organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1144-o1145

N′-[(1E,2E)-3,7-Di­methyl­octa-2,6-dien-1-yl­­idene]pyridine-4-carbohydrazide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 February 2012; accepted 29 February 2012; online 24 March 2012)

In the title compound, C16H21N3O, the mol­ecule adopts an E conformation about the central C=N double bond. The 2-methyl­pent-2-ene group is disordered over two sets of sites, with a refined occupancy ratio of 0.785 (8):0.215 (8). The dihedral angle between the essentially planar [the r.m.s. value for the major component is 0.021 (7) and its maximum deviation is 0.025 (4) Å; the r.m.s. value for the minor component is 0.03 (4) and its maximum deviation is 0.05 (3) Å] major and minor components of the 2-methyl­but-2-ene group is 35.9 (13)°. In the crystal, C—H⋯O and N—H⋯O hydrogen bonds link the molecules, with the same O atom acting as the acceptor. This results in C11(4) and C11(5) [001] chains.

Related literature

For details and the biological activity of isoniazide, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Slayden & Barry (2000[Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.]); Hearn et al. (2009[Hearn, M. J., Cynamon, M. H., Chen, M. F., Coppinsa, R., Davis, J., Joo-On Kang, H., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson. R. (2009). Eur. J. Med. Chem. 44, 4169-4178.]); Tripathi et al. (2011[Tripathi, L., Singh, R. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 509-518.]). For related structures, see: Naveenkumar et al. (2010)[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1337-o1338.]; Jiang et al. (2009[Jiang, J., Chen, J., Yang, J. & Jian, F.-F. (2009). Acta Cryst. E65, o3125.]); Khan et al. (2009[Khan, I. U., Ashfaq, M., Arshad, M. N., Ahmad, H. & Mustafa, G. (2009). Acta Cryst. E65, o1991.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H21N3O

  • Mr = 271.36

  • Monoclinic, P 21 /c

  • a = 17.5415 (8) Å

  • b = 12.0708 (6) Å

  • c = 7.8430 (4) Å

  • β = 101.854 (3)°

  • V = 1625.26 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 296 K

  • 0.90 × 0.27 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.633, Tmax = 0.912

  • 16548 measured reflections

  • 2978 independent reflections

  • 2376 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.154

  • S = 1.03

  • 2978 reflections

  • 239 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1i 0.873 (17) 2.052 (17) 2.9167 (18) 170.8 (16)
C4—H4A⋯O1i 0.93 2.53 3.251 (2) 135
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000; Hearn et al., 2009; Tripathi et al., 2011). The crystal structures of (E)-N'- (2-Benzyloxybenzylidene)isonicotinohydrazide methanol solvate monohydrate (Naveenkumar et al., 2010), N'-(1-Phenylethylidene)isonicotino hydrazide (Jiang et al., 2009) and N'-(4-Bromophenylsulfonyl) isonicotinohydrazide (Khan et al., 2009) have been reported in the literature. Here, we present the crystal structure of the title compound, (I).

The asymmetric unit of the title compound is shown in Fig. 1. The molecule adopts an E configuration about the central C7N2 double bond. The 2-methylpent-2-ene group is disordered over two sets of sites, with a refined occupancy ratio of 0.785 (8):0.215 (8). The dihedral angles between the major and minor components of the 2-methylbut-2-ene (C11–C15:C11A–C15A) group is 35.9 (13)°.

In the crystal, Fig. 2, the adjacent molecules are connected via bifurcated N—H···O and C—H···O hydrogen bonds (Table 1), generating R12(7) ring motifs (Bernstein et al., 1995), resulting in supramolecular [001] chains.

Related literature top

For details and the biological activity of isoniazide, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Hearn et al. (2009); Tripathi et al. (2011). For related structures, see: Naveenkumar et al. (2010); Jiang et al. (2009); Khan et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the reaction of citral, 3,7-dimethylocta- 2,6-dienal (0.15 g, 1 mmol) with isoniazid (0.14 g, 1 mmol) in ETOH/H2O (3:1, v/v, 10 mL). After stirring for 3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue washed with cold ethyl alcohol and then with ethyl ether to afford the title compound. Colorless blocks of the latter compound suitable for X-ray structure determination were recrystallized from ETOH by the slow evaporation of the solvent at room temperature.

Refinement top

Atom H1N3 was located from a difference Fourier maps and refined freely [N–H = 0.873 (18) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The 2-methylpent-2-ene group is disordered over two sets of sites, with a refined occupancy ratio of 0.785 (8):0.215 (8).

Structure description top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000; Hearn et al., 2009; Tripathi et al., 2011). The crystal structures of (E)-N'- (2-Benzyloxybenzylidene)isonicotinohydrazide methanol solvate monohydrate (Naveenkumar et al., 2010), N'-(1-Phenylethylidene)isonicotino hydrazide (Jiang et al., 2009) and N'-(4-Bromophenylsulfonyl) isonicotinohydrazide (Khan et al., 2009) have been reported in the literature. Here, we present the crystal structure of the title compound, (I).

The asymmetric unit of the title compound is shown in Fig. 1. The molecule adopts an E configuration about the central C7N2 double bond. The 2-methylpent-2-ene group is disordered over two sets of sites, with a refined occupancy ratio of 0.785 (8):0.215 (8). The dihedral angles between the major and minor components of the 2-methylbut-2-ene (C11–C15:C11A–C15A) group is 35.9 (13)°.

In the crystal, Fig. 2, the adjacent molecules are connected via bifurcated N—H···O and C—H···O hydrogen bonds (Table 1), generating R12(7) ring motifs (Bernstein et al., 1995), resulting in supramolecular [001] chains.

For details and the biological activity of isoniazide, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Hearn et al. (2009); Tripathi et al. (2011). For related structures, see: Naveenkumar et al. (2010); Jiang et al. (2009); Khan et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Open bonds represent disordered components.
[Figure 2] Fig. 2. The crystal packing of the title compound (I). Hydrogen bonds are shown as dashed lines. The disorder is not shown.
N'-[(1E,2E)-3,7-Dimethylocta-2,6-dien-1-ylidene]pyridine- 4-carbohydrazide top
Crystal data top
C16H21N3OF(000) = 584
Mr = 271.36Dx = 1.109 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1053 reflections
a = 17.5415 (8) Åθ = 11.3–69.5°
b = 12.0708 (6) ŵ = 0.56 mm1
c = 7.8430 (4) ÅT = 296 K
β = 101.854 (3)°Block, colourless
V = 1625.26 (14) Å30.90 × 0.27 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2978 independent reflections
Radiation source: fine-focus sealed tube2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 69.7°, θmin = 5.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1621
Tmin = 0.633, Tmax = 0.912k = 1414
16548 measured reflectionsl = 97
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.2272P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2978 reflectionsΔρmax = 0.13 e Å3
239 parametersΔρmin = 0.14 e Å3
12 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (6)
Crystal data top
C16H21N3OV = 1625.26 (14) Å3
Mr = 271.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.5415 (8) ŵ = 0.56 mm1
b = 12.0708 (6) ÅT = 296 K
c = 7.8430 (4) Å0.90 × 0.27 × 0.17 mm
β = 101.854 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2978 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2376 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.912Rint = 0.027
16548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04912 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.13 e Å3
2978 reflectionsΔρmin = 0.14 e Å3
239 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.30512 (6)0.61845 (10)0.31148 (14)0.0640 (3)
N10.06078 (9)0.62725 (17)0.5444 (3)0.0897 (5)
N20.40983 (7)0.76093 (12)0.49025 (19)0.0656 (4)
N30.33659 (7)0.74425 (12)0.52777 (18)0.0602 (4)
C10.09771 (12)0.54801 (19)0.4767 (3)0.0905 (7)
H1A0.07240.48050.45110.109*
C20.17110 (10)0.55920 (16)0.4418 (3)0.0746 (5)
H2A0.19420.50070.39410.090*
C30.20985 (8)0.65855 (13)0.47852 (19)0.0558 (4)
C40.17217 (9)0.74139 (15)0.5489 (2)0.0686 (5)
H4A0.19590.80990.57560.082*
C50.09864 (10)0.72159 (19)0.5792 (3)0.0822 (6)
H5A0.07420.77850.62740.099*
C60.28809 (8)0.67137 (13)0.43211 (19)0.0534 (4)
C70.45447 (9)0.82229 (15)0.6011 (2)0.0645 (4)
H7A0.43660.85090.69570.077*
C80.53221 (10)0.84735 (17)0.5801 (3)0.0746 (5)
H8A0.54850.81690.48460.089*
C90.58251 (11)0.91090 (18)0.6876 (3)0.0837 (6)
C100.66541 (16)0.9344 (4)0.6696 (6)0.0871 (10)0.785 (8)
H10A0.67131.01390.66000.105*0.785 (8)
H10B0.70020.91090.77620.105*0.785 (8)
C110.69190 (18)0.8806 (3)0.5187 (5)0.0900 (11)0.785 (8)
H11A0.69290.80080.53410.108*0.785 (8)
H11B0.65500.89750.41180.108*0.785 (8)
C120.77113 (18)0.9196 (3)0.5033 (6)0.0828 (10)0.785 (8)
H12A0.77100.98630.44390.099*0.785 (8)
C130.8396 (4)0.8782 (5)0.5571 (15)0.0811 (19)0.785 (8)
C140.9134 (3)0.9352 (6)0.5393 (11)0.1003 (15)0.785 (8)
H14A0.90111.00450.47980.150*0.785 (8)
H14B0.94160.88910.47390.150*0.785 (8)
H14C0.94480.94860.65290.150*0.785 (8)
C150.8582 (5)0.7702 (6)0.6537 (11)0.162 (3)0.785 (8)
H15A0.81210.74200.68630.242*0.785 (8)
H15B0.89770.78230.75640.242*0.785 (8)
H15C0.87660.71750.57970.242*0.785 (8)
C10A0.6475 (6)0.9475 (14)0.5992 (19)0.0871 (10)0.215 (8)
H10C0.63140.93710.47430.105*0.215 (8)
H10D0.65771.02580.62100.105*0.215 (8)
C11A0.7184 (8)0.8848 (17)0.663 (4)0.169 (13)0.215 (8)
H11C0.71120.81040.61560.203*0.215 (8)
H11D0.72570.87870.78870.203*0.215 (8)
C12A0.7911 (7)0.9321 (12)0.620 (4)0.123 (7)0.215 (8)
H12B0.79711.00810.60890.148*0.215 (8)
C13A0.8464 (13)0.8625 (17)0.599 (5)0.080 (8)0.215 (8)
C14A0.9212 (14)0.901 (3)0.562 (6)0.170 (16)0.215 (8)
H14D0.92580.97930.57970.255*0.215 (8)
H14E0.92320.88370.44340.255*0.215 (8)
H14F0.96330.86410.63880.255*0.215 (8)
C15A0.8294 (13)0.7391 (13)0.588 (4)0.137 (8)0.215 (8)
H15D0.77430.72730.57420.206*0.215 (8)
H15E0.85620.70360.69250.206*0.215 (8)
H15F0.84680.70840.48950.206*0.215 (8)
C160.56438 (16)0.9641 (3)0.8453 (4)0.1287 (12)
H16A0.51690.93370.86830.193*
H16B0.55841.04240.82650.193*
H16C0.60610.95050.94320.193*
H1N30.3250 (10)0.7786 (15)0.617 (2)0.063 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0566 (6)0.0690 (7)0.0683 (7)0.0046 (5)0.0170 (5)0.0065 (5)
N10.0508 (8)0.1053 (13)0.1165 (14)0.0154 (8)0.0259 (8)0.0068 (10)
N20.0505 (7)0.0773 (9)0.0744 (8)0.0136 (6)0.0255 (6)0.0094 (7)
N30.0465 (7)0.0721 (9)0.0658 (8)0.0116 (6)0.0201 (6)0.0093 (6)
C10.0625 (10)0.0804 (13)0.1331 (18)0.0218 (10)0.0307 (11)0.0046 (12)
C20.0580 (9)0.0658 (10)0.1026 (13)0.0102 (8)0.0223 (9)0.0010 (9)
C30.0449 (7)0.0622 (9)0.0593 (8)0.0041 (6)0.0088 (6)0.0055 (7)
C40.0483 (8)0.0737 (11)0.0836 (11)0.0076 (7)0.0132 (7)0.0115 (8)
C50.0489 (9)0.0978 (14)0.1012 (14)0.0048 (9)0.0183 (9)0.0194 (11)
C60.0462 (7)0.0559 (8)0.0584 (8)0.0027 (6)0.0113 (6)0.0051 (6)
C70.0512 (8)0.0720 (10)0.0741 (10)0.0121 (7)0.0217 (7)0.0097 (8)
C80.0554 (9)0.0845 (12)0.0895 (12)0.0165 (8)0.0281 (8)0.0174 (9)
C90.0561 (10)0.0823 (13)0.1158 (15)0.0172 (9)0.0251 (10)0.0202 (11)
C100.0477 (14)0.0936 (18)0.117 (3)0.0193 (15)0.0097 (16)0.015 (2)
C110.0575 (16)0.111 (2)0.107 (2)0.0183 (15)0.0294 (15)0.0033 (18)
C120.0540 (15)0.0843 (19)0.113 (2)0.0069 (13)0.0249 (15)0.0191 (18)
C130.078 (3)0.077 (3)0.093 (4)0.007 (2)0.026 (2)0.018 (3)
C140.0549 (18)0.110 (4)0.140 (3)0.004 (2)0.030 (2)0.001 (3)
C150.162 (6)0.127 (5)0.209 (7)0.022 (4)0.068 (5)0.075 (5)
C10A0.0477 (14)0.0936 (18)0.117 (3)0.0193 (15)0.0097 (16)0.015 (2)
C11A0.081 (9)0.146 (15)0.29 (3)0.031 (9)0.064 (14)0.12 (2)
C12A0.064 (7)0.086 (8)0.22 (2)0.013 (6)0.039 (11)0.026 (12)
C13A0.072 (8)0.069 (9)0.11 (2)0.023 (6)0.037 (10)0.034 (8)
C14A0.095 (14)0.12 (2)0.28 (4)0.012 (12)0.001 (16)0.03 (2)
C15A0.121 (14)0.070 (9)0.20 (2)0.029 (9)0.008 (12)0.009 (10)
C160.0951 (17)0.160 (3)0.137 (2)0.0471 (18)0.0378 (15)0.071 (2)
Geometric parameters (Å, º) top
O1—C61.2283 (18)C12—C131.290 (7)
N1—C51.318 (3)C12—H12A0.9300
N1—C11.326 (3)C13—C141.497 (6)
N2—C71.280 (2)C13—C151.510 (7)
N2—N31.3903 (17)C14—H14A0.9600
N3—C61.341 (2)C14—H14B0.9600
N3—H1N30.873 (18)C14—H14C0.9600
C1—C21.377 (2)C15—H15A0.9600
C1—H1A0.9300C15—H15B0.9600
C2—C31.379 (2)C15—H15C0.9600
C2—H2A0.9300C10A—C11A1.454 (14)
C3—C41.375 (2)C10A—H10C0.9700
C3—C61.4985 (18)C10A—H10D0.9700
C4—C51.380 (2)C11A—C12A1.497 (13)
C4—H4A0.9300C11A—H11C0.9700
C5—H5A0.9300C11A—H11D0.9700
C7—C81.439 (2)C12A—C13A1.320 (16)
C7—H7A0.9300C12A—H12B0.9300
C8—C91.331 (3)C13A—C14A1.474 (16)
C8—H8A0.9300C13A—C15A1.518 (17)
C9—C161.485 (3)C14A—H14D0.9600
C9—C101.516 (2)C14A—H14E0.9600
C9—C10A1.517 (3)C14A—H14F0.9600
C10—C111.505 (4)C15A—H15D0.9600
C10—H10A0.9700C15A—H15E0.9600
C10—H10B0.9700C15A—H15F0.9600
C11—C121.496 (4)C16—H16A0.9600
C11—H11A0.9700C16—H16B0.9600
C11—H11B0.9700C16—H16C0.9600
C5—N1—C1116.07 (15)C12—C13—C15126.1 (5)
C7—N2—N3113.78 (13)C14—C13—C15110.0 (6)
C6—N3—N2118.96 (13)C13—C14—H14A109.5
C6—N3—H1N3122.3 (12)C13—C14—H14B109.5
N2—N3—H1N3118.6 (12)H14A—C14—H14B109.5
N1—C1—C2124.24 (18)C13—C14—H14C109.5
N1—C1—H1A117.9H14A—C14—H14C109.5
C2—C1—H1A117.9H14B—C14—H14C109.5
C1—C2—C3118.98 (18)C13—C15—H15A109.5
C1—C2—H2A120.5C13—C15—H15B109.5
C3—C2—H2A120.5H15A—C15—H15B109.5
C4—C3—C2117.33 (14)C13—C15—H15C109.5
C4—C3—C6124.20 (14)H15A—C15—H15C109.5
C2—C3—C6118.40 (15)H15B—C15—H15C109.5
C3—C4—C5119.13 (17)C11A—C10A—C9111.1 (10)
C3—C4—H4A120.4C11A—C10A—H10C109.4
C5—C4—H4A120.4C9—C10A—H10C109.4
N1—C5—C4124.25 (18)C11A—C10A—H10D109.4
N1—C5—H5A117.9C9—C10A—H10D109.4
C4—C5—H5A117.9H10C—C10A—H10D108.0
O1—C6—N3123.05 (13)C10A—C11A—C12A115.6 (10)
O1—C6—C3120.88 (13)C10A—C11A—H11C108.4
N3—C6—C3116.06 (13)C12A—C11A—H11C108.4
N2—C7—C8120.42 (15)C10A—C11A—H11D108.4
N2—C7—H7A119.8C12A—C11A—H11D108.4
C8—C7—H7A119.8H11C—C11A—H11D107.5
C9—C8—C7124.73 (17)C13A—C12A—C11A117.9 (14)
C9—C8—H8A117.6C13A—C12A—H12B121.0
C7—C8—H8A117.6C11A—C12A—H12B121.0
C8—C9—C16123.28 (17)C12A—C13A—C14A122.2 (17)
C8—C9—C10124.9 (2)C12A—C13A—C15A119.4 (16)
C16—C9—C10111.7 (2)C14A—C13A—C15A118.0 (18)
C8—C9—C10A110.0 (7)C13A—C14A—H14D109.5
C16—C9—C10A124.4 (7)C13A—C14A—H14E109.5
C10—C9—C10A22.7 (5)H14D—C14A—H14E109.5
C11—C10—C9116.7 (3)C13A—C14A—H14F109.5
C11—C10—H10A108.1H14D—C14A—H14F109.5
C9—C10—H10A108.1H14E—C14A—H14F109.5
C11—C10—H10B108.1C13A—C15A—H15D109.5
C9—C10—H10B108.1C13A—C15A—H15E109.5
H10A—C10—H10B107.3H15D—C15A—H15E109.5
C12—C11—C10111.7 (3)C13A—C15A—H15F109.5
C12—C11—H11A109.3H15D—C15A—H15F109.5
C10—C11—H11A109.3H15E—C15A—H15F109.5
C12—C11—H11B109.3C9—C16—H16A109.5
C10—C11—H11B109.3C9—C16—H16B109.5
H11A—C11—H11B107.9H16A—C16—H16B109.5
C13—C12—C11132.1 (4)C9—C16—H16C109.5
C13—C12—H12A113.9H16A—C16—H16C109.5
C11—C12—H12A113.9H16B—C16—H16C109.5
C12—C13—C14123.8 (6)
C7—N2—N3—C6172.49 (15)C7—C8—C9—C160.4 (4)
C5—N1—C1—C20.2 (4)C7—C8—C9—C10177.8 (3)
N1—C1—C2—C30.0 (4)C7—C8—C9—C10A162.8 (6)
C1—C2—C3—C40.0 (3)C8—C9—C10—C110.3 (6)
C1—C2—C3—C6177.16 (18)C16—C9—C10—C11177.4 (4)
C2—C3—C4—C50.1 (3)C10A—C9—C10—C1154.2 (19)
C6—C3—C4—C5177.14 (16)C9—C10—C11—C12173.7 (3)
C1—N1—C5—C40.3 (3)C10—C11—C12—C1396.6 (9)
C3—C4—C5—N10.3 (3)C11—C12—C13—C14175.3 (6)
N2—N3—C6—O10.3 (2)C11—C12—C13—C151.4 (15)
N2—N3—C6—C3179.34 (13)C8—C9—C10A—C11A103 (2)
C4—C3—C6—O1149.52 (17)C16—C9—C10A—C11A94 (2)
C2—C3—C6—O127.5 (2)C10—C9—C10A—C11A31.7 (18)
C4—C3—C6—N329.5 (2)C9—C10A—C11A—C12A165.1 (17)
C2—C3—C6—N3153.47 (16)C10A—C11A—C12A—C13A149 (3)
N3—N2—C7—C8179.95 (16)C11A—C12A—C13A—C14A178 (3)
N2—C7—C8—C9179.4 (2)C11A—C12A—C13A—C15A10 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1i0.873 (17)2.052 (17)2.9167 (18)170.8 (16)
C4—H4A···O1i0.932.533.251 (2)135
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H21N3O
Mr271.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.5415 (8), 12.0708 (6), 7.8430 (4)
β (°) 101.854 (3)
V3)1625.26 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.56
Crystal size (mm)0.90 × 0.27 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.633, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
16548, 2978, 2376
Rint0.027
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.154, 1.03
No. of reflections2978
No. of parameters239
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1i0.873 (17)2.052 (17)2.9167 (18)170.8 (16)
C4—H4A···O1i0.93002.53003.251 (2)135.00
Symmetry code: (i) x, y+3/2, z+1/2.
 

Footnotes

College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MAB, HAA and HAG thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. MH and HFK thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHearn, M. J., Cynamon, M. H., Chen, M. F., Coppinsa, R., Davis, J., Joo-On Kang, H., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson. R. (2009). Eur. J. Med. Chem. 44, 4169–4178.  Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, J., Chen, J., Yang, J. & Jian, F.-F. (2009). Acta Cryst. E65, o3125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Ashfaq, M., Arshad, M. N., Ahmad, H. & Mustafa, G. (2009). Acta Cryst. E65, o1991.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1337–o1338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTripathi, L., Singh, R. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 509–518.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1144-o1145
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds