organic compounds
Ethyl 2-{3-[(6-chloropyridin-3-yl)methyl]-2-(nitroimino)imidazolidin-1-yl}acetate
aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur, 416 004, India
*Correspondence e-mail: rkvk.paper11@gmail.com
In the title compound, C13H16ClN5O4, the imidazole ring is in a slight The dihedral angle between the pyridine ring and the four essentially planar atoms [maximum deviation 0.015 (2) Å] of the imidazole ring is 80.8 (1)°. In, the crystal, weak C—H⋯O and C—H⋯N hydrogen bonds are present. In addition, there are weak π–π stacking interactions between symmetry-related pyridine rings with a centroid–centroid distance of 3.807 (1) Å.
Related literature
For background to the insecticidal applications of imidacloprid [systematic name: (E)-1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine], see: Deshmukh et al. (2011, 2012); Zhao et al. (2010). For related structures, see: Kapoor et al. (2011, 2012); Kant et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S160053681200918X/lh5425sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681200918X/lh5425Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681200918X/lh5425Isup3.cml
Imidacloprid (10.20 g, 0.04 mol) in 30 ml acetone, ethyl chloroacetate (7.32 g, 0.06 mol) was refluxed for about 24 h in presence of 10 g m K2CO3. An
of sample was taken to monitor the progress of reaction by TLC. After completion of reaction, the hot reaction mixture was filtered to remove excess K2CO3. Filtrate was then dried under reduced pressure giving a white solid, Yield 80%. The synthesized compound was dissolved in methanol, by the process of slow evaporation a fine crystalline compound separated out.H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å.
The discovery of imidacloprid has been referred to as a milestone in the past three decades of insecticidal research. The nitroguanidine moiety of imidacloprid is also a common site for metabolism via cleavage to the guanidine and reduction to di-nitro-imidacloprid. The insecticidal activity of nitroguanidine was found to be 10,000 fold higher than that of natural insecticide nicotine (Deshmukh et al., 2012). In mammalian systems the nitro group of imidacloprid has been postulated to be reduced to nitrosoguanidine and aminoguanidine and then cleaved to the guanidine and urea derivatives (Deshmukh et al., 2011). Therefore, in a search for new neonicotinoid insecticides with improved profiles, neonicotinoid derivatives containing N-oxalyl groups were designed and synthesized (Zhao et al., 2010).
The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are comparable to those common to related structures (Kapoor et al., 2011,2012; Kant et al., 2012). The imidazole ring is in a slight π···π interaction between the pyridine ring at (x, y, z) and the pyridine ring at (1 - x, 1 - y, - z) [centroid separation = 3.807 (1) Å, = 3.368 Å and centroid shift = 1.77 Å].
with atom C9 forming the flap. The dihedral angle between the pyridine ring [N1/C2-C6] and the four essentially planar atoms [N8/N11/C10/C12 (maximum deviation 0.015 (2)Å for C12)] of the imidazole ring is 80.8 (1)°. In the crystal, molecules are connected by pairs of weak C—H···O hydrogen bonds into centrosymmetric dimers, which are in turn, linked into columns along [100] by weak C—H···N hydrogen bonds (Fig .2). In addition, there is a weakFor background to the insecticidal applications of imidacloprid [systematic name: (E)-1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine], see: Deshmukh et al. (2011, 2012); Zhao et al. (2010). For related structures, see: Kapoor et al. (2011, 2012); Kant et al. (2012).
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell
CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C13H16ClN5O4 | F(000) = 712 |
Mr = 341.76 | Dx = 1.498 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 21411 reflections |
a = 7.8136 (2) Å | θ = 3.6–29.1° |
b = 19.3483 (4) Å | µ = 0.28 mm−1 |
c = 10.1926 (2) Å | T = 293 K |
β = 100.346 (2)° | Plate, white |
V = 1515.86 (6) Å3 | 0.3 × 0.2 × 0.1 mm |
Z = 4 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2983 independent reflections |
Radiation source: fine-focus sealed tube | 2387 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 26.0°, θmin = 3.7° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) | k = −23→23 |
Tmin = 0.868, Tmax = 1.000 | l = −12→12 |
47458 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0372P)2 + 0.6841P] where P = (Fo2 + 2Fc2)/3 |
2983 reflections | (Δ/σ)max = 0.001 |
209 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C13H16ClN5O4 | V = 1515.86 (6) Å3 |
Mr = 341.76 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8136 (2) Å | µ = 0.28 mm−1 |
b = 19.3483 (4) Å | T = 293 K |
c = 10.1926 (2) Å | 0.3 × 0.2 × 0.1 mm |
β = 100.346 (2)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2983 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) | 2387 reflections with I > 2σ(I) |
Tmin = 0.868, Tmax = 1.000 | Rint = 0.046 |
47458 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.23 e Å−3 |
2983 reflections | Δρmin = −0.29 e Å−3 |
209 parameters |
Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. IR (cm-1): 3008, 2991, 2908, 1743, 1558, 1548. 1H NMR ?: 1.29(t, J: 7.5 Hz, CH3),3.59(t, J: 7.5 Hz, CH2), 3.84(t, J: 7.5 Hz, CH2), 4.06 (s, CH2), 4.24 (q, J:7.5 Hz, OCH2), 4.50 (s, CH2), 7.37 (d, J: 8.2 Hz, Py1H), 7.74 (dd, J1: 7.5,J2: 2.5 Hz, Py1H), 8.32 (s, Py1H) p.p.m.. LCMS/MS (ESI, m/z): 342.0891 (M+H)+,295.0881, 261.1297, 170.0910. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.49235 (8) | 0.34128 (3) | −0.00544 (6) | 0.06124 (18) | |
N1 | 0.4056 (2) | 0.42363 (8) | 0.17333 (16) | 0.0437 (4) | |
C2 | 0.3295 (2) | 0.48018 (10) | 0.21371 (18) | 0.0402 (4) | |
H2 | 0.3394 | 0.4877 | 0.3049 | 0.048* | |
C3 | 0.2376 (2) | 0.52773 (9) | 0.12776 (16) | 0.0316 (4) | |
C4 | 0.2223 (2) | 0.51489 (10) | −0.00787 (17) | 0.0376 (4) | |
H4 | 0.1600 | 0.5453 | −0.0692 | 0.045* | |
C5 | 0.2988 (2) | 0.45741 (10) | −0.05220 (18) | 0.0406 (4) | |
H5 | 0.2903 | 0.4481 | −0.1426 | 0.049* | |
C6 | 0.3884 (2) | 0.41447 (10) | 0.04397 (19) | 0.0387 (4) | |
C7 | 0.1554 (2) | 0.59159 (10) | 0.17545 (16) | 0.0362 (4) | |
H7A | 0.1805 | 0.6309 | 0.1230 | 0.043* | |
H7B | 0.0302 | 0.5855 | 0.1602 | 0.043* | |
N8 | 0.21587 (18) | 0.60656 (8) | 0.31527 (14) | 0.0337 (3) | |
C9 | 0.3777 (2) | 0.64367 (10) | 0.36251 (18) | 0.0377 (4) | |
H9A | 0.3764 | 0.6890 | 0.3218 | 0.045* | |
H9B | 0.4774 | 0.6180 | 0.3440 | 0.045* | |
C10 | 0.3805 (2) | 0.64912 (11) | 0.5113 (2) | 0.0459 (5) | |
H10A | 0.4723 | 0.6208 | 0.5610 | 0.055* | |
H10B | 0.3969 | 0.6966 | 0.5414 | 0.055* | |
N11 | 0.20831 (18) | 0.62338 (7) | 0.52662 (14) | 0.0314 (3) | |
C12 | 0.1228 (2) | 0.59805 (8) | 0.41189 (16) | 0.0278 (3) | |
N13 | −0.02640 (17) | 0.56113 (7) | 0.38209 (14) | 0.0324 (3) | |
N14 | −0.15702 (18) | 0.57746 (7) | 0.44638 (14) | 0.0330 (3) | |
O15 | −0.28030 (16) | 0.53623 (7) | 0.43068 (15) | 0.0490 (4) | |
O16 | −0.15984 (16) | 0.63170 (7) | 0.51017 (13) | 0.0454 (3) | |
C17 | 0.1705 (2) | 0.61047 (9) | 0.65820 (16) | 0.0331 (4) | |
H17A | 0.2751 | 0.5946 | 0.7165 | 0.040* | |
H17B | 0.0836 | 0.5743 | 0.6531 | 0.040* | |
C18 | 0.1042 (2) | 0.67502 (9) | 0.71615 (17) | 0.0347 (4) | |
O19 | 0.13493 (19) | 0.73282 (7) | 0.68446 (14) | 0.0505 (4) | |
O20 | 0.01369 (17) | 0.65861 (6) | 0.81063 (12) | 0.0414 (3) | |
C21 | −0.0639 (3) | 0.71622 (11) | 0.8720 (2) | 0.0502 (5) | |
H21A | 0.0215 | 0.7527 | 0.8939 | 0.060* | |
H21B | −0.0980 | 0.7007 | 0.9541 | 0.060* | |
C22 | −0.2189 (3) | 0.74367 (13) | 0.7804 (3) | 0.0658 (7) | |
H22A | −0.1828 | 0.7651 | 0.7049 | 0.099* | |
H22B | −0.2765 | 0.7772 | 0.8266 | 0.099* | |
H22C | −0.2975 | 0.7064 | 0.7505 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0666 (4) | 0.0457 (3) | 0.0760 (4) | 0.0005 (3) | 0.0250 (3) | −0.0183 (3) |
N1 | 0.0488 (10) | 0.0409 (9) | 0.0396 (9) | 0.0051 (7) | 0.0028 (7) | −0.0019 (7) |
C2 | 0.0482 (11) | 0.0440 (11) | 0.0273 (9) | 0.0050 (9) | 0.0036 (8) | −0.0007 (8) |
C3 | 0.0283 (9) | 0.0374 (10) | 0.0288 (9) | −0.0033 (7) | 0.0048 (7) | 0.0013 (7) |
C4 | 0.0338 (10) | 0.0483 (11) | 0.0296 (9) | −0.0034 (8) | 0.0025 (7) | 0.0026 (8) |
C5 | 0.0402 (10) | 0.0523 (12) | 0.0296 (9) | −0.0105 (9) | 0.0071 (8) | −0.0089 (8) |
C6 | 0.0335 (9) | 0.0387 (10) | 0.0447 (11) | −0.0064 (8) | 0.0089 (8) | −0.0093 (8) |
C7 | 0.0343 (9) | 0.0445 (10) | 0.0296 (9) | 0.0042 (8) | 0.0056 (7) | 0.0040 (8) |
N8 | 0.0303 (7) | 0.0393 (8) | 0.0320 (8) | −0.0024 (6) | 0.0065 (6) | −0.0023 (6) |
C9 | 0.0274 (9) | 0.0414 (10) | 0.0443 (10) | −0.0021 (8) | 0.0063 (8) | 0.0026 (8) |
C10 | 0.0345 (10) | 0.0563 (13) | 0.0459 (11) | −0.0121 (9) | 0.0043 (8) | −0.0037 (9) |
N11 | 0.0316 (7) | 0.0311 (8) | 0.0309 (7) | −0.0033 (6) | 0.0042 (6) | −0.0024 (6) |
C12 | 0.0297 (9) | 0.0224 (8) | 0.0310 (9) | 0.0045 (6) | 0.0048 (7) | 0.0003 (6) |
N13 | 0.0293 (7) | 0.0340 (8) | 0.0346 (8) | −0.0030 (6) | 0.0074 (6) | −0.0059 (6) |
N14 | 0.0296 (8) | 0.0326 (8) | 0.0355 (8) | 0.0027 (6) | 0.0026 (6) | 0.0025 (6) |
O15 | 0.0304 (7) | 0.0429 (8) | 0.0743 (10) | −0.0071 (6) | 0.0114 (6) | −0.0031 (7) |
O16 | 0.0414 (7) | 0.0428 (8) | 0.0529 (8) | 0.0053 (6) | 0.0104 (6) | −0.0131 (6) |
C17 | 0.0380 (10) | 0.0303 (9) | 0.0293 (9) | 0.0014 (7) | 0.0014 (7) | 0.0010 (7) |
C18 | 0.0392 (10) | 0.0339 (10) | 0.0282 (9) | −0.0018 (8) | −0.0013 (7) | −0.0026 (7) |
O19 | 0.0711 (10) | 0.0294 (7) | 0.0525 (8) | −0.0076 (7) | 0.0151 (7) | −0.0041 (6) |
O20 | 0.0550 (8) | 0.0366 (7) | 0.0345 (7) | 0.0050 (6) | 0.0127 (6) | −0.0010 (5) |
C21 | 0.0605 (13) | 0.0481 (12) | 0.0431 (11) | 0.0052 (10) | 0.0125 (10) | −0.0134 (9) |
C22 | 0.0676 (15) | 0.0568 (15) | 0.0716 (16) | 0.0174 (12) | 0.0091 (12) | −0.0097 (12) |
Cl1—C6 | 1.7510 (19) | C10—H10A | 0.9700 |
N1—C6 | 1.313 (2) | C10—H10B | 0.9700 |
N1—C2 | 1.345 (2) | N11—C12 | 1.332 (2) |
C2—C3 | 1.380 (2) | N11—C17 | 1.446 (2) |
C2—H2 | 0.9300 | C12—N13 | 1.354 (2) |
C3—C4 | 1.388 (2) | N13—N14 | 1.3458 (19) |
C3—C7 | 1.512 (2) | N14—O16 | 1.2367 (19) |
C4—C5 | 1.377 (3) | N14—O15 | 1.2388 (18) |
C4—H4 | 0.9300 | C17—C18 | 1.512 (2) |
C5—C6 | 1.376 (3) | C17—H17A | 0.9700 |
C5—H5 | 0.9300 | C17—H17B | 0.9700 |
C7—N8 | 1.448 (2) | C18—O19 | 1.200 (2) |
C7—H7A | 0.9700 | C18—O20 | 1.332 (2) |
C7—H7B | 0.9700 | O20—C21 | 1.462 (2) |
N8—C12 | 1.335 (2) | C21—C22 | 1.488 (3) |
N8—C9 | 1.459 (2) | C21—H21A | 0.9700 |
C9—C10 | 1.517 (3) | C21—H21B | 0.9700 |
C9—H9A | 0.9700 | C22—H22A | 0.9600 |
C9—H9B | 0.9700 | C22—H22B | 0.9600 |
C10—N11 | 1.469 (2) | C22—H22C | 0.9600 |
C6—N1—C2 | 116.47 (16) | C9—C10—H10B | 111.1 |
N1—C2—C3 | 123.83 (16) | H10A—C10—H10B | 109.0 |
N1—C2—H2 | 118.1 | C12—N11—C17 | 126.65 (14) |
C3—C2—H2 | 118.1 | C12—N11—C10 | 110.86 (14) |
C2—C3—C4 | 117.05 (16) | C17—N11—C10 | 120.06 (14) |
C2—C3—C7 | 122.91 (15) | N11—C12—N8 | 110.38 (14) |
C4—C3—C7 | 120.04 (15) | N11—C12—N13 | 131.84 (15) |
C5—C4—C3 | 120.43 (17) | N8—C12—N13 | 117.42 (14) |
C5—C4—H4 | 119.8 | N14—N13—C12 | 117.67 (13) |
C3—C4—H4 | 119.8 | O16—N14—O15 | 121.84 (14) |
C6—C5—C4 | 116.69 (16) | O16—N14—N13 | 122.81 (14) |
C6—C5—H5 | 121.7 | O15—N14—N13 | 115.21 (14) |
C4—C5—H5 | 121.7 | N11—C17—C18 | 111.17 (14) |
N1—C6—C5 | 125.52 (17) | N11—C17—H17A | 109.4 |
N1—C6—Cl1 | 115.38 (15) | C18—C17—H17A | 109.4 |
C5—C6—Cl1 | 119.10 (14) | N11—C17—H17B | 109.4 |
N8—C7—C3 | 113.43 (14) | C18—C17—H17B | 109.4 |
N8—C7—H7A | 108.9 | H17A—C17—H17B | 108.0 |
C3—C7—H7A | 108.9 | O19—C18—O20 | 125.08 (17) |
N8—C7—H7B | 108.9 | O19—C18—C17 | 124.43 (17) |
C3—C7—H7B | 108.9 | O20—C18—C17 | 110.43 (15) |
H7A—C7—H7B | 107.7 | C18—O20—C21 | 116.27 (15) |
C12—N8—C7 | 125.22 (14) | O20—C21—C22 | 110.91 (16) |
C12—N8—C9 | 111.84 (14) | O20—C21—H21A | 109.5 |
C7—N8—C9 | 122.24 (14) | C22—C21—H21A | 109.5 |
N8—C9—C10 | 102.70 (14) | O20—C21—H21B | 109.5 |
N8—C9—H9A | 111.2 | C22—C21—H21B | 109.5 |
C10—C9—H9A | 111.2 | H21A—C21—H21B | 108.0 |
N8—C9—H9B | 111.2 | C21—C22—H22A | 109.5 |
C10—C9—H9B | 111.2 | C21—C22—H22B | 109.5 |
H9A—C9—H9B | 109.1 | H22A—C22—H22B | 109.5 |
N11—C10—C9 | 103.54 (14) | C21—C22—H22C | 109.5 |
N11—C10—H10A | 111.1 | H22A—C22—H22C | 109.5 |
C9—C10—H10A | 111.1 | H22B—C22—H22C | 109.5 |
N11—C10—H10B | 111.1 | ||
C6—N1—C2—C3 | −0.3 (3) | C17—N11—C12—N8 | −165.04 (15) |
N1—C2—C3—C4 | 0.9 (3) | C10—N11—C12—N8 | −2.9 (2) |
N1—C2—C3—C7 | −179.01 (17) | C17—N11—C12—N13 | 7.7 (3) |
C2—C3—C4—C5 | −0.9 (3) | C10—N11—C12—N13 | 169.83 (18) |
C7—C3—C4—C5 | 179.07 (16) | C7—N8—C12—N11 | −173.32 (15) |
C3—C4—C5—C6 | 0.3 (3) | C9—N8—C12—N11 | −2.8 (2) |
C2—N1—C6—C5 | −0.4 (3) | C7—N8—C12—N13 | 12.8 (2) |
C2—N1—C6—Cl1 | 178.84 (13) | C9—N8—C12—N13 | −176.68 (14) |
C4—C5—C6—N1 | 0.5 (3) | N11—C12—N13—N14 | 38.2 (3) |
C4—C5—C6—Cl1 | −178.79 (13) | N8—C12—N13—N14 | −149.51 (15) |
C2—C3—C7—N8 | 13.8 (2) | C12—N13—N14—O16 | 14.3 (2) |
C4—C3—C7—N8 | −166.19 (15) | C12—N13—N14—O15 | −169.90 (15) |
C3—C7—N8—C12 | −107.54 (18) | C12—N11—C17—C18 | −111.85 (18) |
C3—C7—N8—C9 | 82.8 (2) | C10—N11—C17—C18 | 87.50 (19) |
C12—N8—C9—C10 | 6.9 (2) | N11—C17—C18—O19 | −24.7 (2) |
C7—N8—C9—C10 | 177.74 (16) | N11—C17—C18—O20 | 157.88 (14) |
N8—C9—C10—N11 | −7.84 (19) | O19—C18—O20—C21 | 4.8 (3) |
C9—C10—N11—C12 | 7.0 (2) | C17—C18—O20—C21 | −177.77 (14) |
C9—C10—N11—C17 | 170.43 (15) | C18—O20—C21—C22 | 74.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O15i | 0.97 | 2.50 | 3.358 (2) | 147 |
C17—H17A···N1ii | 0.97 | 2.57 | 3.509 (2) | 163 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C13H16ClN5O4 |
Mr | 341.76 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.8136 (2), 19.3483 (4), 10.1926 (2) |
β (°) | 100.346 (2) |
V (Å3) | 1515.86 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.3 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 |
Absorption correction | Multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.868, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 47458, 2983, 2387 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.090, 1.02 |
No. of reflections | 2983 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.29 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O15i | 0.97 | 2.50 | 3.358 (2) | 147 |
C17—H17A···N1ii | 0.97 | 2.57 | 3.509 (2) | 163 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the UGC for research funding under research project F·No. 37–415/2009 (J&K) (SR).
References
Deshmukh, M. B., Patil, P. & Shripanavar, C. S. (2011). Arch. Appl. Sci. Res. 3, 218–221. CAS Google Scholar
Deshmukh, M. B., Patil, S. H. & Shripanavar, C. S. (2012). J. Chem. Pharm. Res. 4, 326–332 CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kant, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, o147. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kapoor, K., Gupta, V. K., Deshmukh, M. B., Shripanavar, C. S. & Kant, R. (2012). Acta Cryst. E68, o469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Structure Analysis Online, 27, 55–56. CSD CrossRef CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, Y., Wang, G., Li, Y.-Q., Wang, S.-H. & Li, Z.-M. (2010). Chem. Res. Chin. Univ. 26, 380–383. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The discovery of imidacloprid has been referred to as a milestone in the past three decades of insecticidal research. The nitroguanidine moiety of imidacloprid is also a common site for metabolism via cleavage to the guanidine and reduction to di-nitro-imidacloprid. The insecticidal activity of nitroguanidine was found to be 10,000 fold higher than that of natural insecticide nicotine (Deshmukh et al., 2012). In mammalian systems the nitro group of imidacloprid has been postulated to be reduced to nitrosoguanidine and aminoguanidine and then cleaved to the guanidine and urea derivatives (Deshmukh et al., 2011). Therefore, in a search for new neonicotinoid insecticides with improved profiles, neonicotinoid derivatives containing N-oxalyl groups were designed and synthesized (Zhao et al., 2010).
The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are comparable to those common to related structures (Kapoor et al., 2011,2012; Kant et al., 2012). The imidazole ring is in a slight envelope conformation with atom C9 forming the flap. The dihedral angle between the pyridine ring [N1/C2-C6] and the four essentially planar atoms [N8/N11/C10/C12 (maximum deviation 0.015 (2)Å for C12)] of the imidazole ring is 80.8 (1)°. In the crystal, molecules are connected by pairs of weak C—H···O hydrogen bonds into centrosymmetric dimers, which are in turn, linked into columns along [100] by weak C—H···N hydrogen bonds (Fig .2). In addition, there is a weak π···π interaction between the pyridine ring at (x, y, z) and the pyridine ring at (1 - x, 1 - y, - z) [centroid separation = 3.807 (1) Å, interplanar spacing = 3.368 Å and centroid shift = 1.77 Å].