organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{2-Hy­dr­oxy-6-[3-(pyrrol-1-yl)prop­­oxy]phen­yl}ethanone

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 1 March 2012; accepted 10 March 2012; online 17 March 2012)

In the title compound, C15H17NO3, the mean planes of the pyrrole and benzene rings form a dihedral angle of 81.92 (7)°. The mol­ecule contains an intra­molecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯π inter­actions link the mol­ecules into chains along [010].

Related literature

For the synthesis and applications of similar compounds and their derivatives, see: Wu & Lu (2003[Wu, S. & Lu, S. (2003). J. Mol. Catal. A, 198, 29-38.]); Saraswat et al. (2006[Saraswat, K., Prasad, R. N., Ratnani, R., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2006). Inorg. Chim. Acta, 359, 1291-1295.]); Smith et al. (2003[Smith, G. A., Tasker, P. A. & White, D. J. (2003). Coord. Chem. Rev. 241, 61-85.]); Dong et al. (2010[Dong, W. K., Sun, Y. X., Zhao, C. Y., Dong, X. Y. & Xu, L. (2010). Polyhedron, 29, 2087-2097.]); Deronzier & Moutet (1996[Deronzier, A. & Moutet, J. C. (1996). Coord. Chem. Rev. 147, 339-371.]); MacDearmid (2001[MacDearmid, A. G. (2001). Rev. Mod. Phys. 73, 701-712.]); Srinivasan et al. (1986[Srinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309-2320.]); Coche-Guerente et al. (1995[Coche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1995). Anal. Chim. Acta, 311, 23-30.]); Ourari et al. (2008[Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). J. Electrochem. Commun. 10, 1736-1739.]); Khedkar & Radhakrishnan (1997[Khedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167-172.]); Huo et al. (1999[Huo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999). Thin Solid Films, 350, 5-9.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO3

  • Mr = 259.3

  • Triclinic, [P \overline 1]

  • a = 7.741 (2) Å

  • b = 9.230 (1) Å

  • c = 10.464 (1) Å

  • α = 71.63 (2)°

  • β = 75.222 (1)°

  • γ = 82.081 (1)°

  • V = 684.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.15 × 0.08 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4238 measured reflections

  • 2586 independent reflections

  • 1995 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.128

  • S = 1.05

  • 2586 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is is the centroid of the N1/C12–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.98 (2) 1.578 (19) 2.498 (2) 153.4 (18)
C5—H5⋯Cgi 0.93 2.90 3.641 (2) 138
C11—H11BCgii 0.97 2.74 3.3973 (19) 125
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis of new derivatives containing both a pyrrole ring and salicyaldehyde moiety is of a great interest since they are currently used as precursors for chelating agents especially those of Schiff bases (Wu et al., 2003; Saraswat et al., 2006) and oximes (Smith et al., 2003; Dong et al., 2010). These compounds may also be involved in the elaboration of modified electrodes by anodic (Deronzier & Moutet, 1996) or by chemical oxidation (MacDearmid et al., 2001). These types of materials can be applied in catalysis, electrocatalysis and sensors (Srinivasan et al., 1986; Coche-Guerente et al., 1995; Ourari et al., 2008). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of a functionalized conducting π-conjugated polymers such as as those of polypyrrole and polyaniline (Khedkar et al., 1997; Huo et al., 1999).

We report herein the crystal structure of the title compound. The molecular structure is shown in Fig. 1. The mean planes of the pyrrole and benzene rings form a dihedral angle of 81.92 (7)°. There is an intramolecular O—H···O hydrogen bond present. In the crystal, there are weak C—H···π interactions (Table 1) which form chains of dimers along [010] (Fig. 2).

Related literature top

For the synthesis and applications of similar compounds and their derivatives, see: Wu & Lu (2003); Saraswat et al. (2006); Smith et al. (2003); Dong et al. (2010); Deronzier & Moutet (1996); MacDearmid (2001); Srinivasan et al. (1986); Coche-Guerente et al. (1995); Ourari et al. (2008); Khedkar & Radhakrishnan (1997); Huo et al. (1999).

Experimental top

A solution of 152 mg (1 mmol) of 2,6-dihydroxyacetophenone was added to a solution containing 187 mg (1 mmol) of 1-bromopropyl-3-N-pyrrol and 181 mg (1.7 mmol) of potassium carbonate under argon atmosphere. The mixture was refluxed for 45 h and was allowed to stand at room temperature. After extraction by dichloromethane and purification by chromatography on silica gel using dichloromethane as eluent. Thus, 153 mg of pure compound (I) was recovered, corresponding to the yield of 59%. The suitable single crystals were then obtained from dichloromethane solution by slow evaporation.

Refinement top

H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C) with C—H = 0.96 Å (methyl), 0.97 Å (methylene) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic and Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl). Atom H3 was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq (O)

Structure description top

The synthesis of new derivatives containing both a pyrrole ring and salicyaldehyde moiety is of a great interest since they are currently used as precursors for chelating agents especially those of Schiff bases (Wu et al., 2003; Saraswat et al., 2006) and oximes (Smith et al., 2003; Dong et al., 2010). These compounds may also be involved in the elaboration of modified electrodes by anodic (Deronzier & Moutet, 1996) or by chemical oxidation (MacDearmid et al., 2001). These types of materials can be applied in catalysis, electrocatalysis and sensors (Srinivasan et al., 1986; Coche-Guerente et al., 1995; Ourari et al., 2008). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of a functionalized conducting π-conjugated polymers such as as those of polypyrrole and polyaniline (Khedkar et al., 1997; Huo et al., 1999).

We report herein the crystal structure of the title compound. The molecular structure is shown in Fig. 1. The mean planes of the pyrrole and benzene rings form a dihedral angle of 81.92 (7)°. There is an intramolecular O—H···O hydrogen bond present. In the crystal, there are weak C—H···π interactions (Table 1) which form chains of dimers along [010] (Fig. 2).

For the synthesis and applications of similar compounds and their derivatives, see: Wu & Lu (2003); Saraswat et al. (2006); Smith et al. (2003); Dong et al. (2010); Deronzier & Moutet (1996); MacDearmid (2001); Srinivasan et al. (1986); Coche-Guerente et al. (1995); Ourari et al. (2008); Khedkar & Radhakrishnan (1997); Huo et al. (1999).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing showing weak C—H···π interactions involving the centroid (in pink) of the pyrrole ring as dashed lines.
1-{2-Hydroxy-6-[3-(pyrrol-1-yl)propoxy]phenyl}ethanone top
Crystal data top
C15H17NO3Z = 2
Mr = 259.3F(000) = 276
Triclinic, P1Dx = 1.258 Mg m3
a = 7.741 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.230 (1) ÅCell parameters from 2211 reflections
c = 10.464 (1) Åθ = 1.0–26.4°
α = 71.63 (2)°µ = 0.09 mm1
β = 75.222 (1)°T = 295 K
γ = 82.081 (1)°Plate, white
V = 684.7 (2) Å30.15 × 0.08 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
1995 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.020
Graphite monochromatorθmax = 26.4°, θmin = 3.1°
Detector resolution: 9 pixels mm-1h = 88
CCD rotation images, thick slices scansk = 1111
4238 measured reflectionsl = 1113
2586 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.0857P]
where P = (Fo2 + 2Fc2)/3
2586 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H17NO3γ = 82.081 (1)°
Mr = 259.3V = 684.7 (2) Å3
Triclinic, P1Z = 2
a = 7.741 (2) ÅMo Kα radiation
b = 9.230 (1) ŵ = 0.09 mm1
c = 10.464 (1) ÅT = 295 K
α = 71.63 (2)°0.15 × 0.08 × 0.04 mm
β = 75.222 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1995 reflections with I > 2σ(I)
4238 measured reflectionsRint = 0.020
2586 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
2586 reflectionsΔρmin = 0.17 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22766 (19)0.41969 (15)0.52869 (14)0.0461 (3)
C20.13789 (18)0.35148 (15)0.66752 (14)0.0462 (3)
C30.1027 (2)0.19569 (17)0.70372 (16)0.0543 (4)
C40.1559 (2)0.11311 (18)0.60838 (19)0.0641 (4)
H40.13270.01040.63420.077*
C50.2426 (2)0.18421 (18)0.47626 (18)0.0653 (5)
H50.2780.12860.41260.078*
C60.2790 (2)0.33656 (17)0.43500 (16)0.0571 (4)
H60.33780.38280.34450.069*
C70.0815 (2)0.43219 (18)0.77474 (15)0.0523 (4)
C80.1265 (2)0.59134 (19)0.75300 (18)0.0631 (4)
H8A0.06390.66150.68790.095*
H8B0.25310.59990.71770.095*
H8C0.09140.61520.83930.095*
C90.3468 (2)0.64362 (16)0.35422 (14)0.0503 (4)
H9A0.28020.6330.29110.06*
H9B0.46630.59630.33280.06*
C100.3574 (2)0.81022 (16)0.33794 (15)0.0503 (4)
H10A0.42560.82090.40010.06*
H10B0.23810.85720.36080.06*
C110.4473 (2)0.88841 (17)0.19002 (16)0.0605 (4)
H11A0.57190.8510.17360.073*
H11B0.39150.85980.12910.073*
C120.2945 (2)1.14975 (17)0.12267 (16)0.0559 (4)
H120.18381.11930.12520.067*
C130.3403 (2)1.29658 (18)0.08711 (17)0.0612 (4)
H130.26691.38430.06140.073*
C140.5179 (3)1.29123 (19)0.09628 (18)0.0657 (5)
H140.58471.37490.07750.079*
C150.5757 (2)1.14127 (19)0.13775 (17)0.0621 (4)
H150.68921.10450.15240.074*
N10.43895 (17)1.05482 (13)0.15398 (12)0.0517 (3)
O10.25933 (15)0.57023 (11)0.49358 (10)0.0550 (3)
O20.00716 (18)0.36498 (15)0.89029 (12)0.0776 (4)
O30.01756 (18)0.11918 (14)0.83236 (13)0.0736 (4)
H30.005 (3)0.197 (2)0.882 (2)0.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0511 (8)0.0426 (7)0.0465 (8)0.0031 (6)0.0141 (6)0.0132 (6)
C20.0462 (8)0.0477 (8)0.0460 (8)0.0038 (6)0.0141 (6)0.0121 (6)
C30.0558 (9)0.0518 (8)0.0538 (9)0.0111 (6)0.0175 (6)0.0059 (7)
C40.0801 (12)0.0467 (8)0.0701 (11)0.0104 (7)0.0237 (9)0.0155 (8)
C50.0868 (13)0.0530 (9)0.0645 (10)0.0031 (8)0.0200 (9)0.0269 (8)
C60.0730 (11)0.0512 (8)0.0489 (9)0.0053 (7)0.0107 (7)0.0188 (7)
C70.0480 (8)0.0637 (9)0.0467 (8)0.0041 (6)0.0105 (6)0.0180 (7)
C80.0653 (10)0.0705 (11)0.0600 (10)0.0061 (8)0.0056 (7)0.0340 (8)
C90.0562 (9)0.0495 (8)0.0430 (8)0.0050 (6)0.0084 (6)0.0118 (6)
C100.0575 (9)0.0465 (8)0.0455 (8)0.0052 (6)0.0110 (6)0.0111 (6)
C110.0778 (11)0.0459 (8)0.0492 (9)0.0042 (7)0.0038 (7)0.0103 (7)
C120.0514 (9)0.0570 (9)0.0536 (9)0.0068 (7)0.0066 (6)0.0108 (7)
C130.0689 (11)0.0508 (9)0.0560 (9)0.0013 (7)0.0079 (7)0.0105 (7)
C140.0820 (12)0.0549 (9)0.0598 (10)0.0214 (8)0.0160 (8)0.0093 (8)
C150.0612 (10)0.0631 (10)0.0592 (10)0.0127 (7)0.0178 (7)0.0068 (8)
N10.0588 (8)0.0448 (7)0.0453 (7)0.0061 (5)0.0065 (5)0.0076 (5)
O10.0754 (7)0.0439 (6)0.0426 (6)0.0116 (5)0.0041 (5)0.0123 (4)
O20.0910 (9)0.0849 (9)0.0502 (7)0.0214 (7)0.0058 (6)0.0209 (6)
O30.0885 (9)0.0633 (8)0.0604 (8)0.0263 (6)0.0079 (6)0.0040 (6)
Geometric parameters (Å, º) top
C1—O11.3609 (17)C9—H9A0.97
C1—C61.378 (2)C9—H9B0.97
C1—C21.421 (2)C10—C111.512 (2)
C2—C31.413 (2)C10—H10A0.97
C2—C71.480 (2)C10—H10B0.97
C3—O31.3496 (19)C11—N11.4579 (18)
C3—C41.389 (2)C11—H11A0.97
C4—C51.367 (2)C11—H11B0.97
C4—H40.93C12—C131.359 (2)
C5—C61.381 (2)C12—N11.364 (2)
C5—H50.93C12—H120.93
C6—H60.93C13—C141.396 (2)
C7—O21.2406 (18)C13—H130.93
C7—C81.490 (2)C14—C151.362 (2)
C8—H8A0.96C14—H140.93
C8—H8B0.96C15—N11.357 (2)
C8—H8C0.96C15—H150.93
C9—O11.4297 (17)O3—H30.98 (2)
C9—C101.5042 (19)
O1—C1—C6122.13 (13)C10—C9—H9B109.9
O1—C1—C2116.67 (12)H9A—C9—H9B108.3
C6—C1—C2121.19 (13)C9—C10—C11108.84 (12)
C3—C2—C1116.77 (13)C9—C10—H10A109.9
C3—C2—C7118.82 (13)C11—C10—H10A109.9
C1—C2—C7124.41 (13)C9—C10—H10B109.9
O3—C3—C4116.60 (14)C11—C10—H10B109.9
O3—C3—C2121.99 (15)H10A—C10—H10B108.3
C4—C3—C2121.41 (14)N1—C11—C10114.44 (13)
C5—C4—C3119.40 (14)N1—C11—H11A108.7
C5—C4—H4120.3C10—C11—H11A108.7
C3—C4—H4120.3N1—C11—H11B108.7
C4—C5—C6121.59 (15)C10—C11—H11B108.7
C4—C5—H5119.2H11A—C11—H11B107.6
C6—C5—H5119.2C13—C12—N1108.26 (14)
C1—C6—C5119.62 (15)C13—C12—H12125.9
C1—C6—H6120.2N1—C12—H12125.9
C5—C6—H6120.2C12—C13—C14107.29 (15)
O2—C7—C2119.14 (14)C12—C13—H13126.4
O2—C7—C8117.11 (14)C14—C13—H13126.4
C2—C7—C8123.74 (13)C15—C14—C13107.58 (15)
C7—C8—H8A109.5C15—C14—H14126.2
C7—C8—H8B109.5C13—C14—H14126.2
H8A—C8—H8B109.5N1—C15—C14108.19 (15)
C7—C8—H8C109.5N1—C15—H15125.9
H8A—C8—H8C109.5C14—C15—H15125.9
H8B—C8—H8C109.5C15—N1—C12108.68 (13)
O1—C9—C10108.82 (11)C15—N1—C11125.99 (14)
O1—C9—H9A109.9C12—N1—C11125.22 (13)
C10—C9—H9A109.9C1—O1—C9118.35 (11)
O1—C9—H9B109.9C3—O3—H3102.9 (12)
O1—C1—C2—C3179.16 (12)C3—C2—C7—C8173.87 (14)
C6—C1—C2—C30.6 (2)C1—C2—C7—C85.6 (2)
O1—C1—C2—C71.4 (2)O1—C9—C10—C11179.11 (12)
C6—C1—C2—C7178.83 (13)C9—C10—C11—N1170.05 (13)
C1—C2—C3—O3179.70 (13)N1—C12—C13—C140.30 (18)
C7—C2—C3—O30.8 (2)C12—C13—C14—C150.2 (2)
C1—C2—C3—C40.9 (2)C13—C14—C15—N10.10 (19)
C7—C2—C3—C4178.57 (13)C14—C15—N1—C120.08 (18)
O3—C3—C4—C5179.94 (16)C14—C15—N1—C11176.39 (15)
C2—C3—C4—C50.7 (3)C13—C12—N1—C150.24 (18)
C3—C4—C5—C60.1 (3)C13—C12—N1—C11176.59 (14)
O1—C1—C6—C5179.71 (14)C10—C11—N1—C15104.65 (18)
C2—C1—C6—C50.1 (2)C10—C11—N1—C1279.63 (19)
C4—C5—C6—C10.2 (3)C6—C1—O1—C90.8 (2)
C3—C2—C7—O25.5 (2)C2—C1—O1—C9179.01 (12)
C1—C2—C7—O2174.99 (14)C10—C9—O1—C1176.69 (12)
Hydrogen-bond geometry (Å, º) top
Cg is is the centroid of the N1/C12–C15 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.98 (2)1.578 (19)2.498 (2)153.4 (18)
C5—H5···Cgi0.932.903.641 (2)138
C11—H11B···Cgii0.972.743.3973 (19)125
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H17NO3
Mr259.3
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.741 (2), 9.230 (1), 10.464 (1)
α, β, γ (°)71.63 (2), 75.222 (1), 82.081 (1)
V3)684.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.08 × 0.04
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4238, 2586, 1995
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.05
No. of reflections2586
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is is the centroid of the N1/C12–C15 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.98 (2)1.578 (19)2.498 (2)153.4 (18)
C5—H5···Cgi0.932.903.641 (2)138
C11—H11B···Cgii0.972.743.3973 (19)125
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z.
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes1 France) for helpful discussions.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1995). Anal. Chim. Acta, 311, 23–30.  CAS Google Scholar
First citationDeronzier, A. & Moutet, J. C. (1996). Coord. Chem. Rev. 147, 339–371.  CrossRef CAS Web of Science Google Scholar
First citationDong, W. K., Sun, Y. X., Zhao, C. Y., Dong, X. Y. & Xu, L. (2010). Polyhedron, 29, 2087–2097.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999). Thin Solid Films, 350, 5–9.  Web of Science CrossRef CAS Google Scholar
First citationKhedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167–172.  CrossRef CAS Web of Science Google Scholar
First citationMacDearmid, A. G. (2001). Rev. Mod. Phys. 73, 701–712.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOurari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). J. Electrochem. Commun. 10, 1736–1739.  Web of Science CrossRef CAS Google Scholar
First citationSaraswat, K., Prasad, R. N., Ratnani, R., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2006). Inorg. Chim. Acta, 359, 1291–1295.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. A., Tasker, P. A. & White, D. J. (2003). Coord. Chem. Rev. 241, 61–85.  Web of Science CrossRef CAS Google Scholar
First citationSrinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309–2320.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationWu, S. & Lu, S. (2003). J. Mol. Catal. A, 198, 29–38.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds