metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-aqua-bis­­[μ4-2-(1H-1,2,3-benzotriazol-1-yl)acetato]­dipotassium]

aDepartment of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, 471023 Luoyang, People's Republic of China
*Correspondence e-mail: shujianrufeng@yahoo.com.cn

(Received 19 February 2012; accepted 29 February 2012; online 7 March 2012)

In the title compound, [K2(C8H6N3O2)2(H2O)]n, each K+ ion is seven-coordinated by one O atom from a bridging water mol­ecule, five carboxyl­ate O atoms and one N atom from a benzotriazole group, forming a distorted mono-capped octa­hedral geometry. In the crystal, the carboxyl­ate groups act as bridging ligands, forming a two-dimensional polymer parallel to (001). The aqua ligand, which lies on a twofold rotation axis, forms inter­molecular O—H⋯O hydrogen bonds within these layers.

Related literature

For background and the synthesis, see: Hu et al. (2008[Hu, T. L., Du, W. P., Hu, B. W., Li, J. R., Bu, X. H. & Cao, R. (2008). CrystEngComm, 10, 1037-1043.]).

[Scheme 1]

Experimental

Crystal data
  • [K2(C8H6N3O2)2(H2O)]

  • Mr = 448.53

  • Monoclinic, C 2

  • a = 12.159 (2) Å

  • b = 4.5893 (9) Å

  • c = 17.666 (4) Å

  • β = 104.98 (3)°

  • V = 952.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.878, Tmax = 0.937

  • 4827 measured reflections

  • 2140 independent reflections

  • 1508 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.135

  • S = 1.05

  • 2140 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 925 Friedel pairs

  • Flack parameter: −0.02 (9)

Table 1
Selected bond lengths (Å)

K1—O2i 2.718 (4)
K1—O3 2.760 (3)
K1—O2ii 2.829 (3)
K1—O2iii 2.835 (4)
K1—O1 2.872 (4)
K1—N2 2.934 (4)
K1—O1ii 3.287 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, y, -z+1; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1iv 0.87 (6) 1.87 (7) 2.729 (5) 167 (7)
Symmetry code: (iv) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic ligands based on azole heterocycles or carboxylate groups which contain N and O donors have both good coordination ability and diverse coordination modes (Hu et al., 2008). Therefore, the ligand 1H-benzotriazole-1-acetic acid was chosen to create coordination architectures. The synthesis of the ligand was the first step. But, when we synthesized the ligand according to the method of literature (see experimental section), the title complex (I) was obtained instead of the target ligand.

The title complex (I) is a polymeric potassium(I) complex of which the asymmetric is shown in Fig. 1. The environment of the KI ion is a distorted mono-capped octahedral geometry. Each KI ion is coordinated by one O atom from a water molecule, five carboxylate O atoms and one N atom from the ligands. The polymeric structure is a two-dimensional layer parallel to (001) (see, Fig .2).

Related literature top

For background and the synthesis, see: Hu et al. (2008).

Experimental top

Reagents and solvents were of commercially available quality. The title compound was synthesized according to the method of Hu et al. 2008. To a bromoacetonitrile solution of 1H-Benzotriazole (11.9 g), potassium hydroxide (6.8 g), anhydrous K2CO3 (13.8 g) and TEBA (benzyltriethylammoniumchloride, 99%, 0.15 g) were added. The mixture was stirred at room temperature for 30 min. After cooling to 283 K, 8.4 ml (0.075 mol) ethyl bromoacetate was added dropwise with further stirring. After standing at room temperature overnight the mixture was filtered and the filtrate was distilled under diminished pressure to obtain a yellow liquid. 100 ml water was added to the yellow liquid and the mixture was left to stand for 12 h at a condition of circumfluence. Single crystals suitable for X-ray diffraction were obtained after removing the solvent and recrystallizing in water and methanol solution (30 mL, 5: 1, v/v) at room temperature. Yield: 20%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The unique water H atom was located in a difference Fourier map, and were refined freely.

Structure description top

Organic ligands based on azole heterocycles or carboxylate groups which contain N and O donors have both good coordination ability and diverse coordination modes (Hu et al., 2008). Therefore, the ligand 1H-benzotriazole-1-acetic acid was chosen to create coordination architectures. The synthesis of the ligand was the first step. But, when we synthesized the ligand according to the method of literature (see experimental section), the title complex (I) was obtained instead of the target ligand.

The title complex (I) is a polymeric potassium(I) complex of which the asymmetric is shown in Fig. 1. The environment of the KI ion is a distorted mono-capped octahedral geometry. Each KI ion is coordinated by one O atom from a water molecule, five carboxylate O atoms and one N atom from the ligands. The polymeric structure is a two-dimensional layer parallel to (001) (see, Fig .2).

For background and the synthesis, see: Hu et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex showing 40% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the b axis, showing the two-dimensional layered structure.
Poly[µ2-aqua-bis[µ4-2-(1H-1,2,3-benzotriazol-1- yl)acetato]dipotassium] top
Crystal data top
[K2(C8H6N3O2)2(H2O)]F(000) = 460
Mr = 448.53Dx = 1.564 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4308 reflections
a = 12.159 (2) Åθ = 3.4–27.6°
b = 4.5893 (9) ŵ = 0.54 mm1
c = 17.666 (4) ÅT = 296 K
β = 104.98 (3)°Prism, colorless
V = 952.2 (3) Å30.3 × 0.2 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2140 independent reflections
Radiation source: fine-focus sealed tube1508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.878, Tmax = 0.937k = 55
4827 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0551P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2140 reflectionsΔρmax = 0.46 e Å3
136 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 925 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (9)
Crystal data top
[K2(C8H6N3O2)2(H2O)]V = 952.2 (3) Å3
Mr = 448.53Z = 2
Monoclinic, C2Mo Kα radiation
a = 12.159 (2) ŵ = 0.54 mm1
b = 4.5893 (9) ÅT = 296 K
c = 17.666 (4) Å0.3 × 0.2 × 0.12 mm
β = 104.98 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2140 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1508 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.937Rint = 0.053
4827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135Δρmax = 0.46 e Å3
S = 1.05Δρmin = 0.24 e Å3
2140 reflectionsAbsolute structure: Flack (1983), 925 Friedel pairs
136 parametersAbsolute structure parameter: 0.02 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.62160 (7)0.3984 (3)0.43153 (5)0.0478 (3)
O10.3919 (3)0.6125 (7)0.39356 (19)0.0563 (9)
O20.2403 (2)0.3829 (10)0.41277 (15)0.0495 (7)
N10.3763 (3)0.3467 (9)0.2538 (2)0.0481 (10)
N20.4845 (3)0.2466 (10)0.2740 (2)0.0601 (12)
N30.5400 (3)0.3627 (15)0.2268 (2)0.0670 (13)
C10.3119 (3)0.4388 (11)0.3754 (2)0.0388 (11)
C20.2979 (4)0.2654 (12)0.2991 (3)0.0541 (13)
H2A0.30780.05990.31190.065*
H2B0.22080.29200.26700.065*
C30.4673 (4)0.5401 (12)0.1754 (3)0.0489 (12)
C40.4849 (5)0.7071 (14)0.1142 (3)0.0687 (16)
H4A0.55500.70970.10230.082*
C50.3952 (5)0.8677 (19)0.0721 (3)0.0718 (16)
H5A0.40480.98440.03130.086*
C60.2893 (5)0.8601 (15)0.0894 (3)0.0667 (15)
H6A0.22970.96910.05880.080*
C70.2702 (4)0.6970 (12)0.1501 (3)0.0562 (13)
H7A0.20010.69520.16200.067*
C80.3618 (4)0.5360 (11)0.1923 (3)0.0442 (11)
O30.50000.0180 (11)0.50000.0529 (13)
H30.465 (4)0.090 (18)0.461 (3)0.083 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0443 (5)0.0509 (5)0.0467 (6)0.0037 (6)0.0089 (4)0.0024 (6)
O10.060 (2)0.054 (2)0.055 (2)0.0158 (18)0.0148 (16)0.0082 (17)
O20.0438 (15)0.0609 (18)0.0465 (17)0.003 (2)0.0165 (12)0.004 (2)
N10.044 (2)0.062 (3)0.041 (2)0.008 (2)0.0158 (16)0.006 (2)
N20.052 (3)0.081 (3)0.046 (3)0.001 (2)0.0098 (19)0.003 (2)
N30.050 (2)0.095 (4)0.058 (3)0.005 (3)0.017 (2)0.008 (3)
C10.039 (2)0.035 (3)0.038 (2)0.004 (2)0.0025 (17)0.007 (2)
C20.057 (3)0.062 (3)0.045 (3)0.020 (2)0.016 (2)0.007 (2)
C30.052 (3)0.058 (3)0.037 (3)0.010 (3)0.013 (2)0.016 (2)
C40.064 (4)0.085 (4)0.063 (4)0.015 (3)0.028 (3)0.013 (3)
C50.103 (4)0.069 (4)0.051 (3)0.011 (5)0.032 (3)0.003 (4)
C60.087 (4)0.060 (4)0.050 (3)0.007 (4)0.012 (3)0.002 (3)
C70.052 (3)0.061 (3)0.057 (3)0.004 (3)0.016 (2)0.016 (3)
C80.045 (3)0.052 (3)0.037 (3)0.007 (2)0.013 (2)0.017 (2)
O30.065 (3)0.042 (3)0.048 (3)0.0000.008 (3)0.000
Geometric parameters (Å, º) top
K1—O2i2.718 (4)C1—C21.536 (6)
K1—O32.760 (3)C1—K1ii3.301 (4)
K1—O2ii2.829 (3)C1—K1v3.461 (5)
K1—O2iii2.835 (4)C2—H2A0.9700
K1—O12.872 (4)C2—H2B0.9700
K1—N22.934 (4)C3—C41.386 (7)
K1—O1ii3.287 (3)C3—C81.389 (6)
O1—C11.234 (5)C4—C51.366 (8)
O1—K1ii3.287 (3)C4—H4A0.9300
O2—C11.248 (4)C5—C61.399 (6)
O2—K1iv2.718 (4)C5—H5A0.9300
O2—K1ii2.829 (3)C6—C71.376 (7)
O2—K1v2.835 (4)C6—H6A0.9300
N1—N21.351 (5)C7—C81.383 (7)
N1—C81.367 (6)C7—H7A0.9300
N1—C21.444 (5)O3—K1ii2.760 (3)
N2—N31.314 (6)O3—H30.87 (6)
N3—C31.362 (7)
O2i—K1—O3158.80 (10)O2i—K1—H3171.8 (13)
O2i—K1—O2ii86.48 (10)O3—K1—H316.0 (9)
O3—K1—O2ii78.97 (8)O2ii—K1—H393.3 (9)
O2i—K1—O2iii111.47 (9)O2iii—K1—H376.6 (13)
O3—K1—O2iii82.54 (10)O1—K1—H371.3 (12)
O2ii—K1—O2iii84.30 (10)N2—K1—H376.2 (9)
O2i—K1—O1101.92 (10)O1ii—K1—H382.9 (10)
O3—K1—O173.74 (9)C1ii—K1—H382.2 (9)
O2ii—K1—O1122.19 (10)C1iii—K1—H395.4 (13)
O2iii—K1—O1138.77 (10)K1vi—K1—H3135.8 (9)
O2i—K1—N2105.55 (11)K1vii—K1—H384.5 (11)
O3—K1—N291.61 (10)K1ii—K1—H349.8 (12)
O2ii—K1—N2164.82 (13)C1—O1—K1119.5 (3)
O2iii—K1—N282.69 (10)C1—O1—K1ii79.9 (3)
O1—K1—N265.15 (10)K1—O1—K1ii87.70 (10)
O2i—K1—O1ii91.55 (9)C1—O2—K1iv134.2 (4)
O3—K1—O1ii67.34 (9)C1—O2—K1ii100.9 (2)
O2ii—K1—O1ii41.81 (9)K1iv—O2—K1ii95.88 (10)
O2iii—K1—O1ii120.67 (8)C1—O2—K1v109.7 (3)
O1—K1—O1ii80.53 (11)K1iv—O2—K1v111.47 (8)
N2—K1—O1ii143.94 (10)K1ii—O2—K1v93.30 (11)
O2i—K1—C1ii94.83 (10)N2—N1—C8110.1 (3)
O3—K1—C1ii66.33 (9)N2—N1—C2120.2 (4)
O2ii—K1—C1ii21.80 (8)C8—N1—C2129.6 (4)
O2iii—K1—C1ii99.89 (11)N3—N2—N1108.6 (4)
O1—K1—C1ii100.70 (11)N3—N2—K1104.3 (3)
N2—K1—C1ii157.01 (12)N1—N2—K1116.5 (3)
O1ii—K1—C1ii21.59 (9)N2—N3—C3108.3 (4)
O2i—K1—C1iii92.76 (12)O1—C1—O2127.2 (4)
O3—K1—C1iii102.35 (12)O1—C1—C2117.7 (4)
O2ii—K1—C1iii89.46 (10)O2—C1—C2115.0 (4)
O2iii—K1—C1iii19.86 (9)O1—C1—K1ii78.5 (2)
O1—K1—C1iii145.45 (10)O2—C1—K1ii57.28 (19)
N2—K1—C1iii80.89 (11)C2—C1—K1ii145.0 (3)
O1ii—K1—C1iii130.64 (9)O1—C1—K1v94.1 (3)
C1ii—K1—C1iii109.10 (11)O2—C1—K1v50.5 (3)
O2i—K1—K1vi43.10 (5)C2—C1—K1v129.5 (3)
O3—K1—K1vi120.37 (5)K1ii—C1—K1v75.00 (9)
O2ii—K1—K1vi43.41 (9)N1—C2—C1114.4 (4)
O2iii—K1—K1vi101.65 (7)N1—C2—H2A108.7
O1—K1—K1vi119.37 (7)C1—C2—H2A108.7
N2—K1—K1vi147.99 (10)N1—C2—H2B108.7
O1ii—K1—K1vi59.71 (6)C1—C2—H2B108.7
C1ii—K1—K1vi54.26 (8)H2A—C2—H2B107.6
C1iii—K1—K1vi92.65 (8)N3—C3—C4130.2 (5)
O2i—K1—K1vii100.47 (7)N3—C3—C8108.9 (4)
O3—K1—K1vii78.52 (5)C4—C3—C8120.8 (5)
O2ii—K1—K1vii41.03 (8)C5—C4—C3117.4 (5)
O2iii—K1—K1vii43.29 (5)C5—C4—H4A121.3
O1—K1—K1vii150.66 (8)C3—C4—H4A121.3
N2—K1—K1vii125.69 (9)C4—C5—C6121.2 (6)
O1ii—K1—K1vii80.15 (7)C4—C5—H5A119.4
C1ii—K1—K1vii58.57 (9)C6—C5—H5A119.4
C1iii—K1—K1vii50.74 (7)C7—C6—C5122.3 (6)
K1vi—K1—K1vii67.72 (3)C7—C6—H6A118.9
O2i—K1—K1ii122.38 (7)C5—C6—H6A118.9
O3—K1—K1ii39.22 (9)C6—C7—C8115.9 (5)
O2ii—K1—K1ii76.91 (6)C6—C7—H7A122.1
O2iii—K1—K1ii120.90 (6)C8—C7—H7A122.1
O1—K1—K1ii50.16 (7)N1—C8—C7133.5 (4)
N2—K1—K1ii103.29 (9)N1—C8—C3104.0 (4)
O1ii—K1—K1ii42.14 (6)C7—C8—C3122.4 (5)
C1ii—K1—K1ii55.66 (8)K1—O3—K1ii101.56 (17)
C1iii—K1—K1ii140.67 (8)K1—O3—H3103 (4)
K1vi—K1—K1ii101.41 (4)K1ii—O3—H3120 (4)
K1vii—K1—K1ii101.41 (4)
O2i—K1—O1—C1160.5 (3)K1ii—O1—C1—O232.1 (5)
O3—K1—O1—C140.9 (3)K1—O1—C1—C265.4 (4)
O2ii—K1—O1—C1106.1 (3)K1ii—O1—C1—C2146.9 (4)
O2iii—K1—O1—C116.6 (4)K1—O1—C1—K1ii81.5 (2)
N2—K1—O1—C158.8 (3)K1—O1—C1—K1v155.27 (17)
O1ii—K1—O1—C1109.9 (3)K1ii—O1—C1—K1v73.78 (9)
C1ii—K1—O1—C1102.1 (3)K1iv—O2—C1—O1147.7 (4)
C1iii—K1—O1—C147.4 (4)K1ii—O2—C1—O138.3 (5)
K1vi—K1—O1—C1157.0 (3)K1v—O2—C1—O159.3 (5)
K1vii—K1—O1—C160.5 (4)K1iv—O2—C1—C231.3 (5)
K1ii—K1—O1—C177.0 (3)K1ii—O2—C1—C2140.8 (3)
O2i—K1—O1—K1ii122.46 (8)K1v—O2—C1—C2121.7 (4)
O3—K1—O1—K1ii36.13 (8)K1iv—O2—C1—K1ii109.5 (3)
O2ii—K1—O1—K1ii29.10 (15)K1v—O2—C1—K1ii97.5 (2)
O2iii—K1—O1—K1ii93.58 (13)K1iv—O2—C1—K1v153.0 (4)
N2—K1—O1—K1ii135.76 (13)K1ii—O2—C1—K1v97.5 (2)
O1ii—K1—O1—K1ii32.88 (11)N2—N1—C2—C179.5 (6)
C1ii—K1—O1—K1ii25.14 (12)C8—N1—C2—C195.5 (5)
C1iii—K1—O1—K1ii124.37 (17)O1—C1—C2—N14.9 (6)
K1vi—K1—O1—K1ii79.99 (9)O2—C1—C2—N1175.9 (4)
K1vii—K1—O1—K1ii16.52 (19)K1ii—C1—C2—N1116.0 (5)
C8—N1—N2—N30.8 (6)K1v—C1—C2—N1117.6 (4)
C2—N1—N2—N3176.7 (4)N2—N3—C3—C4179.2 (5)
C8—N1—N2—K1116.5 (3)N2—N3—C3—C80.7 (6)
C2—N1—N2—K159.4 (5)N3—C3—C4—C5179.5 (6)
O2i—K1—N2—N324.2 (4)C8—C3—C4—C50.6 (7)
O3—K1—N2—N3168.4 (4)C3—C4—C5—C61.0 (9)
O2ii—K1—N2—N3117.3 (5)C4—C5—C6—C71.4 (10)
O2iii—K1—N2—N386.1 (4)C5—C6—C7—C81.2 (8)
O1—K1—N2—N3120.4 (4)N2—N1—C8—C7179.7 (5)
O1ii—K1—N2—N3139.7 (3)C2—N1—C8—C74.3 (9)
C1ii—K1—N2—N3175.8 (4)N2—N1—C8—C31.2 (5)
C1iii—K1—N2—N366.1 (4)C2—N1—C8—C3176.6 (4)
K1vi—K1—N2—N314.2 (5)C6—C7—C8—N1178.2 (5)
K1vii—K1—N2—N391.4 (4)C6—C7—C8—C30.7 (7)
K1ii—K1—N2—N3153.8 (4)N3—C3—C8—N11.1 (5)
O2i—K1—N2—N195.4 (3)C4—C3—C8—N1178.8 (5)
O3—K1—N2—N172.0 (3)N3—C3—C8—C7179.6 (5)
O2ii—K1—N2—N1123.1 (4)C4—C3—C8—C70.5 (7)
O2iii—K1—N2—N1154.3 (4)O2i—K1—O3—K1ii35.2 (2)
O1—K1—N2—N10.8 (3)O2ii—K1—O3—K1ii82.75 (8)
O1ii—K1—N2—N120.0 (5)O2iii—K1—O3—K1ii168.36 (6)
C1ii—K1—N2—N156.2 (5)O1—K1—O3—K1ii45.72 (7)
C1iii—K1—N2—N1174.2 (4)N2—K1—O3—K1ii109.23 (9)
K1vi—K1—N2—N1105.4 (3)O1ii—K1—O3—K1ii40.61 (7)
K1vii—K1—N2—N1149.0 (3)C1ii—K1—O3—K1ii64.09 (10)
K1ii—K1—N2—N134.2 (3)C1iii—K1—O3—K1ii169.75 (7)
N1—N2—N3—C30.0 (6)K1vi—K1—O3—K1ii69.19 (5)
K1—N2—N3—C3124.8 (4)K1vii—K1—O3—K1ii124.62 (4)
K1—O1—C1—O2113.6 (5)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1; (iii) x+1/2, y1/2, z; (iv) x1/2, y1/2, z; (v) x1/2, y+1/2, z; (vi) x+3/2, y+1/2, z+1; (vii) x+3/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1viii0.87 (6)1.87 (7)2.729 (5)167 (7)
Symmetry code: (viii) x, y1, z.

Experimental details

Crystal data
Chemical formula[K2(C8H6N3O2)2(H2O)]
Mr448.53
Crystal system, space groupMonoclinic, C2
Temperature (K)296
a, b, c (Å)12.159 (2), 4.5893 (9), 17.666 (4)
β (°) 104.98 (3)
V3)952.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.3 × 0.2 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.878, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
4827, 2140, 1508
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.135, 1.05
No. of reflections2140
No. of parameters136
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.24
Absolute structureFlack (1983), 925 Friedel pairs
Absolute structure parameter0.02 (9)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
K1—O2i2.718 (4)K1—O12.872 (4)
K1—O32.760 (3)K1—N22.934 (4)
K1—O2ii2.829 (3)K1—O1ii3.287 (3)
K1—O2iii2.835 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1; (iii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1iv0.87 (6)1.87 (7)2.729 (5)167 (7)
Symmetry code: (iv) x, y1, z.
 

Acknowledgements

This work was supported by a start-up grant from Luoyang Institute of Science and Technology.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHu, T. L., Du, W. P., Hu, B. W., Li, J. R., Bu, X. H. & Cao, R. (2008). CrystEngComm, 10, 1037–1043.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds