organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2,2-dimeth­­oxy-5,5-bis­­(methyl­sulfan­yl)-3-oxopent-4-enedi­thio­ate

aFalavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
*Correspondence e-mail: ghorbani@iaufala.ac.ir, moha_ghorbani@yahoo.com

(Received 12 February 2012; accepted 14 March 2012; online 21 March 2012)

In the title mol­ecule, C10H16O3S4, a short intra­molecular S⋯O(=C) distance [2.726 (2) Å] indicates the presence of a nonbonding attractive inter­action. In the crystal, mol­ecules are linked into centrosymmetric dimers via weak inter­molecular C—H⋯O and S⋯S [3.405 (3) Å] inter­actions. These dimers are linked by further weak C—H⋯O inter­actions into columns along the a axis.

Related literature

For background and synthetic details, see: Mahata et al. (2003[Mahata, P. K., Syam Kumar, U. K., Sriram, V., Ila, H. & Junjappa, H. (2003). Tetrahedron, 59, 2631-2639.]). For related structures and S⋯O interactions, see: Ángyán et al. (1985[Ángyán, J. G., Kucsman, Á., Poirier, R. A. & Csizmadia, I. G. (1985). J. Mol. Struct. (Theochem.), 123, 189-201.], 1987[Ángyán, J. G., Poirier, R. A., Kucsman, Á. & Csizmadia, I. G. (1987). J. Am. Chem. Soc. 109, 2237-2245.]); Dixit et al. (1995[Dixit, A. N., Reddy, K. V., Deshmukh, A. R. A. S., Rajappa, S., Ganguly, B. & Chandrasekhar, J. (1995). Tetrahedron, 51, 1437-1448.]); Hamilton & LaPlaca (1964[Hamilton, W. C. & LaPlaca, S. J. (1964). J. Am. Chem. Soc. 86, 2289-2290.]). For van der Waals radii, see: Ángyán et al. (1987[Ángyán, J. G., Poirier, R. A., Kucsman, Á. & Csizmadia, I. G. (1987). J. Am. Chem. Soc. 109, 2237-2245.]). For S⋯S inter­actions, see: Guru Row & Parthasarathy (1981[Guru Row, T. N. & Parthasarathy, R. (1981). J. Am. Chem. Soc. 103, 477-479.]); Puranik et al. (1986[Puranik, V. G., Tavale, S. S., Guru Row, T. N., Umapathy, P. & Budhkar, A. P. (1986). Acta Cryst. C42, 593-595.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16O3S4

  • Mr = 312.47

  • Triclinic, [P \overline 1]

  • a = 7.114 (5) Å

  • b = 10.404 (5) Å

  • c = 11.151 (5) Å

  • α = 70.426 (5)°

  • β = 88.549 (5)°

  • γ = 76.081 (5)°

  • V = 753.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 291 K

  • 0.35 × 0.25 × 0.12 mm

Data collection
  • Stoe IPDS II Image Plate diffractometer

  • Absorption correction: multi-scan [MULABS (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])] Tmin = 0.927, Tmax = 1.000

  • 8030 measured reflections

  • 4016 independent reflections

  • 2376 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.085

  • S = 0.81

  • 4016 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O3i 0.96 2.64 3.523 (3) 153
C7—H7C⋯O3ii 0.96 2.61 3.276 (4) 127
C8—H8A⋯O3iii 0.96 2.64 3.575 (3) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In preparation of α-oxoketene dithioactal (I) (Mahata et al., 2003) (Fig. 1), a red-crystalline compound sometimes is derived as a byproduct of the reaction particularly, when NaH, CS2 and CH3I are used in excess amounts. In order to identify this compound, the red-crystals were investigated using elemental analysis and convenient spectroscopic methods. These investigations show that the byproduct should be a methyl dithioformated derivative of the α-oxoketene dithioactal (I) and it may be one of the two probable structures (II) and (III) (see Fig .1). In order to find out the exact structure of byproduct, the red-prismatic crystals were investigated using single crystal X-ray crystallography.

The molecular structure of the title compound is shown in Fig. 2 and the structure (III) is confirmed as byproduct of the mentioned reaction. In the structure of this compound, the carbonyl group, ethylenic double bond and two connected methylthio groups are coplanar (the torsion angles of C1—C2—C3—O3, S4—C1—C2—C3, C6—S4—C1—C2 and C7—S3—C1—C2 are 0.8 (3)°, -0.4 (3)°, 179.4 (2)° and 1.4 (2)°, respectively). This co-planarity not only, facilitates conjugation of the S lone pairs, the C=C, and the C=O but also, make possible the attractive S···O interaction between S4 and O3 atoms (Ángyán et al., 1987). Due to this attraction the intramolecular S4···O3 non-bonded distance [2.726 (2) Å] is shorter than the sum of the corresponding van der Waals radii (3.25 Å) and the molecule adopts s-trans/s-cis conformational arrangement for S4—C1 and C2—C3 bonds, respectively (Ángyán et al., 1985; Dixit et al., 1995). Of course, the s-cis orientation about the C2—C3 bond minimizes unfavourable steric interaction between S4 and the methyl groups centred on C8 and C9 which is present in the other possible conformation. In this geometry, the arrangement of three atoms C6—S4···O3, like similar part in another molecules (Dixit et al., 1995; Ángyán et al., 1987; Hamilton & LaPlaca, 1964), is almost linear (the measure angle of C6—S4—O3 is 178.5 (1)°).

In the molecule, the bond length of CH3—S4 (1.813 (4) Å) is slightly longer than the similar CH3—S3 bond (1.784 (3) Å). In addition to a short distance between non-bonded atoms S4 and O3, this observation shows that the intramolecular S···O interaction, might be responsible for lengthening the C6—S4 bond length in the molecule.

In the crystal, molecules are linked into centrosymmetric dimers via weak intermolecular C—H···O and S···S interactions [intermolecular S···S distance is 3.405 (3)Å] (Fig. 3). These dimers are linked by further weak C—H···O interactions into columns along the a axis.

Related literature top

For background and synthetic details, see: Mahata et al. (2003). For related structures, see: Ángyán et al. (1987, 1985); Dixit et al. (1995); Hamilton & LaPlaca (1964). For van der Waals radii, see: Ángyán et al., (1987). For S···S interactions, see: Guru Row & Parthasarathy (1981); Puranik et al. (1986).

Experimental top

The title compound was produced as a byproduct of the reaction of synthesis of α-oxoketene dithioactal (I) (Mahata et al., 2003), when NaH, CS2 and CH3I were used in excess amounts. The melting point of the title compound is 392-394K. The suitable single crystals for X-ray analysis were obtained from ethyl acetate solution at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically with C—H distances = 0.93–0.96 Å and included in a riding model approximation with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

In preparation of α-oxoketene dithioactal (I) (Mahata et al., 2003) (Fig. 1), a red-crystalline compound sometimes is derived as a byproduct of the reaction particularly, when NaH, CS2 and CH3I are used in excess amounts. In order to identify this compound, the red-crystals were investigated using elemental analysis and convenient spectroscopic methods. These investigations show that the byproduct should be a methyl dithioformated derivative of the α-oxoketene dithioactal (I) and it may be one of the two probable structures (II) and (III) (see Fig .1). In order to find out the exact structure of byproduct, the red-prismatic crystals were investigated using single crystal X-ray crystallography.

The molecular structure of the title compound is shown in Fig. 2 and the structure (III) is confirmed as byproduct of the mentioned reaction. In the structure of this compound, the carbonyl group, ethylenic double bond and two connected methylthio groups are coplanar (the torsion angles of C1—C2—C3—O3, S4—C1—C2—C3, C6—S4—C1—C2 and C7—S3—C1—C2 are 0.8 (3)°, -0.4 (3)°, 179.4 (2)° and 1.4 (2)°, respectively). This co-planarity not only, facilitates conjugation of the S lone pairs, the C=C, and the C=O but also, make possible the attractive S···O interaction between S4 and O3 atoms (Ángyán et al., 1987). Due to this attraction the intramolecular S4···O3 non-bonded distance [2.726 (2) Å] is shorter than the sum of the corresponding van der Waals radii (3.25 Å) and the molecule adopts s-trans/s-cis conformational arrangement for S4—C1 and C2—C3 bonds, respectively (Ángyán et al., 1985; Dixit et al., 1995). Of course, the s-cis orientation about the C2—C3 bond minimizes unfavourable steric interaction between S4 and the methyl groups centred on C8 and C9 which is present in the other possible conformation. In this geometry, the arrangement of three atoms C6—S4···O3, like similar part in another molecules (Dixit et al., 1995; Ángyán et al., 1987; Hamilton & LaPlaca, 1964), is almost linear (the measure angle of C6—S4—O3 is 178.5 (1)°).

In the molecule, the bond length of CH3—S4 (1.813 (4) Å) is slightly longer than the similar CH3—S3 bond (1.784 (3) Å). In addition to a short distance between non-bonded atoms S4 and O3, this observation shows that the intramolecular S···O interaction, might be responsible for lengthening the C6—S4 bond length in the molecule.

In the crystal, molecules are linked into centrosymmetric dimers via weak intermolecular C—H···O and S···S interactions [intermolecular S···S distance is 3.405 (3)Å] (Fig. 3). These dimers are linked by further weak C—H···O interactions into columns along the a axis.

For background and synthetic details, see: Mahata et al. (2003). For related structures, see: Ángyán et al. (1987, 1985); Dixit et al. (1995); Hamilton & LaPlaca (1964). For van der Waals radii, see: Ángyán et al., (1987). For S···S interactions, see: Guru Row & Parthasarathy (1981); Puranik et al. (1986).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Reaction scheme and possible products.
[Figure 2] Fig. 2. The molecular structure of the title compound, showing 50% probability displacement.
[Figure 3] Fig. 3. View of the centrosymmetric unit cell, with the short intermolecular S···S contact as red dotted line and C—H···O interactions as blue dashed lines. The rest contacts have been omitted for clarity.
Methyl 2,2-dimethoxy-5,5-bis(methylsulfanyl)-3-oxopent-4-enedithioate top
Crystal data top
C10H16O3S4Z = 2
Mr = 312.47F(000) = 328
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.114 (5) ÅCell parameters from 6660 reflections
b = 10.404 (5) Åθ = 1.8–28.5°
c = 11.151 (5) ŵ = 0.62 mm1
α = 70.426 (5)°T = 291 K
β = 88.549 (5)°Block, orange
γ = 76.081 (5)°0.35 × 0.25 × 0.12 mm
V = 753.4 (7) Å3
Data collection top
Stoe IPDS II Image Plate
diffractometer
4016 independent reflections
Radiation source: fine-focus sealed tube2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 0.15 pixels mm-1θmax = 29.2°, θmin = 1.9°
ω scansh = 98
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
k = 1411
Tmin = 0.927, Tmax = 1.000l = 1515
8030 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0464P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max = 0.001
4016 reflectionsΔρmax = 0.29 e Å3
160 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.098 (4)
Crystal data top
C10H16O3S4γ = 76.081 (5)°
Mr = 312.47V = 753.4 (7) Å3
Triclinic, P1Z = 2
a = 7.114 (5) ÅMo Kα radiation
b = 10.404 (5) ŵ = 0.62 mm1
c = 11.151 (5) ÅT = 291 K
α = 70.426 (5)°0.35 × 0.25 × 0.12 mm
β = 88.549 (5)°
Data collection top
Stoe IPDS II Image Plate
diffractometer
4016 independent reflections
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
2376 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 1.000Rint = 0.036
8030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.81Δρmax = 0.29 e Å3
4016 reflectionsΔρmin = 0.35 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73599 (10)0.20993 (7)0.01253 (5)0.0735 (2)
S20.42779 (7)0.09542 (6)0.16747 (5)0.05140 (15)
S31.01352 (9)0.53934 (5)0.25872 (6)0.06605 (19)
S40.64728 (11)0.49989 (6)0.37727 (7)0.0726 (2)
O10.68814 (17)0.01078 (11)0.36259 (10)0.0372 (3)
O20.96657 (17)0.04619 (12)0.26878 (12)0.0408 (3)
O30.5813 (2)0.25685 (14)0.36536 (15)0.0587 (4)
C10.8446 (3)0.43725 (18)0.29937 (17)0.0441 (4)
C20.8648 (3)0.31478 (17)0.27448 (17)0.0413 (4)
H2A0.97210.28560.23210.050*
C30.7282 (3)0.22942 (17)0.31072 (16)0.0375 (4)
C40.7663 (2)0.09135 (16)0.27575 (15)0.0334 (4)
C50.6516 (3)0.13253 (17)0.14738 (16)0.0389 (4)
C80.7610 (3)0.0573 (2)0.49293 (17)0.0560 (5)
H8A0.68780.11880.54590.084*
H8B0.74890.02280.51980.084*
H8C0.89510.10680.50030.084*
C100.3143 (4)0.1743 (3)0.0087 (2)0.0780 (8)
H10A0.18040.17110.01150.117*
H10B0.37920.12340.04430.117*
H10C0.32260.27050.02560.117*
C91.0298 (3)0.0851 (2)0.2456 (2)0.0613 (6)
H9A1.16680.10370.23440.092*
H9B0.96200.07950.16990.092*
H9C1.00290.15970.31690.092*
C60.6874 (5)0.6611 (3)0.3888 (3)0.0985 (10)
H6A0.58260.70250.43070.148*
H6B0.69350.72580.30480.148*
H6C0.80740.64040.43710.148*
C71.1925 (4)0.4482 (2)0.1811 (3)0.0852 (9)
H7A1.29480.49600.15840.128*
H7B1.13430.44560.10550.128*
H7C1.24490.35380.23770.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0834 (5)0.0964 (5)0.0390 (3)0.0415 (4)0.0117 (3)0.0079 (3)
S20.0411 (3)0.0690 (3)0.0499 (3)0.0187 (2)0.0013 (2)0.0237 (2)
S30.0678 (4)0.0399 (3)0.0965 (4)0.0292 (3)0.0069 (3)0.0199 (3)
S40.0997 (5)0.0515 (3)0.0917 (4)0.0384 (3)0.0445 (4)0.0454 (3)
O10.0419 (7)0.0372 (6)0.0357 (6)0.0189 (5)0.0029 (5)0.0103 (5)
O20.0325 (7)0.0375 (6)0.0579 (8)0.0118 (5)0.0069 (5)0.0215 (5)
O30.0575 (9)0.0548 (8)0.0845 (10)0.0257 (7)0.0302 (8)0.0437 (8)
C10.0525 (12)0.0352 (9)0.0463 (10)0.0178 (8)0.0009 (8)0.0107 (8)
C20.0442 (10)0.0342 (9)0.0492 (10)0.0157 (8)0.0052 (8)0.0148 (8)
C30.0400 (10)0.0349 (8)0.0426 (9)0.0127 (7)0.0045 (8)0.0172 (7)
C40.0352 (9)0.0324 (8)0.0376 (9)0.0145 (7)0.0062 (7)0.0144 (7)
C50.0448 (10)0.0384 (9)0.0380 (9)0.0142 (8)0.0055 (8)0.0162 (7)
C80.0655 (14)0.0600 (12)0.0385 (10)0.0258 (11)0.0055 (9)0.0037 (9)
C100.0661 (16)0.1023 (19)0.0638 (15)0.0090 (14)0.0242 (12)0.0321 (14)
C90.0508 (13)0.0486 (11)0.0964 (17)0.0121 (10)0.0180 (12)0.0407 (11)
C60.156 (3)0.0589 (14)0.117 (2)0.0552 (17)0.061 (2)0.0600 (16)
C70.0551 (14)0.0504 (13)0.144 (3)0.0216 (11)0.0270 (15)0.0208 (15)
Geometric parameters (Å, º) top
S1—C51.6264 (19)C4—C51.542 (2)
S2—C51.719 (2)C8—H8A0.9600
S2—C101.800 (2)C8—H8B0.9600
S3—C11.744 (2)C8—H8C0.9600
S3—C71.784 (3)C10—H10A0.9600
S4—C11.740 (2)C10—H10B0.9600
S4—C61.814 (2)C10—H10C0.9600
O1—C41.3941 (19)C9—H9A0.9600
O1—C81.436 (2)C9—H9B0.9600
O2—C41.398 (2)C9—H9C0.9600
O2—C91.439 (2)C6—H6A0.9600
O3—C31.219 (2)C6—H6B0.9600
C1—C21.367 (2)C6—H6C0.9600
C2—C31.432 (2)C7—H7A0.9600
C2—H2A0.9300C7—H7B0.9600
C3—C41.572 (2)C7—H7C0.9600
C5—S2—C10102.90 (11)H8A—C8—H8C109.5
C1—S3—C7104.16 (11)H8B—C8—H8C109.5
C1—S4—C6104.69 (12)S2—C10—H10A109.5
C4—O1—C8116.18 (13)S2—C10—H10B109.5
C4—O2—C9115.01 (13)H10A—C10—H10B109.5
C2—C1—S4121.38 (15)S2—C10—H10C109.5
C2—C1—S3123.12 (16)H10A—C10—H10C109.5
S4—C1—S3115.49 (11)H10B—C10—H10C109.5
C1—C2—C3122.98 (18)O2—C9—H9A109.5
C1—C2—H2A118.5O2—C9—H9B109.5
C3—C2—H2A118.5H9A—C9—H9B109.5
O3—C3—C2124.82 (16)O2—C9—H9C109.5
O3—C3—C4116.89 (15)H9A—C9—H9C109.5
C2—C3—C4118.28 (16)H9B—C9—H9C109.5
O1—C4—O2112.90 (13)S4—C6—H6A109.5
O1—C4—C5105.88 (13)S4—C6—H6B109.5
O2—C4—C5113.20 (14)H6A—C6—H6B109.5
O1—C4—C3111.57 (14)S4—C6—H6C109.5
O2—C4—C3107.27 (13)H6A—C6—H6C109.5
C5—C4—C3105.87 (13)H6B—C6—H6C109.5
C4—C5—S1121.73 (14)S3—C7—H7A109.5
C4—C5—S2112.04 (12)S3—C7—H7B109.5
S1—C5—S2126.14 (11)H7A—C7—H7B109.5
O1—C8—H8A109.5S3—C7—H7C109.5
O1—C8—H8B109.5H7A—C7—H7C109.5
H8A—C8—H8B109.5H7B—C7—H7C109.5
O1—C8—H8C109.5
C6—S4—C1—C2179.44 (18)O3—C3—C4—O130.0 (2)
C6—S4—C1—S30.46 (16)C2—C3—C4—O1151.22 (14)
C7—S3—C1—C21.4 (2)O3—C3—C4—O2154.10 (16)
C7—S3—C1—S4179.66 (13)C2—C3—C4—O227.09 (19)
S4—C1—C2—C30.4 (3)O3—C3—C4—C584.76 (19)
S3—C1—C2—C3178.45 (13)C2—C3—C4—C594.06 (18)
C1—C2—C3—O30.8 (3)O1—C4—C5—S1160.45 (12)
C1—C2—C3—C4179.49 (16)O2—C4—C5—S136.26 (19)
C8—O1—C4—O260.83 (19)C3—C4—C5—S180.98 (17)
C8—O1—C4—C5174.79 (15)O1—C4—C5—S222.77 (16)
C8—O1—C4—C360.07 (19)O2—C4—C5—S2146.96 (11)
C9—O2—C4—O152.8 (2)C3—C4—C5—S295.80 (14)
C9—O2—C4—C567.44 (19)C10—S2—C5—C4172.39 (14)
C9—O2—C4—C3176.15 (15)C10—S2—C5—S14.21 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O3i0.962.643.523 (3)153
C7—H7C···O3ii0.962.613.276 (4)127
C8—H8A···O3iii0.962.643.575 (3)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H16O3S4
Mr312.47
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.114 (5), 10.404 (5), 11.151 (5)
α, β, γ (°)70.426 (5), 88.549 (5), 76.081 (5)
V3)753.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.35 × 0.25 × 0.12
Data collection
DiffractometerStoe IPDS II Image Plate
Absorption correctionMulti-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
Tmin, Tmax0.927, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8030, 4016, 2376
Rint0.036
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.085, 0.81
No. of reflections4016
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.35

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O3i0.962.643.523 (3)152.7
C7—H7C···O3ii0.962.613.276 (4)126.6
C8—H8A···O3iii0.962.643.575 (3)164.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1.
 

References

First citationÁngyán, J. G., Kucsman, Á., Poirier, R. A. & Csizmadia, I. G. (1985). J. Mol. Struct. (Theochem.), 123, 189–201.  Google Scholar
First citationÁngyán, J. G., Poirier, R. A., Kucsman, Á. & Csizmadia, I. G. (1987). J. Am. Chem. Soc. 109, 2237–2245.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDixit, A. N., Reddy, K. V., Deshmukh, A. R. A. S., Rajappa, S., Ganguly, B. & Chandrasekhar, J. (1995). Tetrahedron, 51, 1437–1448.  CrossRef CAS Web of Science Google Scholar
First citationGuru Row, T. N. & Parthasarathy, R. (1981). J. Am. Chem. Soc. 103, 477–479.  CrossRef CAS Web of Science Google Scholar
First citationHamilton, W. C. & LaPlaca, S. J. (1964). J. Am. Chem. Soc. 86, 2289–2290.  CSD CrossRef CAS Web of Science Google Scholar
First citationMahata, P. K., Syam Kumar, U. K., Sriram, V., Ila, H. & Junjappa, H. (2003). Tetrahedron, 59, 2631–2639.  Web of Science CrossRef CAS Google Scholar
First citationPuranik, V. G., Tavale, S. S., Guru Row, T. N., Umapathy, P. & Budhkar, A. P. (1986). Acta Cryst. C42, 593–595.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds