organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methylphenyl)-N′-propanoyl­thiourea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 20 February 2012; accepted 1 March 2012; online 7 March 2012)

In the title compound, C12H16N2OS, an intra­molecular N—H⋯O hydrogen bond forms an S(6) ring motif. The propionyl­thio­urea group is approximately planar [with a maximum deviation of 0.135 (2) Å] and forms a dihedral angle of 83.39 (7)° with the benzene ring. In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming centrosymmetric dimers and generating R22(8) ring motifs.

Related literature

For related structures, see: Yamin & Othman (2008[Yamin, B. M. & Othman, E. A. (2008). Acta Cryst. E64, o313.]); Usman et al. (2002[Usman, A., Razak, I. A., Satar, S., Kadir, M. A., Yamin, B. M. & Fun, H.-K. (2002). Acta Cryst. E58, o656-o658.]); Sultana et al. (2007[Sultana, S., Khawar Rauf, M., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o2801.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2OS

  • Mr = 236.33

  • Triclinic, [P \overline 1]

  • a = 7.8069 (3) Å

  • b = 8.4770 (3) Å

  • c = 10.1426 (3) Å

  • α = 103.782 (2)°

  • β = 90.342 (2)°

  • γ = 109.928 (2)°

  • V = 610.07 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.23 × 0.18 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.946, Tmax = 0.985

  • 6225 measured reflections

  • 3211 independent reflections

  • 2664 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.00

  • 3211 reflections

  • 156 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.85 (2) 1.98 (2) 2.6661 (19) 138 (2)
N1—H1N1⋯S1i 0.87 (2) 2.54 (2) 3.3765 (15) 162.0 (16)
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009)[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2009)[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is analogous to N-propionylthiourea, (Yamin & Othman, 2008) except that the hydogen atom at the N terminal atom is replaced by a 2,6-dimethylphenyl group.

In the molecular structure (Fig. 1), an intramolecular N2—H1N2···O1 hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The propionylthiourea group (S1/N1/N2/O1/C1-C4) is approximately planar (with a maximum deviation of 0.135 (2)Å for C1) and forms a dihedral angle of 83.39 (7)° with the benzene ring (C5-C10). The bond lengths and angles are within normal ranges and are comparable to related structures (Usman et al., 2002; Sultana et al., 2007).

The crystal packing is shown in Fig. 2. The molecules are linked by pairs of intermolecular N1—H1N1···S1i hydrogen bonds (Table 1) to form dimers, generating R22(8) ring motifs (Bernstein et al., 1995).

Related literature top

For related structures, see: Yamin & Othman (2008); Usman et al. (2002); Sultana et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a stirring acetone solution (75 ml) of propionyl chloride (2.42 g, 0.03 mol) and ammonium thiocyanate (2.0 g, 0.03 mol), 2,6-dimethylaniline (3.64 g, 0.03 mol) in 40 ml of acetone was added dropwise. The mixture was refluxed reflux for 1 h. The resulting solution was poured into a beaker containing ice blocks. The white precipitate was filtered off and washed with distilled water and cold ethanol before being dried under vacuum. Good quality crystals were obtained by recrystallization from DMSO.

Refinement top

N-bound H atoms were located from the difference map and refined freely, [N–H = 0.85 (2) and 0.87 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95-0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

The title compound is analogous to N-propionylthiourea, (Yamin & Othman, 2008) except that the hydogen atom at the N terminal atom is replaced by a 2,6-dimethylphenyl group.

In the molecular structure (Fig. 1), an intramolecular N2—H1N2···O1 hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The propionylthiourea group (S1/N1/N2/O1/C1-C4) is approximately planar (with a maximum deviation of 0.135 (2)Å for C1) and forms a dihedral angle of 83.39 (7)° with the benzene ring (C5-C10). The bond lengths and angles are within normal ranges and are comparable to related structures (Usman et al., 2002; Sultana et al., 2007).

The crystal packing is shown in Fig. 2. The molecules are linked by pairs of intermolecular N1—H1N1···S1i hydrogen bonds (Table 1) to form dimers, generating R22(8) ring motifs (Bernstein et al., 1995).

For related structures, see: Yamin & Othman (2008); Usman et al. (2002); Sultana et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
N-(2,6-Dimethylphenyl)-N'-propanoylthiourea top
Crystal data top
C12H16N2OSZ = 2
Mr = 236.33F(000) = 252
Triclinic, P1Dx = 1.287 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8069 (3) ÅCell parameters from 2626 reflections
b = 8.4770 (3) Åθ = 2.8–30.1°
c = 10.1426 (3) ŵ = 0.25 mm1
α = 103.782 (2)°T = 100 K
β = 90.342 (2)°Plate, colourless
γ = 109.928 (2)°0.23 × 0.18 × 0.06 mm
V = 610.07 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3211 independent reflections
Radiation source: fine-focus sealed tube2664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 105
Tmin = 0.946, Tmax = 0.985k = 1111
6225 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0263P)2 + 0.6043P]
where P = (Fo2 + 2Fc2)/3
3211 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12H16N2OSγ = 109.928 (2)°
Mr = 236.33V = 610.07 (4) Å3
Triclinic, P1Z = 2
a = 7.8069 (3) ÅMo Kα radiation
b = 8.4770 (3) ŵ = 0.25 mm1
c = 10.1426 (3) ÅT = 100 K
α = 103.782 (2)°0.23 × 0.18 × 0.06 mm
β = 90.342 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2664 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.985Rint = 0.025
6225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.40 e Å3
3211 reflectionsΔρmin = 0.31 e Å3
156 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29160 (6)0.31937 (5)0.83787 (4)0.02011 (12)
N10.48198 (18)0.65151 (17)0.86755 (14)0.0150 (3)
H1N10.537 (3)0.634 (2)0.934 (2)0.018 (5)*
N20.23611 (18)0.53214 (18)0.70040 (14)0.0159 (3)
H1N20.269 (3)0.634 (3)0.690 (2)0.032 (6)*
O10.45702 (17)0.86360 (15)0.77368 (12)0.0218 (3)
C10.7853 (2)1.1145 (2)0.90542 (19)0.0243 (4)
H1A0.89561.18980.96620.036*
H1B0.69271.16970.91610.036*
H1C0.81581.09590.81070.036*
C20.7107 (2)0.9413 (2)0.94142 (17)0.0184 (3)
H2A0.80520.88670.93130.022*
H2B0.68380.96121.03800.022*
C30.5388 (2)0.8192 (2)0.85224 (16)0.0153 (3)
C40.3335 (2)0.5086 (2)0.79737 (16)0.0152 (3)
C50.0741 (2)0.3969 (2)0.62443 (16)0.0153 (3)
C60.0916 (2)0.2808 (2)0.50703 (17)0.0187 (3)
C70.0683 (3)0.1516 (2)0.43662 (18)0.0229 (4)
H7A0.06050.06960.35690.027*
C80.2383 (2)0.1413 (2)0.48146 (19)0.0251 (4)
H8A0.34570.05290.43220.030*
C90.2519 (2)0.2590 (2)0.59732 (19)0.0239 (4)
H9A0.36910.25080.62700.029*
C100.0956 (2)0.3906 (2)0.67187 (17)0.0188 (3)
C110.1090 (3)0.5156 (2)0.79955 (19)0.0254 (4)
H11A0.03890.50640.87600.038*
H11B0.23760.48830.81800.038*
H11C0.05940.63400.78840.038*
C120.2756 (3)0.2913 (2)0.45815 (19)0.0252 (4)
H12A0.35860.29870.53410.038*
H12B0.32590.39460.42340.038*
H12C0.26220.18740.38520.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0208 (2)0.01442 (19)0.0210 (2)0.00006 (15)0.00808 (16)0.00615 (15)
N10.0141 (6)0.0134 (6)0.0152 (6)0.0021 (5)0.0051 (5)0.0037 (5)
N20.0152 (7)0.0128 (6)0.0165 (7)0.0013 (5)0.0038 (5)0.0033 (5)
O10.0238 (6)0.0167 (6)0.0229 (6)0.0041 (5)0.0069 (5)0.0061 (5)
C10.0232 (9)0.0169 (8)0.0260 (9)0.0010 (7)0.0023 (7)0.0052 (7)
C20.0179 (8)0.0140 (7)0.0199 (8)0.0028 (6)0.0038 (6)0.0025 (6)
C30.0150 (7)0.0145 (7)0.0141 (7)0.0037 (6)0.0009 (6)0.0019 (5)
C40.0135 (7)0.0154 (7)0.0142 (7)0.0032 (6)0.0002 (6)0.0019 (6)
C50.0152 (7)0.0131 (7)0.0153 (7)0.0019 (6)0.0044 (6)0.0043 (6)
C60.0197 (8)0.0171 (8)0.0179 (8)0.0044 (6)0.0033 (6)0.0051 (6)
C70.0283 (9)0.0165 (8)0.0179 (8)0.0020 (7)0.0081 (7)0.0025 (6)
C80.0212 (9)0.0211 (9)0.0260 (9)0.0028 (7)0.0126 (7)0.0091 (7)
C90.0161 (8)0.0267 (9)0.0289 (9)0.0033 (7)0.0035 (7)0.0134 (7)
C100.0192 (8)0.0195 (8)0.0191 (8)0.0070 (6)0.0011 (6)0.0072 (6)
C110.0220 (9)0.0285 (9)0.0275 (9)0.0114 (7)0.0038 (7)0.0069 (7)
C120.0263 (9)0.0268 (9)0.0207 (9)0.0096 (7)0.0026 (7)0.0024 (7)
Geometric parameters (Å, º) top
S1—C41.6756 (16)C5—C101.400 (2)
N1—C31.385 (2)C6—C71.397 (2)
N1—C41.393 (2)C6—C121.503 (2)
N1—H1N10.87 (2)C7—C81.386 (3)
N2—C41.331 (2)C7—H7A0.9500
N2—C51.445 (2)C8—C91.380 (3)
N2—H1N20.85 (2)C8—H8A0.9500
O1—C31.219 (2)C9—C101.401 (2)
C1—C21.517 (2)C9—H9A0.9500
C1—H1A0.9800C10—C111.495 (2)
C1—H1B0.9800C11—H11A0.9800
C1—H1C0.9800C11—H11B0.9800
C2—C31.511 (2)C11—H11C0.9800
C2—H2A0.9900C12—H12A0.9800
C2—H2B0.9900C12—H12B0.9800
C5—C61.393 (2)C12—H12C0.9800
C3—N1—C4127.85 (14)C5—C6—C7117.67 (16)
C3—N1—H1N1117.2 (13)C5—C6—C12121.57 (15)
C4—N1—H1N1114.7 (13)C7—C6—C12120.75 (16)
C4—N2—C5122.62 (13)C8—C7—C6120.93 (17)
C4—N2—H1N2116.3 (15)C8—C7—H7A119.5
C5—N2—H1N2120.9 (15)C6—C7—H7A119.5
C2—C1—H1A109.5C9—C8—C7120.23 (16)
C2—C1—H1B109.5C9—C8—H8A119.9
H1A—C1—H1B109.5C7—C8—H8A119.9
C2—C1—H1C109.5C8—C9—C10121.04 (17)
H1A—C1—H1C109.5C8—C9—H9A119.5
H1B—C1—H1C109.5C10—C9—H9A119.5
C3—C2—C1112.25 (14)C5—C10—C9117.38 (16)
C3—C2—H2A109.2C5—C10—C11121.28 (15)
C1—C2—H2A109.2C9—C10—C11121.31 (16)
C3—C2—H2B109.2C10—C11—H11A109.5
C1—C2—H2B109.2C10—C11—H11B109.5
H2A—C2—H2B107.9H11A—C11—H11B109.5
O1—C3—N1122.77 (15)C10—C11—H11C109.5
O1—C3—C2123.23 (14)H11A—C11—H11C109.5
N1—C3—C2114.00 (14)H11B—C11—H11C109.5
N2—C4—N1117.11 (14)C6—C12—H12A109.5
N2—C4—S1124.53 (12)C6—C12—H12B109.5
N1—C4—S1118.36 (12)H12A—C12—H12B109.5
C6—C5—C10122.74 (15)C6—C12—H12C109.5
C6—C5—N2119.40 (14)H12A—C12—H12C109.5
C10—C5—N2117.85 (15)H12B—C12—H12C109.5
C4—N1—C3—O12.3 (3)C10—C5—C6—C12179.71 (15)
C4—N1—C3—C2177.72 (15)N2—C5—C6—C120.8 (2)
C1—C2—C3—O19.3 (2)C5—C6—C7—C80.9 (2)
C1—C2—C3—N1170.72 (14)C12—C6—C7—C8179.91 (16)
C5—N2—C4—N1177.10 (14)C6—C7—C8—C90.2 (3)
C5—N2—C4—S14.1 (2)C7—C8—C9—C100.1 (3)
C3—N1—C4—N22.4 (2)C6—C5—C10—C91.0 (2)
C3—N1—C4—S1178.77 (13)N2—C5—C10—C9179.92 (14)
C4—N2—C5—C687.4 (2)C6—C5—C10—C11179.02 (15)
C4—N2—C5—C1093.64 (19)N2—C5—C10—C112.0 (2)
C10—C5—C6—C71.2 (2)C8—C9—C10—C50.3 (2)
N2—C5—C6—C7179.82 (14)C8—C9—C10—C11178.34 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.85 (2)1.98 (2)2.6661 (19)138 (2)
N1—H1N1···S1i0.87 (2)2.54 (2)3.3765 (15)162.0 (16)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H16N2OS
Mr236.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8069 (3), 8.4770 (3), 10.1426 (3)
α, β, γ (°)103.782 (2), 90.342 (2), 109.928 (2)
V3)610.07 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.23 × 0.18 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.946, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
6225, 3211, 2664
Rint0.025
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.00
No. of reflections3211
No. of parameters156
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.85 (2)1.98 (2)2.6661 (19)138 (2)
N1—H1N1···S1i0.87 (2)2.54 (2)3.3765 (15)162.0 (16)
Symmetry code: (i) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Fundamental Research Grant Scheme No. 203/PFIZIK/6711171 to conduct this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSultana, S., Khawar Rauf, M., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o2801.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsman, A., Razak, I. A., Satar, S., Kadir, M. A., Yamin, B. M. & Fun, H.-K. (2002). Acta Cryst. E58, o656–o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M. & Othman, E. A. (2008). Acta Cryst. E64, o313.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds