organic compounds
1-{2-Hydroxy-6-[3-(pyrrol-1-yl)propoxy]phenyl}ethanone
aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, C15H17NO3, the mean planes of the pyrrole and benzene rings form a dihedral angle of 81.92 (7)°. The molecule contains an intramolecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯π interactions link the molecules into chains along [010].
Related literature
For the synthesis and applications of similar compounds and their derivatives, see: Wu & Lu (2003); Saraswat et al. (2006); Smith et al. (2003); Dong et al. (2010); Deronzier & Moutet (1996); MacDearmid (2001); Srinivasan et al. (1986); Coche-Guerente et al. (1995); Ourari et al. (2008); Khedkar & Radhakrishnan (1997); Huo et al. (1999).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812010641/lh5428sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812010641/lh5428Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812010641/lh5428Isup3.cml
A solution of 152 mg (1 mmol) of 2,6-dihydroxyacetophenone was added to a solution containing 187 mg (1 mmol) of 1-bromopropyl-3-N-pyrrol and 181 mg (1.7 mmol) of potassium carbonate under argon atmosphere. The mixture was refluxed for 45 h and was allowed to stand at room temperature. After extraction by dichloromethane and purification by
on silica gel using dichloromethane as Thus, 153 mg of pure compound (I) was recovered, corresponding to the yield of 59%. The suitable single crystals were then obtained from dichloromethane solution by slow evaporation.H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C) with C—H = 0.96 Å (methyl), 0.97 Å (methylene) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic and Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl). Atom H3 was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq (O)
The synthesis of new derivatives containing both a pyrrole ring and salicyaldehyde moiety is of a great interest since they are currently used as precursors for chelating agents especially those of π-conjugated polymers such as as those of polypyrrole and polyaniline (Khedkar et al., 1997; Huo et al., 1999).
(Wu et al., 2003; Saraswat et al., 2006) and (Smith et al., 2003; Dong et al., 2010). These compounds may also be involved in the elaboration of modified electrodes by anodic (Deronzier & Moutet, 1996) or by chemical oxidation (MacDearmid et al., 2001). These types of materials can be applied in catalysis, electrocatalysis and sensors (Srinivasan et al., 1986; Coche-Guerente et al., 1995; Ourari et al., 2008). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of a functionalized conductingWe report herein the π interactions (Table 1) which form chains of dimers along [010] (Fig. 2).
of the title compound. The molecular structure is shown in Fig. 1. The mean planes of the pyrrole and benzene rings form a dihedral angle of 81.92 (7)°. There is an intramolecular O—H···O hydrogen bond present. In the crystal, there are weak C—H···For the synthesis and applications of similar compounds and their derivatives, see: Wu & Lu (2003); Saraswat et al. (2006); Smith et al. (2003); Dong et al. (2010); Deronzier & Moutet (1996); MacDearmid (2001); Srinivasan et al. (1986); Coche-Guerente et al. (1995); Ourari et al. (2008); Khedkar & Radhakrishnan (1997); Huo et al. (1999).
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C15H17NO3 | Z = 2 |
Mr = 259.3 | F(000) = 276 |
Triclinic, P1 | Dx = 1.258 Mg m−3 |
a = 7.741 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.230 (1) Å | Cell parameters from 2211 reflections |
c = 10.464 (1) Å | θ = 1.0–26.4° |
α = 71.63 (2)° | µ = 0.09 mm−1 |
β = 75.222 (1)° | T = 295 K |
γ = 82.081 (1)° | Plate, white |
V = 684.7 (2) Å3 | 0.15 × 0.08 × 0.04 mm |
Nonius KappaCCD diffractometer | 1995 reflections with I > 2σ(I) |
Radiation source: Enraf Nonius FR590 | Rint = 0.020 |
Graphite monochromator | θmax = 26.4°, θmin = 3.1° |
Detector resolution: 9 pixels mm-1 | h = −8→8 |
CCD rotation images, thick slices scans | k = −11→11 |
4238 measured reflections | l = −11→13 |
2586 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.0857P] where P = (Fo2 + 2Fc2)/3 |
2586 reflections | (Δ/σ)max < 0.001 |
176 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C15H17NO3 | γ = 82.081 (1)° |
Mr = 259.3 | V = 684.7 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.741 (2) Å | Mo Kα radiation |
b = 9.230 (1) Å | µ = 0.09 mm−1 |
c = 10.464 (1) Å | T = 295 K |
α = 71.63 (2)° | 0.15 × 0.08 × 0.04 mm |
β = 75.222 (1)° |
Nonius KappaCCD diffractometer | 1995 reflections with I > 2σ(I) |
4238 measured reflections | Rint = 0.020 |
2586 independent reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.18 e Å−3 |
2586 reflections | Δρmin = −0.17 e Å−3 |
176 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.22766 (19) | 0.41969 (15) | 0.52869 (14) | 0.0461 (3) | |
C2 | 0.13789 (18) | 0.35148 (15) | 0.66752 (14) | 0.0462 (3) | |
C3 | 0.1027 (2) | 0.19569 (17) | 0.70372 (16) | 0.0543 (4) | |
C4 | 0.1559 (2) | 0.11311 (18) | 0.60838 (19) | 0.0641 (4) | |
H4 | 0.1327 | 0.0104 | 0.6342 | 0.077* | |
C5 | 0.2426 (2) | 0.18421 (18) | 0.47626 (18) | 0.0653 (5) | |
H5 | 0.278 | 0.1286 | 0.4126 | 0.078* | |
C6 | 0.2790 (2) | 0.33656 (17) | 0.43500 (16) | 0.0571 (4) | |
H6 | 0.3378 | 0.3828 | 0.3445 | 0.069* | |
C7 | 0.0815 (2) | 0.43219 (18) | 0.77474 (15) | 0.0523 (4) | |
C8 | 0.1265 (2) | 0.59134 (19) | 0.75300 (18) | 0.0631 (4) | |
H8A | 0.0639 | 0.6615 | 0.6879 | 0.095* | |
H8B | 0.2531 | 0.5999 | 0.7177 | 0.095* | |
H8C | 0.0914 | 0.6152 | 0.8393 | 0.095* | |
C9 | 0.3468 (2) | 0.64362 (16) | 0.35422 (14) | 0.0503 (4) | |
H9A | 0.2802 | 0.633 | 0.2911 | 0.06* | |
H9B | 0.4663 | 0.5963 | 0.3328 | 0.06* | |
C10 | 0.3574 (2) | 0.81022 (16) | 0.33794 (15) | 0.0503 (4) | |
H10A | 0.4256 | 0.8209 | 0.4001 | 0.06* | |
H10B | 0.2381 | 0.8572 | 0.3608 | 0.06* | |
C11 | 0.4473 (2) | 0.88841 (17) | 0.19002 (16) | 0.0605 (4) | |
H11A | 0.5719 | 0.851 | 0.1736 | 0.073* | |
H11B | 0.3915 | 0.8598 | 0.1291 | 0.073* | |
C12 | 0.2945 (2) | 1.14975 (17) | 0.12267 (16) | 0.0559 (4) | |
H12 | 0.1838 | 1.1193 | 0.1252 | 0.067* | |
C13 | 0.3403 (2) | 1.29658 (18) | 0.08711 (17) | 0.0612 (4) | |
H13 | 0.2669 | 1.3843 | 0.0614 | 0.073* | |
C14 | 0.5179 (3) | 1.29123 (19) | 0.09628 (18) | 0.0657 (5) | |
H14 | 0.5847 | 1.3749 | 0.0775 | 0.079* | |
C15 | 0.5757 (2) | 1.14127 (19) | 0.13775 (17) | 0.0621 (4) | |
H15 | 0.6892 | 1.1045 | 0.1524 | 0.074* | |
N1 | 0.43895 (17) | 1.05482 (13) | 0.15398 (12) | 0.0517 (3) | |
O1 | 0.25933 (15) | 0.57023 (11) | 0.49358 (10) | 0.0550 (3) | |
O2 | −0.00716 (18) | 0.36498 (15) | 0.89029 (12) | 0.0776 (4) | |
O3 | 0.01756 (18) | 0.11918 (14) | 0.83236 (13) | 0.0736 (4) | |
H3 | −0.005 (3) | 0.197 (2) | 0.882 (2) | 0.088* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0511 (8) | 0.0426 (7) | 0.0465 (8) | −0.0031 (6) | −0.0141 (6) | −0.0132 (6) |
C2 | 0.0462 (8) | 0.0477 (8) | 0.0460 (8) | −0.0038 (6) | −0.0141 (6) | −0.0121 (6) |
C3 | 0.0558 (9) | 0.0518 (8) | 0.0538 (9) | −0.0111 (6) | −0.0175 (6) | −0.0059 (7) |
C4 | 0.0801 (12) | 0.0467 (8) | 0.0701 (11) | −0.0104 (7) | −0.0237 (9) | −0.0155 (8) |
C5 | 0.0868 (13) | 0.0530 (9) | 0.0645 (10) | −0.0031 (8) | −0.0200 (9) | −0.0269 (8) |
C6 | 0.0730 (11) | 0.0512 (8) | 0.0489 (9) | −0.0053 (7) | −0.0107 (7) | −0.0188 (7) |
C7 | 0.0480 (8) | 0.0637 (9) | 0.0467 (8) | −0.0041 (6) | −0.0105 (6) | −0.0180 (7) |
C8 | 0.0653 (10) | 0.0705 (11) | 0.0600 (10) | −0.0061 (8) | −0.0056 (7) | −0.0340 (8) |
C9 | 0.0562 (9) | 0.0495 (8) | 0.0430 (8) | −0.0050 (6) | −0.0084 (6) | −0.0118 (6) |
C10 | 0.0575 (9) | 0.0465 (8) | 0.0455 (8) | −0.0052 (6) | −0.0110 (6) | −0.0111 (6) |
C11 | 0.0778 (11) | 0.0459 (8) | 0.0492 (9) | −0.0042 (7) | −0.0038 (7) | −0.0103 (7) |
C12 | 0.0514 (9) | 0.0570 (9) | 0.0536 (9) | −0.0068 (7) | −0.0066 (6) | −0.0108 (7) |
C13 | 0.0689 (11) | 0.0508 (9) | 0.0560 (9) | −0.0013 (7) | −0.0079 (7) | −0.0105 (7) |
C14 | 0.0820 (12) | 0.0549 (9) | 0.0598 (10) | −0.0214 (8) | −0.0160 (8) | −0.0093 (8) |
C15 | 0.0612 (10) | 0.0631 (10) | 0.0592 (10) | −0.0127 (7) | −0.0178 (7) | −0.0068 (8) |
N1 | 0.0588 (8) | 0.0448 (7) | 0.0453 (7) | −0.0061 (5) | −0.0065 (5) | −0.0076 (5) |
O1 | 0.0754 (7) | 0.0439 (6) | 0.0426 (6) | −0.0116 (5) | −0.0041 (5) | −0.0123 (4) |
O2 | 0.0910 (9) | 0.0849 (9) | 0.0502 (7) | −0.0214 (7) | 0.0058 (6) | −0.0209 (6) |
O3 | 0.0885 (9) | 0.0633 (8) | 0.0604 (8) | −0.0263 (6) | −0.0079 (6) | −0.0040 (6) |
C1—O1 | 1.3609 (17) | C9—H9A | 0.97 |
C1—C6 | 1.378 (2) | C9—H9B | 0.97 |
C1—C2 | 1.421 (2) | C10—C11 | 1.512 (2) |
C2—C3 | 1.413 (2) | C10—H10A | 0.97 |
C2—C7 | 1.480 (2) | C10—H10B | 0.97 |
C3—O3 | 1.3496 (19) | C11—N1 | 1.4579 (18) |
C3—C4 | 1.389 (2) | C11—H11A | 0.97 |
C4—C5 | 1.367 (2) | C11—H11B | 0.97 |
C4—H4 | 0.93 | C12—C13 | 1.359 (2) |
C5—C6 | 1.381 (2) | C12—N1 | 1.364 (2) |
C5—H5 | 0.93 | C12—H12 | 0.93 |
C6—H6 | 0.93 | C13—C14 | 1.396 (2) |
C7—O2 | 1.2406 (18) | C13—H13 | 0.93 |
C7—C8 | 1.490 (2) | C14—C15 | 1.362 (2) |
C8—H8A | 0.96 | C14—H14 | 0.93 |
C8—H8B | 0.96 | C15—N1 | 1.357 (2) |
C8—H8C | 0.96 | C15—H15 | 0.93 |
C9—O1 | 1.4297 (17) | O3—H3 | 0.98 (2) |
C9—C10 | 1.5042 (19) | ||
O1—C1—C6 | 122.13 (13) | C10—C9—H9B | 109.9 |
O1—C1—C2 | 116.67 (12) | H9A—C9—H9B | 108.3 |
C6—C1—C2 | 121.19 (13) | C9—C10—C11 | 108.84 (12) |
C3—C2—C1 | 116.77 (13) | C9—C10—H10A | 109.9 |
C3—C2—C7 | 118.82 (13) | C11—C10—H10A | 109.9 |
C1—C2—C7 | 124.41 (13) | C9—C10—H10B | 109.9 |
O3—C3—C4 | 116.60 (14) | C11—C10—H10B | 109.9 |
O3—C3—C2 | 121.99 (15) | H10A—C10—H10B | 108.3 |
C4—C3—C2 | 121.41 (14) | N1—C11—C10 | 114.44 (13) |
C5—C4—C3 | 119.40 (14) | N1—C11—H11A | 108.7 |
C5—C4—H4 | 120.3 | C10—C11—H11A | 108.7 |
C3—C4—H4 | 120.3 | N1—C11—H11B | 108.7 |
C4—C5—C6 | 121.59 (15) | C10—C11—H11B | 108.7 |
C4—C5—H5 | 119.2 | H11A—C11—H11B | 107.6 |
C6—C5—H5 | 119.2 | C13—C12—N1 | 108.26 (14) |
C1—C6—C5 | 119.62 (15) | C13—C12—H12 | 125.9 |
C1—C6—H6 | 120.2 | N1—C12—H12 | 125.9 |
C5—C6—H6 | 120.2 | C12—C13—C14 | 107.29 (15) |
O2—C7—C2 | 119.14 (14) | C12—C13—H13 | 126.4 |
O2—C7—C8 | 117.11 (14) | C14—C13—H13 | 126.4 |
C2—C7—C8 | 123.74 (13) | C15—C14—C13 | 107.58 (15) |
C7—C8—H8A | 109.5 | C15—C14—H14 | 126.2 |
C7—C8—H8B | 109.5 | C13—C14—H14 | 126.2 |
H8A—C8—H8B | 109.5 | N1—C15—C14 | 108.19 (15) |
C7—C8—H8C | 109.5 | N1—C15—H15 | 125.9 |
H8A—C8—H8C | 109.5 | C14—C15—H15 | 125.9 |
H8B—C8—H8C | 109.5 | C15—N1—C12 | 108.68 (13) |
O1—C9—C10 | 108.82 (11) | C15—N1—C11 | 125.99 (14) |
O1—C9—H9A | 109.9 | C12—N1—C11 | 125.22 (13) |
C10—C9—H9A | 109.9 | C1—O1—C9 | 118.35 (11) |
O1—C9—H9B | 109.9 | C3—O3—H3 | 102.9 (12) |
O1—C1—C2—C3 | 179.16 (12) | C3—C2—C7—C8 | 173.87 (14) |
C6—C1—C2—C3 | −0.6 (2) | C1—C2—C7—C8 | −5.6 (2) |
O1—C1—C2—C7 | −1.4 (2) | O1—C9—C10—C11 | −179.11 (12) |
C6—C1—C2—C7 | 178.83 (13) | C9—C10—C11—N1 | 170.05 (13) |
C1—C2—C3—O3 | −179.70 (13) | N1—C12—C13—C14 | 0.30 (18) |
C7—C2—C3—O3 | 0.8 (2) | C12—C13—C14—C15 | −0.2 (2) |
C1—C2—C3—C4 | 0.9 (2) | C13—C14—C15—N1 | 0.10 (19) |
C7—C2—C3—C4 | −178.57 (13) | C14—C15—N1—C12 | 0.08 (18) |
O3—C3—C4—C5 | 179.94 (16) | C14—C15—N1—C11 | 176.39 (15) |
C2—C3—C4—C5 | −0.7 (3) | C13—C12—N1—C15 | −0.24 (18) |
C3—C4—C5—C6 | 0.1 (3) | C13—C12—N1—C11 | −176.59 (14) |
O1—C1—C6—C5 | −179.71 (14) | C10—C11—N1—C15 | 104.65 (18) |
C2—C1—C6—C5 | 0.1 (2) | C10—C11—N1—C12 | −79.63 (19) |
C4—C5—C6—C1 | 0.2 (3) | C6—C1—O1—C9 | 0.8 (2) |
C3—C2—C7—O2 | −5.5 (2) | C2—C1—O1—C9 | −179.01 (12) |
C1—C2—C7—O2 | 174.99 (14) | C10—C9—O1—C1 | 176.69 (12) |
Cg is is the centroid of the N1/C12–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.98 (2) | 1.578 (19) | 2.498 (2) | 153.4 (18) |
C5—H5···Cgi | 0.93 | 2.90 | 3.641 (2) | 138 |
C11—H11B···Cgii | 0.97 | 2.74 | 3.3973 (19) | 125 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C15H17NO3 |
Mr | 259.3 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 7.741 (2), 9.230 (1), 10.464 (1) |
α, β, γ (°) | 71.63 (2), 75.222 (1), 82.081 (1) |
V (Å3) | 684.7 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.15 × 0.08 × 0.04 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4238, 2586, 1995 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.128, 1.05 |
No. of reflections | 2586 |
No. of parameters | 176 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.18, −0.17 |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
Cg is is the centroid of the N1/C12–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.98 (2) | 1.578 (19) | 2.498 (2) | 153.4 (18) |
C5—H5···Cgi | 0.93 | 2.90 | 3.641 (2) | 138 |
C11—H11B···Cgii | 0.97 | 2.74 | 3.3973 (19) | 125 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+2, −z. |
Acknowledgements
The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes1 France) for helpful discussions.
References
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Coche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1995). Anal. Chim. Acta, 311, 23–30. CAS Google Scholar
Deronzier, A. & Moutet, J. C. (1996). Coord. Chem. Rev. 147, 339–371. CrossRef CAS Web of Science Google Scholar
Dong, W. K., Sun, Y. X., Zhao, C. Y., Dong, X. Y. & Xu, L. (2010). Polyhedron, 29, 2087–2097. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Huo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999). Thin Solid Films, 350, 5–9. Web of Science CrossRef CAS Google Scholar
Khedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167–172. CrossRef CAS Web of Science Google Scholar
MacDearmid, A. G. (2001). Rev. Mod. Phys. 73, 701–712. Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). J. Electrochem. Commun. 10, 1736–1739. Web of Science CrossRef CAS Google Scholar
Saraswat, K., Prasad, R. N., Ratnani, R., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2006). Inorg. Chim. Acta, 359, 1291–1295. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. A., Tasker, P. A. & White, D. J. (2003). Coord. Chem. Rev. 241, 61–85. Web of Science CrossRef CAS Google Scholar
Srinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309–2320. CSD CrossRef CAS PubMed Web of Science Google Scholar
Wu, S. & Lu, S. (2003). J. Mol. Catal. A, 198, 29–38. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of new derivatives containing both a pyrrole ring and salicyaldehyde moiety is of a great interest since they are currently used as precursors for chelating agents especially those of Schiff bases (Wu et al., 2003; Saraswat et al., 2006) and oximes (Smith et al., 2003; Dong et al., 2010). These compounds may also be involved in the elaboration of modified electrodes by anodic (Deronzier & Moutet, 1996) or by chemical oxidation (MacDearmid et al., 2001). These types of materials can be applied in catalysis, electrocatalysis and sensors (Srinivasan et al., 1986; Coche-Guerente et al., 1995; Ourari et al., 2008). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of a functionalized conducting π-conjugated polymers such as as those of polypyrrole and polyaniline (Khedkar et al., 1997; Huo et al., 1999).
We report herein the crystal structure of the title compound. The molecular structure is shown in Fig. 1. The mean planes of the pyrrole and benzene rings form a dihedral angle of 81.92 (7)°. There is an intramolecular O—H···O hydrogen bond present. In the crystal, there are weak C—H···π interactions (Table 1) which form chains of dimers along [010] (Fig. 2).