. (2003). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to El-Azab & Abdel-Aziz (2012). The trifluoroacetic acid (0.4 equiv) was added dropwise to a stirred solution of carboxylic acid (1 equiv) and thiophenol (1 equiv) in dry CH3CN (0.01 mol/l) over a period of 15 min at room temperature. After being stirred for 2–5 h at 333 K, the mixture was quenched by adding ammonium chloride solution (5 ml), extracted with ethylacetate, washed with brine and dried over anhydrous sodium sulfate. The product obtained after the evaporation of the solvent was purified by colum chromatography using mixture of hexane and CHCl3 as eluent. The crystal was obtained by slow evaporation of the eluent system hexane and CHCl3; m.p. 366-367 K, 97% yield. IR (KBr): 1661 cm-1 (CO), 1H NMR (CDCl3): d 8.06 (d, 2H, J = 8.5 Hz), 7.55–7.54 (m, 2H), 7.48 (m, 3H), 6.99 (t, 2H, J = 4.0 Hz), 2.90 (s, 3H). 13C NMR (CDCl3): d 55.6, 113.9, 127.7, 129.2, 129.4, 129.8, 135.2, 164.0, 188.6.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.93 for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. 1811 Friedel pairs were used to determine the absolute configuration.

Structure description top

Thioesters are one of the most useful building blocks for organic transformations such as in application of C-C coupling for the synthesis of carbonyl compounds in asymmetric aldol reactions. Recently, the α-β-unsaturated thioester analogs have been successfully applied for asymmetric additions which allow the access to chiral intermediates for the synthesis of more complex compounds. Furthermore, they were used in natural product synthesis and also are acting as biologically relevant substances finding application for in vivo tumor suppression (Agapiou & Krische (2003); Barbero et al., 2003; Choi et al., 2003; Horst et al., 2007; Howell et al., 2006; Jew et al., 2003; Liebeskind & Srogl 2000; McGarvey et al., 1986; Ozaki et al., 2003; Shah et al., 2002; Yang & Drueckhammer, 2001). Owing to these applications of thioesters, the title compound (I) was synthesized. The molecule is chiral even though it has no chiral center as its mirror image cannot be superposed onto itself. The absolute configuration and crystal structure are reported. We have examined optically the batch of crystals and the morphology is the same for all the crystals in the batch thereby implying that there is no spontaneous resolution.

In the molecule of (I) shown in Fig. 1, the dihedral angle between the phenyl and benzene rings is 71.8 (3)°. The central O1/C7/S1 plane makes dihedral angles of 10.8 (5) and 81.0 (6)° with the C1–C6 and C8–C13 rings, repectively. The methoxy group of the 4-methoxyphenyl group is essentially co-planar with its bound benezene ring with a r.m.s. deviation of 0.0065 (5) Å for the eight non H atoms (C1/C2/C3/C4/C5/C6/O2/C14) and the torsion angle C14—O2—C4—C3 = -2.1 (8)°. The bond distances in (I) are within normal ranges (Allen et al., 1987).

The crystal structure is consolidated by weak C—H···π interactions (Table 1).

For background to and applications of thioesters, see: Agapiou & Krische (2003); Choi et al. (2003); El-Azab & Abdel-Aziz (2012); Horst et al. (2007); Howell et al. (2006); Jew et al. (2003); Liebeskind & Srogl (2000); McGarvey et al. (1986); Ozaki et al. (2003); Shah et al. (2002); Yang & Drueckhammer (2001). For related structures and the synthesis of similar compounds, see: Barbero et al. (2003). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
S-Phenyl 4-methoxybenzothioate top
Crystal data top
C14H12O2SDx = 1.324 Mg m3
Mr = 244.31Melting point = 366–367 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 2144 reflections
a = 5.4478 (2) Åθ = 3.2–69.4°
b = 8.2149 (3) ŵ = 2.23 mm1
c = 27.3841 (6) ÅT = 296 K
V = 1225.52 (7) Å3Needle, colourless
Z = 40.58 × 0.22 × 0.17 mm
F(000) = 512
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2144 independent reflections
Radiation source: fine-focus sealed tube1479 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 69.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 46
Tmin = 0.357, Tmax = 0.699k = 98
7810 measured reflectionsl = 3229
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0897P)2 + 0.2372P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.199(Δ/σ)max = 0.001
S = 1.22Δρmax = 0.32 e Å3
2144 reflectionsΔρmin = 0.28 e Å3
156 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.025 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1811 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (5)
Crystal data top
C14H12O2SV = 1225.52 (7) Å3
Mr = 244.31Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.4478 (2) ŵ = 2.23 mm1
b = 8.2149 (3) ÅT = 296 K
c = 27.3841 (6) Å0.58 × 0.22 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2144 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1479 reflections with I > 2σ(I)
Tmin = 0.357, Tmax = 0.699Rint = 0.050
7810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.199Δρmax = 0.32 e Å3
S = 1.22Δρmin = 0.28 e Å3
2144 reflectionsAbsolute structure: Flack (1983), with 1811 Friedel pairs
156 parametersAbsolute structure parameter: 0.07 (5)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2447 (3)0.2241 (2)0.88540 (4)0.0866 (6)
O10.1014 (8)0.0079 (5)0.87109 (10)0.0848 (13)
O20.0150 (7)0.0916 (5)1.10026 (10)0.0712 (10)
C10.0101 (8)0.0386 (6)0.95439 (14)0.0579 (11)
C20.1770 (8)0.0607 (6)0.97065 (16)0.0641 (12)
H2A0.29390.09810.94860.077*
C30.1940 (8)0.1055 (7)1.01918 (14)0.0657 (13)
H3A0.32250.17131.02970.079*
C40.0204 (8)0.0527 (6)1.05180 (14)0.0596 (11)
C50.1682 (8)0.0475 (6)1.03636 (15)0.0637 (12)
H5A0.28410.08531.05850.076*
C60.1830 (8)0.0911 (7)0.98763 (15)0.0625 (12)
H6A0.31170.15680.97710.075*
C70.0229 (9)0.0742 (7)0.90125 (15)0.0653 (13)
C80.2346 (9)0.2180 (7)0.82059 (16)0.0684 (13)
C90.4109 (10)0.1329 (7)0.79629 (16)0.0773 (15)
H9A0.52990.07570.81360.093*
C100.4122 (11)0.1319 (8)0.74530 (17)0.0827 (17)
H10A0.52970.07220.72840.099*
C110.2390 (10)0.2194 (7)0.72047 (17)0.0779 (14)
H11A0.24020.21980.68650.094*
C120.0654 (11)0.3056 (9)0.74480 (18)0.0860 (18)
H12A0.05110.36510.72750.103*
C130.0619 (11)0.3049 (8)0.79550 (19)0.0818 (16)
H13A0.05740.36340.81230.098*
C140.2089 (11)0.1900 (9)1.11832 (18)0.096 (2)
H14A0.18400.21031.15250.144*
H14B0.21150.29151.10100.144*
H14C0.36240.13471.11370.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1088 (11)0.0977 (13)0.0532 (6)0.0329 (9)0.0016 (6)0.0022 (6)
O10.088 (3)0.107 (4)0.0589 (17)0.019 (2)0.0185 (16)0.0018 (19)
O20.083 (2)0.079 (3)0.0521 (16)0.0038 (17)0.0032 (13)0.0042 (16)
C10.058 (2)0.064 (3)0.052 (2)0.0023 (19)0.0063 (17)0.011 (2)
C20.061 (3)0.066 (4)0.065 (2)0.006 (2)0.0035 (18)0.001 (2)
C30.061 (3)0.083 (4)0.053 (2)0.013 (2)0.0014 (17)0.003 (2)
C40.066 (3)0.060 (3)0.053 (2)0.001 (2)0.0001 (17)0.006 (2)
C50.066 (3)0.069 (4)0.056 (2)0.008 (2)0.0074 (17)0.000 (2)
C60.061 (3)0.066 (4)0.060 (2)0.009 (2)0.0048 (18)0.001 (2)
C70.066 (3)0.077 (4)0.053 (2)0.008 (2)0.0078 (18)0.012 (2)
C80.069 (3)0.077 (4)0.058 (2)0.008 (3)0.0016 (19)0.005 (2)
C90.077 (3)0.087 (4)0.068 (3)0.001 (3)0.003 (2)0.013 (3)
C100.080 (3)0.102 (5)0.067 (3)0.004 (3)0.007 (2)0.004 (3)
C110.085 (3)0.096 (4)0.053 (2)0.005 (3)0.005 (2)0.011 (2)
C120.081 (4)0.108 (5)0.069 (3)0.006 (3)0.015 (3)0.013 (3)
C130.080 (3)0.086 (5)0.080 (3)0.007 (3)0.002 (2)0.000 (3)
C140.103 (4)0.120 (6)0.065 (3)0.033 (4)0.004 (3)0.014 (3)
Geometric parameters (Å, º) top
S1—C81.776 (4)C6—H6A0.9300
S1—C71.779 (6)C8—C91.362 (7)
O1—C71.199 (5)C8—C131.366 (7)
O2—C41.366 (5)C9—C101.397 (6)
O2—C141.419 (6)C9—H9A0.9300
C1—C61.379 (6)C10—C111.367 (7)
C1—C21.380 (6)C10—H10A0.9300
C1—C71.486 (6)C11—C121.356 (8)
C2—C31.382 (6)C11—H11A0.9300
C2—H2A0.9300C12—C131.389 (7)
C3—C41.371 (6)C12—H12A0.9300
C3—H3A0.9300C13—H13A0.9300
C4—C51.383 (6)C14—H14A0.9600
C5—C61.384 (6)C14—H14B0.9600
C5—H5A0.9300C14—H14C0.9600
C8—S1—C7101.7 (2)C9—C8—S1118.7 (4)
C4—O2—C14117.1 (4)C13—C8—S1120.6 (4)
C6—C1—C2118.5 (4)C8—C9—C10119.7 (5)
C6—C1—C7123.6 (4)C8—C9—H9A120.2
C2—C1—C7117.8 (4)C10—C9—H9A120.2
C1—C2—C3121.1 (4)C11—C10—C9119.4 (5)
C1—C2—H2A119.4C11—C10—H10A120.3
C3—C2—H2A119.4C9—C10—H10A120.3
C4—C3—C2119.7 (4)C12—C11—C10120.7 (4)
C4—C3—H3A120.1C12—C11—H11A119.6
C2—C3—H3A120.1C10—C11—H11A119.6
O2—C4—C3125.0 (4)C11—C12—C13119.9 (5)
O2—C4—C5114.9 (4)C11—C12—H12A120.0
C3—C4—C5120.1 (4)C13—C12—H12A120.0
C4—C5—C6119.5 (4)C8—C13—C12119.7 (5)
C4—C5—H5A120.3C8—C13—H13A120.2
C6—C5—H5A120.3C12—C13—H13A120.2
C1—C6—C5121.0 (4)O2—C14—H14A109.5
C1—C6—H6A119.5O2—C14—H14B109.5
C5—C6—H6A119.5H14A—C14—H14B109.5
O1—C7—C1124.0 (5)O2—C14—H14C109.5
O1—C7—S1122.0 (4)H14A—C14—H14C109.5
C1—C7—S1114.0 (3)H14B—C14—H14C109.5
C9—C8—C13120.5 (5)
C6—C1—C2—C30.8 (7)C6—C1—C7—S112.0 (6)
C7—C1—C2—C3176.9 (5)C2—C1—C7—S1172.1 (3)
C1—C2—C3—C40.9 (8)C8—S1—C7—O15.6 (5)
C14—O2—C4—C32.2 (8)C8—S1—C7—C1173.6 (4)
C14—O2—C4—C5178.1 (5)C7—S1—C8—C999.8 (5)
C2—C3—C4—O2178.6 (5)C7—S1—C8—C1384.1 (5)
C2—C3—C4—C51.2 (8)C13—C8—C9—C101.3 (8)
O2—C4—C5—C6178.4 (5)S1—C8—C9—C10177.4 (5)
C3—C4—C5—C61.3 (8)C8—C9—C10—C111.4 (9)
C2—C1—C6—C50.9 (8)C9—C10—C11—C120.6 (9)
C7—C1—C6—C5176.8 (5)C10—C11—C12—C130.3 (9)
C4—C5—C6—C11.2 (7)C9—C8—C13—C120.4 (9)
C6—C1—C7—O1167.1 (5)S1—C8—C13—C12176.5 (5)
C2—C1—C7—O18.8 (8)C11—C12—C13—C80.4 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.932.963.658 (6)133
Symmetry code: (i) x1, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC14H12O2S
Mr244.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.4478 (2), 8.2149 (3), 27.3841 (6)
V3)1225.52 (7)
Z4
Radiation typeCu Kα
µ (mm1)2.23
Crystal size (mm)0.58 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.357, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
7810, 2144, 1479
Rint0.050
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.199, 1.22
No. of reflections2144
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.28
Absolute structureFlack (1983), with 1811 Friedel pairs
Absolute structure parameter0.07 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.932.963.658 (6)133
Symmetry code: (i) x1, y1/2, z+5/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Alternative address: College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University. The authors also thank Universiti Sains Malaysia for Research University grant No. 1001/PFIZIK/811160. HKF thanks King Saud University, Riyadh, Saudi Arabia, for the award of a Visiting Professorship (23 December 2011 to 14 January 2012).

References

First citationAgapiou, K. & Krische, M. J. (2003). Org. Lett. 5, 1737–1740.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBarbero, M., Degani, I., Dughera, S. & Fochi, R. (2003). Synthesis, pp. 1225–1230.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, J., Imai, E., Mihara, M., Oderaotoshi, Y., Minakata, S. & Komatsu, M. (2003). J. Org. Chem. 68, 6164–6171.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Azab, A. S. & Abdel-Aziz, A. A.-M. (2012). Phosphorus Sulfur Silicon Relat. Elem. In the press.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHorst, B., Feringa, B. L. & Minnaard, A. J. (2007). Org. Lett. 9, 3013–3015.  Web of Science PubMed Google Scholar
First citationHowell, G. P., Fletcher, S. P., Geurts, K., Horst, B. & Feringa, B. L. (2006). J. Am. Chem. Soc. 128, 14977–14985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJew, S., Park, B., Lim, D., Kim, M. G., Chung, I. K., Kim, J. H., Hong, C. I., Kim, J., Park, H., Lee, J. & Park, H. (2003). Bioorg. Med. Chem. Lett. 13, 609–612.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiebeskind, L. S. & Srogl, J. (2000). J. Am. Chem. Soc. 122, 11260–11261.  Web of Science CrossRef CAS Google Scholar
First citationMcGarvey, G. J., Williams, J. M., Hiner, R. N., Matsubara, Y. & Oh, T. (1986). J. Am. Chem. Soc. 108, 4943–4952.  CrossRef CAS Web of Science Google Scholar
First citationOzaki, S., Adachi, M., Sekiya, S. & Kamikawa, R. (2003). J. Org. Chem. 68, 4586–4589.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShah, S. T. A., Khan, K. M., Heinrich, A. M. & Voelter, W. (2002). Tetrahedron Lett. 43, 8281–8283.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W. & Drueckhammer, D. G. (2001). J. Am. Chem. Soc. 123, 11004–11009.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1074-o1075
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds