organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-{3-[(6-chloro­pyridin-3-yl)meth­yl]-2-(nitro­imino)­imidazolidin-1-yl}acetate

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur, 416 004, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 22 February 2012; accepted 1 March 2012; online 7 March 2012)

In the title compound, C13H16ClN5O4, the imidazole ring is in a slight envelope conformation. The dihedral angle between the pyridine ring and the four essentially planar atoms [maximum deviation 0.015 (2) Å] of the imidazole ring is 80.8 (1)°. In, the crystal, weak C—H⋯O and C—H⋯N hydrogen bonds are present. In addition, there are weak ππ stacking inter­actions between symmetry-related pyridine rings with a centroid–centroid distance of 3.807 (1) Å.

Related literature

For background to the insecticidal applications of imidacloprid [systematic name: (E)-1-(6-chloro-3-pyridyl­meth­yl)-N-nitro­imidazolidin-2-yl­idene­amine], see: Deshmukh et al. (2011[Deshmukh, M. B., Patil, P. & Shripanavar, C. S. (2011). Arch. Appl. Sci. Res. 3, 218-221.], 2012[Deshmukh, M. B., Patil, S. H. & Shripanavar, C. S. (2012). J. Chem. Pharm. Res. 4, 326-332]); Zhao et al. (2010[Zhao, Y., Wang, G., Li, Y.-Q., Wang, S.-H. & Li, Z.-M. (2010). Chem. Res. Chin. Univ. 26, 380-383.]). For related structures, see: Kapoor et al. (2011[Kapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Structure Analysis Online, 27, 55-56.], 2012[Kapoor, K., Gupta, V. K., Deshmukh, M. B., Shripanavar, C. S. & Kant, R. (2012). Acta Cryst. E68, o469.]); Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, o147.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16ClN5O4

  • Mr = 341.76

  • Monoclinic, P 21 /c

  • a = 7.8136 (2) Å

  • b = 19.3483 (4) Å

  • c = 10.1926 (2) Å

  • β = 100.346 (2)°

  • V = 1515.86 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England. ]) Tmin = 0.868, Tmax = 1.000

  • 47458 measured reflections

  • 2983 independent reflections

  • 2387 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.090

  • S = 1.02

  • 2983 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O15i 0.97 2.50 3.358 (2) 147
C17—H17A⋯N1ii 0.97 2.57 3.509 (2) 163
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England. ]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England. ]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The discovery of imidacloprid has been referred to as a milestone in the past three decades of insecticidal research. The nitroguanidine moiety of imidacloprid is also a common site for metabolism via cleavage to the guanidine and reduction to di-nitro-imidacloprid. The insecticidal activity of nitroguanidine was found to be 10,000 fold higher than that of natural insecticide nicotine (Deshmukh et al., 2012). In mammalian systems the nitro group of imidacloprid has been postulated to be reduced to nitrosoguanidine and aminoguanidine and then cleaved to the guanidine and urea derivatives (Deshmukh et al., 2011). Therefore, in a search for new neonicotinoid insecticides with improved profiles, neonicotinoid derivatives containing N-oxalyl groups were designed and synthesized (Zhao et al., 2010).

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are comparable to those common to related structures (Kapoor et al., 2011,2012; Kant et al., 2012). The imidazole ring is in a slight envelope conformation with atom C9 forming the flap. The dihedral angle between the pyridine ring [N1/C2-C6] and the four essentially planar atoms [N8/N11/C10/C12 (maximum deviation 0.015 (2)Å for C12)] of the imidazole ring is 80.8 (1)°. In the crystal, molecules are connected by pairs of weak C—H···O hydrogen bonds into centrosymmetric dimers, which are in turn, linked into columns along [100] by weak C—H···N hydrogen bonds (Fig .2). In addition, there is a weak π···π interaction between the pyridine ring at (x, y, z) and the pyridine ring at (1 - x, 1 - y, - z) [centroid separation = 3.807 (1) Å, interplanar spacing = 3.368 Å and centroid shift = 1.77 Å].

Related literature top

For background to the insecticidal applications of imidacloprid [systematic name: (E)-1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine], see: Deshmukh et al. (2011, 2012); Zhao et al. (2010). For related structures, see: Kapoor et al. (2011, 2012); Kant et al. (2012).

Experimental top

Imidacloprid (10.20 g, 0.04 mol) in 30 ml acetone, ethyl chloroacetate (7.32 g, 0.06 mol) was refluxed for about 24 h in presence of 10 g m K2CO3. An aliquot of sample was taken to monitor the progress of reaction by TLC. After completion of reaction, the hot reaction mixture was filtered to remove excess K2CO3. Filtrate was then dried under reduced pressure giving a white solid, Yield 80%. The synthesized compound was dissolved in methanol, by the process of slow evaporation a fine crystalline compound separated out.

Refinement top

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å.

Structure description top

The discovery of imidacloprid has been referred to as a milestone in the past three decades of insecticidal research. The nitroguanidine moiety of imidacloprid is also a common site for metabolism via cleavage to the guanidine and reduction to di-nitro-imidacloprid. The insecticidal activity of nitroguanidine was found to be 10,000 fold higher than that of natural insecticide nicotine (Deshmukh et al., 2012). In mammalian systems the nitro group of imidacloprid has been postulated to be reduced to nitrosoguanidine and aminoguanidine and then cleaved to the guanidine and urea derivatives (Deshmukh et al., 2011). Therefore, in a search for new neonicotinoid insecticides with improved profiles, neonicotinoid derivatives containing N-oxalyl groups were designed and synthesized (Zhao et al., 2010).

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are comparable to those common to related structures (Kapoor et al., 2011,2012; Kant et al., 2012). The imidazole ring is in a slight envelope conformation with atom C9 forming the flap. The dihedral angle between the pyridine ring [N1/C2-C6] and the four essentially planar atoms [N8/N11/C10/C12 (maximum deviation 0.015 (2)Å for C12)] of the imidazole ring is 80.8 (1)°. In the crystal, molecules are connected by pairs of weak C—H···O hydrogen bonds into centrosymmetric dimers, which are in turn, linked into columns along [100] by weak C—H···N hydrogen bonds (Fig .2). In addition, there is a weak π···π interaction between the pyridine ring at (x, y, z) and the pyridine ring at (1 - x, 1 - y, - z) [centroid separation = 3.807 (1) Å, interplanar spacing = 3.368 Å and centroid shift = 1.77 Å].

For background to the insecticidal applications of imidacloprid [systematic name: (E)-1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine], see: Deshmukh et al. (2011, 2012); Zhao et al. (2010). For related structures, see: Kapoor et al. (2011, 2012); Kant et al. (2012).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure with ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure with weak hydrogen bonds shown as dashed lines.
Ethyl 2-{3-[(6-chloropyridin-3-yl)methyl]-2-(nitroimino)imidazolidin-1-yl}acetate top
Crystal data top
C13H16ClN5O4F(000) = 712
Mr = 341.76Dx = 1.498 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 21411 reflections
a = 7.8136 (2) Åθ = 3.6–29.1°
b = 19.3483 (4) ŵ = 0.28 mm1
c = 10.1926 (2) ÅT = 293 K
β = 100.346 (2)°Plate, white
V = 1515.86 (6) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2983 independent reflections
Radiation source: fine-focus sealed tube2387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.7°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 2323
Tmin = 0.868, Tmax = 1.000l = 1212
47458 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.6841P]
where P = (Fo2 + 2Fc2)/3
2983 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H16ClN5O4V = 1515.86 (6) Å3
Mr = 341.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8136 (2) ŵ = 0.28 mm1
b = 19.3483 (4) ÅT = 293 K
c = 10.1926 (2) Å0.3 × 0.2 × 0.1 mm
β = 100.346 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2983 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
2387 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 1.000Rint = 0.046
47458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
2983 reflectionsΔρmin = 0.29 e Å3
209 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

IR (cm-1): 3008, 2991, 2908, 1743, 1558, 1548. 1H NMR ?: 1.29(t, J: 7.5 Hz, CH3),3.59(t, J: 7.5 Hz, CH2), 3.84(t, J: 7.5 Hz, CH2), 4.06 (s, CH2), 4.24 (q, J:7.5 Hz, OCH2), 4.50 (s, CH2), 7.37 (d, J: 8.2 Hz, Py1H), 7.74 (dd, J1: 7.5,J2: 2.5 Hz, Py1H), 8.32 (s, Py1H) p.p.m.. LCMS/MS (ESI, m/z): 342.0891 (M+H)+,295.0881, 261.1297, 170.0910.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49235 (8)0.34128 (3)0.00544 (6)0.06124 (18)
N10.4056 (2)0.42363 (8)0.17333 (16)0.0437 (4)
C20.3295 (2)0.48018 (10)0.21371 (18)0.0402 (4)
H20.33940.48770.30490.048*
C30.2376 (2)0.52773 (9)0.12776 (16)0.0316 (4)
C40.2223 (2)0.51489 (10)0.00787 (17)0.0376 (4)
H40.16000.54530.06920.045*
C50.2988 (2)0.45741 (10)0.05220 (18)0.0406 (4)
H50.29030.44810.14260.049*
C60.3884 (2)0.41447 (10)0.04397 (19)0.0387 (4)
C70.1554 (2)0.59159 (10)0.17545 (16)0.0362 (4)
H7A0.18050.63090.12300.043*
H7B0.03020.58550.16020.043*
N80.21587 (18)0.60656 (8)0.31527 (14)0.0337 (3)
C90.3777 (2)0.64367 (10)0.36251 (18)0.0377 (4)
H9A0.37640.68900.32180.045*
H9B0.47740.61800.34400.045*
C100.3805 (2)0.64912 (11)0.5113 (2)0.0459 (5)
H10A0.47230.62080.56100.055*
H10B0.39690.69660.54140.055*
N110.20831 (18)0.62338 (7)0.52662 (14)0.0314 (3)
C120.1228 (2)0.59805 (8)0.41189 (16)0.0278 (3)
N130.02640 (17)0.56113 (7)0.38209 (14)0.0324 (3)
N140.15702 (18)0.57746 (7)0.44638 (14)0.0330 (3)
O150.28030 (16)0.53623 (7)0.43068 (15)0.0490 (4)
O160.15984 (16)0.63170 (7)0.51017 (13)0.0454 (3)
C170.1705 (2)0.61047 (9)0.65820 (16)0.0331 (4)
H17A0.27510.59460.71650.040*
H17B0.08360.57430.65310.040*
C180.1042 (2)0.67502 (9)0.71615 (17)0.0347 (4)
O190.13493 (19)0.73282 (7)0.68446 (14)0.0505 (4)
O200.01369 (17)0.65861 (6)0.81063 (12)0.0414 (3)
C210.0639 (3)0.71622 (11)0.8720 (2)0.0502 (5)
H21A0.02150.75270.89390.060*
H21B0.09800.70070.95410.060*
C220.2189 (3)0.74367 (13)0.7804 (3)0.0658 (7)
H22A0.18280.76510.70490.099*
H22B0.27650.77720.82660.099*
H22C0.29750.70640.75050.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0666 (4)0.0457 (3)0.0760 (4)0.0005 (3)0.0250 (3)0.0183 (3)
N10.0488 (10)0.0409 (9)0.0396 (9)0.0051 (7)0.0028 (7)0.0019 (7)
C20.0482 (11)0.0440 (11)0.0273 (9)0.0050 (9)0.0036 (8)0.0007 (8)
C30.0283 (9)0.0374 (10)0.0288 (9)0.0033 (7)0.0048 (7)0.0013 (7)
C40.0338 (10)0.0483 (11)0.0296 (9)0.0034 (8)0.0025 (7)0.0026 (8)
C50.0402 (10)0.0523 (12)0.0296 (9)0.0105 (9)0.0071 (8)0.0089 (8)
C60.0335 (9)0.0387 (10)0.0447 (11)0.0064 (8)0.0089 (8)0.0093 (8)
C70.0343 (9)0.0445 (10)0.0296 (9)0.0042 (8)0.0056 (7)0.0040 (8)
N80.0303 (7)0.0393 (8)0.0320 (8)0.0024 (6)0.0065 (6)0.0023 (6)
C90.0274 (9)0.0414 (10)0.0443 (10)0.0021 (8)0.0063 (8)0.0026 (8)
C100.0345 (10)0.0563 (13)0.0459 (11)0.0121 (9)0.0043 (8)0.0037 (9)
N110.0316 (7)0.0311 (8)0.0309 (7)0.0033 (6)0.0042 (6)0.0024 (6)
C120.0297 (9)0.0224 (8)0.0310 (9)0.0045 (6)0.0048 (7)0.0003 (6)
N130.0293 (7)0.0340 (8)0.0346 (8)0.0030 (6)0.0074 (6)0.0059 (6)
N140.0296 (8)0.0326 (8)0.0355 (8)0.0027 (6)0.0026 (6)0.0025 (6)
O150.0304 (7)0.0429 (8)0.0743 (10)0.0071 (6)0.0114 (6)0.0031 (7)
O160.0414 (7)0.0428 (8)0.0529 (8)0.0053 (6)0.0104 (6)0.0131 (6)
C170.0380 (10)0.0303 (9)0.0293 (9)0.0014 (7)0.0014 (7)0.0010 (7)
C180.0392 (10)0.0339 (10)0.0282 (9)0.0018 (8)0.0013 (7)0.0026 (7)
O190.0711 (10)0.0294 (7)0.0525 (8)0.0076 (7)0.0151 (7)0.0041 (6)
O200.0550 (8)0.0366 (7)0.0345 (7)0.0050 (6)0.0127 (6)0.0010 (5)
C210.0605 (13)0.0481 (12)0.0431 (11)0.0052 (10)0.0125 (10)0.0134 (9)
C220.0676 (15)0.0568 (15)0.0716 (16)0.0174 (12)0.0091 (12)0.0097 (12)
Geometric parameters (Å, º) top
Cl1—C61.7510 (19)C10—H10A0.9700
N1—C61.313 (2)C10—H10B0.9700
N1—C21.345 (2)N11—C121.332 (2)
C2—C31.380 (2)N11—C171.446 (2)
C2—H20.9300C12—N131.354 (2)
C3—C41.388 (2)N13—N141.3458 (19)
C3—C71.512 (2)N14—O161.2367 (19)
C4—C51.377 (3)N14—O151.2388 (18)
C4—H40.9300C17—C181.512 (2)
C5—C61.376 (3)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C7—N81.448 (2)C18—O191.200 (2)
C7—H7A0.9700C18—O201.332 (2)
C7—H7B0.9700O20—C211.462 (2)
N8—C121.335 (2)C21—C221.488 (3)
N8—C91.459 (2)C21—H21A0.9700
C9—C101.517 (3)C21—H21B0.9700
C9—H9A0.9700C22—H22A0.9600
C9—H9B0.9700C22—H22B0.9600
C10—N111.469 (2)C22—H22C0.9600
C6—N1—C2116.47 (16)C9—C10—H10B111.1
N1—C2—C3123.83 (16)H10A—C10—H10B109.0
N1—C2—H2118.1C12—N11—C17126.65 (14)
C3—C2—H2118.1C12—N11—C10110.86 (14)
C2—C3—C4117.05 (16)C17—N11—C10120.06 (14)
C2—C3—C7122.91 (15)N11—C12—N8110.38 (14)
C4—C3—C7120.04 (15)N11—C12—N13131.84 (15)
C5—C4—C3120.43 (17)N8—C12—N13117.42 (14)
C5—C4—H4119.8N14—N13—C12117.67 (13)
C3—C4—H4119.8O16—N14—O15121.84 (14)
C6—C5—C4116.69 (16)O16—N14—N13122.81 (14)
C6—C5—H5121.7O15—N14—N13115.21 (14)
C4—C5—H5121.7N11—C17—C18111.17 (14)
N1—C6—C5125.52 (17)N11—C17—H17A109.4
N1—C6—Cl1115.38 (15)C18—C17—H17A109.4
C5—C6—Cl1119.10 (14)N11—C17—H17B109.4
N8—C7—C3113.43 (14)C18—C17—H17B109.4
N8—C7—H7A108.9H17A—C17—H17B108.0
C3—C7—H7A108.9O19—C18—O20125.08 (17)
N8—C7—H7B108.9O19—C18—C17124.43 (17)
C3—C7—H7B108.9O20—C18—C17110.43 (15)
H7A—C7—H7B107.7C18—O20—C21116.27 (15)
C12—N8—C7125.22 (14)O20—C21—C22110.91 (16)
C12—N8—C9111.84 (14)O20—C21—H21A109.5
C7—N8—C9122.24 (14)C22—C21—H21A109.5
N8—C9—C10102.70 (14)O20—C21—H21B109.5
N8—C9—H9A111.2C22—C21—H21B109.5
C10—C9—H9A111.2H21A—C21—H21B108.0
N8—C9—H9B111.2C21—C22—H22A109.5
C10—C9—H9B111.2C21—C22—H22B109.5
H9A—C9—H9B109.1H22A—C22—H22B109.5
N11—C10—C9103.54 (14)C21—C22—H22C109.5
N11—C10—H10A111.1H22A—C22—H22C109.5
C9—C10—H10A111.1H22B—C22—H22C109.5
N11—C10—H10B111.1
C6—N1—C2—C30.3 (3)C17—N11—C12—N8165.04 (15)
N1—C2—C3—C40.9 (3)C10—N11—C12—N82.9 (2)
N1—C2—C3—C7179.01 (17)C17—N11—C12—N137.7 (3)
C2—C3—C4—C50.9 (3)C10—N11—C12—N13169.83 (18)
C7—C3—C4—C5179.07 (16)C7—N8—C12—N11173.32 (15)
C3—C4—C5—C60.3 (3)C9—N8—C12—N112.8 (2)
C2—N1—C6—C50.4 (3)C7—N8—C12—N1312.8 (2)
C2—N1—C6—Cl1178.84 (13)C9—N8—C12—N13176.68 (14)
C4—C5—C6—N10.5 (3)N11—C12—N13—N1438.2 (3)
C4—C5—C6—Cl1178.79 (13)N8—C12—N13—N14149.51 (15)
C2—C3—C7—N813.8 (2)C12—N13—N14—O1614.3 (2)
C4—C3—C7—N8166.19 (15)C12—N13—N14—O15169.90 (15)
C3—C7—N8—C12107.54 (18)C12—N11—C17—C18111.85 (18)
C3—C7—N8—C982.8 (2)C10—N11—C17—C1887.50 (19)
C12—N8—C9—C106.9 (2)N11—C17—C18—O1924.7 (2)
C7—N8—C9—C10177.74 (16)N11—C17—C18—O20157.88 (14)
N8—C9—C10—N117.84 (19)O19—C18—O20—C214.8 (3)
C9—C10—N11—C127.0 (2)C17—C18—O20—C21177.77 (14)
C9—C10—N11—C17170.43 (15)C18—O20—C21—C2274.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O15i0.972.503.358 (2)147
C17—H17A···N1ii0.972.573.509 (2)163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H16ClN5O4
Mr341.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8136 (2), 19.3483 (4), 10.1926 (2)
β (°) 100.346 (2)
V3)1515.86 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.868, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
47458, 2983, 2387
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.02
No. of reflections2983
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O15i0.972.503.358 (2)147
C17—H17A···N1ii0.972.573.509 (2)163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the UGC for research funding under research project F·No. 37–415/2009 (J&K) (SR).

References

First citationDeshmukh, M. B., Patil, P. & Shripanavar, C. S. (2011). Arch. Appl. Sci. Res. 3, 218–221.  CAS Google Scholar
First citationDeshmukh, M. B., Patil, S. H. & Shripanavar, C. S. (2012). J. Chem. Pharm. Res. 4, 326–332  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, o147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKapoor, K., Gupta, V. K., Deshmukh, M. B., Shripanavar, C. S. & Kant, R. (2012). Acta Cryst. E68, o469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Structure Analysis Online, 27, 55–56.  CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y., Wang, G., Li, Y.-Q., Wang, S.-H. & Li, Z.-M. (2010). Chem. Res. Chin. Univ. 26, 380–383.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds