organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-1H-benzotriazole

aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamilnadu, India, bDepartment of Physics, Sethupathy Govt. Arts College, Ramanathapuram 623 502, Tamilnadu, India, and cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 24 February 2012; accepted 13 March 2012; online 21 March 2012)

In the title compound, C13H11N3, the benzotriazole ring system is essentially planar, with a maximum deviation of 0.0173 (18) Å, and forms a dihedral angle of 75.08 (8)Å with the phenyl ring. In the crystal, pairs of weak C—H⋯N hydrogen bonds form inversion dimers. In addition, there are weak C—H⋯π(arene) inter­actions and weak ππ stacking inter­actions, with a centroid–centroid distance of 3.673 (11) Å.

Related literature

For the biological activity of benzotriazole derivatives, see: Katarzyna et al. (2005[Katarzyna, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2005). Bioorg. Med. Chem. 13, 3601-3616.]); Sarala et al. (2007[Sarala, G., Swamy, S. N., Prabhuswamy, B., Andalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2007). Anal. Sci. 23, 25-26.]). For their applications, see: Kopec et al. (2008[Kopec, E. A., Zwolska, Z. & Kazimierczuk, A. O. Z. (2008). Acta Pol. Pharm. Drug Res. 65, 435-439.]); Krawczyk & Gdaniec (2005[Krawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o2967-o2969.]); Smith et al. (2001[Smith, G., Bottle, S. E., Reid, D. A., Schweinsberg, D. P. & Bott, R. C. (2001). Acta Cryst. E57, o531-o532.]); Sha et al. (1996[Sha, G., Wang, W. & Ren, T. (1996). Mocha Xuebao, 16, 344-350.]). For a related structure, see: Ravindran et al. (2009[Ravindran Durai Nayagam, B., Jebas, S. R., Edward Rajkumar, J. P. & Schollmeyer, D. (2009). Acta Cryst. E65, o917.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3

  • Mr = 209.25

  • Monoclinic, P 21 /c

  • a = 11.5734 (10) Å

  • b = 5.9705 (4) Å

  • c = 16.1202 (14) Å

  • β = 106.490 (4)°

  • V = 1068.07 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 193 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]; Wiehl & Schollmeyer, 1994[Wiehl, L. & Schollmeyer, D. (1994). CORINC. University of Mainz, Germany.]) Tmin = 0.832, Tmax = 0.939

  • 2125 measured reflections

  • 2020 independent reflections

  • 1788 reflections with I > 2σ(I)

  • Rint = 0.108

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.138

  • S = 1.12

  • 2020 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N1i 0.95 2.62 3.513 (3) 158
C14—H14⋯Cgii 0.95 2.69 3.583 (2) 157
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]; Wiehl & Schollmeyer, 1994[Wiehl, L. & Schollmeyer, D. (1994). CORINC. University of Mainz, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzotriazole derivatives show biological activities such as anti-inflammatory, diuretic, antiviral and are antihypertensive agents (Katarzyna et al., 2005; Sarala et al., 2007). They are used as corrosion inhibitors, antifreeze agents, ultraviolet light stabilizer for plastics and as antifoggants in photography (Krawczyk & Gdaniec, 2005; Smith et al., 2001). N-Aryloxy derivatives of benzotriazole have anti-mycobacterial activity (Kopec et al., 2008). Benzotriazole possessing three vicinal N atoms, is used as an antifouling and antiwear reagent (Sha et al., 1996). These applications of benzotriazole compounds prompted us to synthesize the title compound and herein we report the crystal structure.

In (I) (Fig 1), the bond lengths (Allen et al., 1987) and bond angles have normal values. The benzotriazole ring system is essentially planar with a maximum deviation of 0.0173 (18) Å for atom N3. The mean plane of the benzotriazole ring system (N1—N3/C4—C9) forms a dihedral angle of 75.08 (8) Å with the mean plane of the phenyl ring (C11—C16).

In the crystal, pairs of weak C—H···N hydrogen bonds form centrosymmetric dimers (Fig. 2). In addition, there are weak ππ stacking interactions between ring N1-N3/C4/C9 and ring C4—C9(1-x, 1-y, 1-z) with a centroid-centroid distance of 3.673 (11)Å.

Related literature top

For the biological activity of benzotriazole derivatives, see: Katarzyna et al. (2005); Sarala et al. (2007). For their applications, see: Kopec et al. (2008); Krawczyk & Gdaniec (2005); Smith et al. (2001); Sha et al. (1996). For a related structure, see: Ravindran et al. (2009). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of the sodium salt of benzotriazole (0.148 g, 1 mmol) benzyl chloride (0.126 g, 1 mmol) in ethanol and water (5 ml) were heated at 333K with continous stirring for 4 h. The mixture was kept aside for slow evaporation. After two weeks crystals of (I) suitable for X-ray diffraction were formed.

Refinement top

H atoms were positioned geometrically [C—H = 0.95 (aromatic) or 0.99 Å (methylene)] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Benzotriazole derivatives show biological activities such as anti-inflammatory, diuretic, antiviral and are antihypertensive agents (Katarzyna et al., 2005; Sarala et al., 2007). They are used as corrosion inhibitors, antifreeze agents, ultraviolet light stabilizer for plastics and as antifoggants in photography (Krawczyk & Gdaniec, 2005; Smith et al., 2001). N-Aryloxy derivatives of benzotriazole have anti-mycobacterial activity (Kopec et al., 2008). Benzotriazole possessing three vicinal N atoms, is used as an antifouling and antiwear reagent (Sha et al., 1996). These applications of benzotriazole compounds prompted us to synthesize the title compound and herein we report the crystal structure.

In (I) (Fig 1), the bond lengths (Allen et al., 1987) and bond angles have normal values. The benzotriazole ring system is essentially planar with a maximum deviation of 0.0173 (18) Å for atom N3. The mean plane of the benzotriazole ring system (N1—N3/C4—C9) forms a dihedral angle of 75.08 (8) Å with the mean plane of the phenyl ring (C11—C16).

In the crystal, pairs of weak C—H···N hydrogen bonds form centrosymmetric dimers (Fig. 2). In addition, there are weak ππ stacking interactions between ring N1-N3/C4/C9 and ring C4—C9(1-x, 1-y, 1-z) with a centroid-centroid distance of 3.673 (11)Å.

For the biological activity of benzotriazole derivatives, see: Katarzyna et al. (2005); Sarala et al. (2007). For their applications, see: Kopec et al. (2008); Krawczyk & Gdaniec (2005); Smith et al. (2001); Sha et al. (1996). For a related structure, see: Ravindran et al. (2009). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971; Wiehl & Schollmeyer, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
1-Benzyl-1H-benzotriazole top
Crystal data top
C13H11N3F(000) = 440
Mr = 209.25Dx = 1.301 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.5734 (10) Åθ = 55–68°
b = 5.9705 (4) ŵ = 0.64 mm1
c = 16.1202 (14) ÅT = 193 K
β = 106.490 (4)°Block, colourless
V = 1068.07 (15) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1788 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.108
Graphite monochromatorθmax = 70.0°, θmin = 4.0°
ω/2θ scansh = 014
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971; Wiehl & Schollmeyer, 1994)
k = 07
Tmin = 0.832, Tmax = 0.939l = 1918
2125 measured reflections3 standard reflections every 60 min
2020 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.3976P]
where P = (Fo2 + 2Fc2)/3
2020 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H11N3V = 1068.07 (15) Å3
Mr = 209.25Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.5734 (10) ŵ = 0.64 mm1
b = 5.9705 (4) ÅT = 193 K
c = 16.1202 (14) Å0.30 × 0.20 × 0.10 mm
β = 106.490 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1788 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971; Wiehl & Schollmeyer, 1994)
Rint = 0.108
Tmin = 0.832, Tmax = 0.9393 standard reflections every 60 min
2125 measured reflections intensity decay: 2%
2020 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.12Δρmax = 0.30 e Å3
2020 reflectionsΔρmin = 0.30 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.42315 (15)0.1763 (3)0.37392 (11)0.0331 (4)
N20.40768 (14)0.2958 (3)0.30376 (10)0.0312 (4)
N30.35886 (13)0.4957 (3)0.31508 (10)0.0255 (4)
C40.34149 (14)0.5049 (3)0.39488 (11)0.0232 (4)
C50.29338 (17)0.6694 (3)0.43720 (12)0.0291 (4)
H50.26380.80790.41050.035*
C60.29158 (18)0.6177 (4)0.52002 (13)0.0345 (5)
H60.25880.72310.55130.041*
C70.33691 (17)0.4130 (4)0.55981 (12)0.0332 (5)
H70.33490.38580.61740.040*
C80.38387 (17)0.2517 (4)0.51801 (13)0.0324 (5)
H80.41470.11450.54530.039*
C90.38385 (15)0.3007 (3)0.43252 (12)0.0256 (4)
C100.33293 (16)0.6650 (3)0.24689 (12)0.0300 (4)
H10A0.37450.62440.20310.036*
H10B0.36480.81140.27210.036*
C110.19948 (16)0.6862 (3)0.20336 (11)0.0254 (4)
C120.13833 (19)0.8816 (3)0.21182 (13)0.0343 (5)
H120.18041.00150.24610.041*
C130.0167 (2)0.9019 (4)0.17048 (15)0.0425 (5)
H130.02461.03540.17690.051*
C140.04510 (19)0.7302 (4)0.12006 (15)0.0434 (6)
H140.12850.74590.09120.052*
C150.01477 (19)0.5340 (4)0.11147 (13)0.0376 (5)
H150.02760.41480.07690.045*
C160.13627 (17)0.5127 (3)0.15333 (12)0.0310 (4)
H160.17690.37780.14780.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0330 (9)0.0294 (9)0.0363 (9)0.0057 (7)0.0088 (7)0.0014 (7)
N20.0301 (8)0.0319 (9)0.0331 (9)0.0056 (7)0.0113 (7)0.0050 (7)
N30.0241 (7)0.0282 (8)0.0260 (8)0.0022 (6)0.0099 (6)0.0012 (6)
C40.0192 (8)0.0264 (9)0.0247 (9)0.0029 (7)0.0072 (6)0.0010 (7)
C50.0314 (9)0.0262 (10)0.0323 (10)0.0010 (8)0.0133 (8)0.0016 (8)
C60.0370 (10)0.0374 (11)0.0331 (10)0.0026 (9)0.0164 (8)0.0062 (9)
C70.0329 (10)0.0446 (12)0.0232 (9)0.0092 (9)0.0097 (7)0.0026 (8)
C80.0303 (9)0.0327 (11)0.0322 (10)0.0045 (8)0.0059 (8)0.0069 (8)
C90.0213 (8)0.0250 (9)0.0294 (9)0.0012 (7)0.0055 (7)0.0002 (7)
C100.0289 (9)0.0354 (11)0.0288 (9)0.0016 (8)0.0130 (8)0.0051 (8)
C110.0285 (9)0.0303 (10)0.0212 (8)0.0005 (7)0.0129 (7)0.0064 (7)
C120.0410 (11)0.0291 (10)0.0356 (11)0.0025 (9)0.0155 (9)0.0016 (9)
C130.0417 (12)0.0384 (12)0.0501 (13)0.0146 (10)0.0174 (10)0.0082 (10)
C140.0303 (10)0.0581 (15)0.0403 (12)0.0073 (10)0.0074 (9)0.0125 (11)
C150.0372 (11)0.0433 (12)0.0319 (10)0.0057 (9)0.0090 (8)0.0009 (9)
C160.0345 (10)0.0298 (10)0.0315 (10)0.0027 (8)0.0137 (8)0.0010 (8)
Geometric parameters (Å, º) top
N1—N21.306 (2)C10—C111.509 (2)
N1—C91.376 (2)C10—H10A0.9900
N2—N31.354 (2)C10—H10B0.9900
N3—C41.358 (2)C11—C161.387 (3)
N3—C101.460 (2)C11—C121.391 (3)
C4—C91.388 (3)C12—C131.382 (3)
C4—C51.399 (3)C12—H120.9500
C5—C61.376 (3)C13—C141.376 (3)
C5—H50.9500C13—H130.9500
C6—C71.411 (3)C14—C151.388 (3)
C6—H60.9500C14—H140.9500
C7—C81.373 (3)C15—C161.382 (3)
C7—H70.9500C15—H150.9500
C8—C91.409 (3)C16—H160.9500
C8—H80.9500
N2—N1—C9108.00 (16)N3—C10—H10A109.2
N1—N2—N3108.93 (15)C11—C10—H10A109.2
N2—N3—C4110.05 (15)N3—C10—H10B109.2
N2—N3—C10120.85 (15)C11—C10—H10B109.2
C4—N3—C10129.11 (15)H10A—C10—H10B107.9
N3—C4—C9104.45 (16)C16—C11—C12118.97 (18)
N3—C4—C5132.60 (17)C16—C11—C10120.57 (17)
C9—C4—C5122.94 (17)C12—C11—C10120.46 (18)
C6—C5—C4115.70 (18)C13—C12—C11120.2 (2)
C6—C5—H5122.2C13—C12—H12119.9
C4—C5—H5122.2C11—C12—H12119.9
C5—C6—C7121.96 (19)C14—C13—C12120.5 (2)
C5—C6—H6119.0C14—C13—H13119.8
C7—C6—H6119.0C12—C13—H13119.8
C8—C7—C6122.18 (18)C13—C14—C15119.8 (2)
C8—C7—H7118.9C13—C14—H14120.1
C6—C7—H7118.9C15—C14—H14120.1
C7—C8—C9116.38 (18)C16—C15—C14119.8 (2)
C7—C8—H8121.8C16—C15—H15120.1
C9—C8—H8121.8C14—C15—H15120.1
N1—C9—C4108.56 (16)C15—C16—C11120.71 (19)
N1—C9—C8130.63 (18)C15—C16—H16119.6
C4—C9—C8120.80 (18)C11—C16—H16119.6
N3—C10—C11111.88 (15)
C9—N1—N2—N30.1 (2)N3—C4—C9—C8177.98 (16)
N1—N2—N3—C40.4 (2)C5—C4—C9—C82.1 (3)
N1—N2—N3—C10179.31 (15)C7—C8—C9—N1179.62 (19)
N2—N3—C4—C90.78 (18)C7—C8—C9—C41.9 (3)
C10—N3—C4—C9178.94 (17)N2—N3—C10—C11106.88 (18)
N2—N3—C4—C5179.12 (18)C4—N3—C10—C1173.4 (2)
C10—N3—C4—C51.2 (3)N3—C10—C11—C1667.4 (2)
N3—C4—C5—C6179.41 (18)N3—C10—C11—C12113.53 (19)
C9—C4—C5—C60.7 (3)C16—C11—C12—C130.3 (3)
C4—C5—C6—C70.8 (3)C10—C11—C12—C13178.74 (17)
C5—C6—C7—C81.0 (3)C11—C12—C13—C140.5 (3)
C6—C7—C8—C90.4 (3)C12—C13—C14—C150.8 (3)
N2—N1—C9—C40.6 (2)C13—C14—C15—C160.3 (3)
N2—N1—C9—C8178.05 (18)C14—C15—C16—C110.5 (3)
N3—C4—C9—N10.84 (19)C12—C11—C16—C150.9 (3)
C5—C4—C9—N1179.07 (17)C10—C11—C16—C15178.22 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.952.623.513 (3)158
C14—H14···Cgii0.952.693.583 (2)157
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H11N3
Mr209.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)11.5734 (10), 5.9705 (4), 16.1202 (14)
β (°) 106.490 (4)
V3)1068.07 (15)
Z4
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(CORINC; Dräger & Gattow, 1971; Wiehl & Schollmeyer, 1994)
Tmin, Tmax0.832, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
2125, 2020, 1788
Rint0.108
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.138, 1.12
No. of reflections2020
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971; Wiehl & Schollmeyer, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.952.623.513 (3)158
C14—H14···Cgii0.952.693.583 (2)157
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKatarzyna, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2005). Bioorg. Med. Chem. 13, 3601–3616.  Google Scholar
First citationKopec, E. A., Zwolska, Z. & Kazimierczuk, A. O. Z. (2008). Acta Pol. Pharm. Drug Res. 65, 435–439.  Google Scholar
First citationKrawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o2967–o2969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavindran Durai Nayagam, B., Jebas, S. R., Edward Rajkumar, J. P. & Schollmeyer, D. (2009). Acta Cryst. E65, o917.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSarala, G., Swamy, S. N., Prabhuswamy, B., Andalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2007). Anal. Sci. 23, 25–26.  Web of Science PubMed Google Scholar
First citationSha, G., Wang, W. & Ren, T. (1996). Mocha Xuebao, 16, 344–350.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Bottle, S. E., Reid, D. A., Schweinsberg, D. P. & Bott, R. C. (2001). Acta Cryst. E57, o531–o532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiehl, L. & Schollmeyer, D. (1994). CORINC. University of Mainz, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds