organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N′-(3,5-di­bromo-2-hy­dr­oxy­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: zhangweiguang1230@163.com

(Received 2 March 2012; accepted 5 March 2012; online 28 March 2012)

The asymmetric unit of the title compound, C14H9Br2ClN2O2, contains two independent mol­ecules. Both mol­ecules adopt an E configuration about the C=N bond. The dihedral angles between the benzene rings are 30.0 (2) and 51.6 (2)° in the two mol­ecules. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds, forming chains along the b axis. In addition, there is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule.

Related literature

For the biological properties of hydrazone compounds, see: Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Zhang et al. (2010[Zhang, Y. H., Zhang, L., Liu, L., Guo, J. X., Wu, D. L., Xu, G. C., Wang, X. H. & Jia, D. Z. (2010). Inorg. Chim. Acta, 363, 289-293.]); Horiuchi et al. (2009[Horiuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850-7860.]). For the crystal structures of similar hydrazone compounds, see: Ban (2010[Ban, H.-Y. (2010). Acta Cryst. E66, o3240.]); Hussain et al. (2010[Hussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]); Khaledi et al. (2009[Khaledi, H., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1920.]). For related structures reported recently by the author, see: Zhang (2011[Zhang, W.-G. (2011). Acta Cryst. E67, o233.], 2012[Zhang, W.-G. (2012). Acta Cryst. E68, o357.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Br2ClN2O2

  • Mr = 432.50

  • Monoclinic, C 2/c

  • a = 21.0503 (19) Å

  • b = 9.9895 (11) Å

  • c = 30.185 (2) Å

  • β = 101.836 (2)°

  • V = 6212.4 (10) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 5.40 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.412, Tmax = 0.461

  • 21727 measured reflections

  • 5775 independent reflections

  • 2828 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.105

  • S = 0.95

  • 5775 reflections

  • 389 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O2i 0.90 (1) 1.95 (2) 2.827 (5) 166 (4)
N2—H2⋯O4 0.90 (1) 2.08 (2) 2.941 (5) 160 (4)
O3—H3⋯N3 0.82 1.87 2.569 (5) 143
O1—H1⋯N1 0.82 1.87 2.590 (5) 146
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzoylhydrazones are a kind of special Schiff bases bearing the –C(O)—NH—NCH– group. Hydrazone compounds have received much attention for their excellent biological properties (Ajani et al., 2010; Angelusiu et al., 2010; Zhang et al., 2010; Horiuchi et al., 2009) as well as their crystal structures (Ban, 2010; Hussain et al., 2010; Shalash et al., 2010; Khaledi et al., 2009). Recently, the author has reported some hydrazone compounds (Zhang, 2011; Zhang, 2012). In the present paper, the title new hydrazone compound, derived from the reaction of 3,5-dibromo-4-chlorobenzaldehyde with 4-chlorobenzohydrazide, is reported.

The asymmetric unit of the title hydrazone compound contains two independent molecules, as shown in Fig. 1. Each of the molecules of the compound adopts an E configuration about the CN double bond. The dihedral angles between the two substituted benzene rings are 30.0 (2)° [C1-C6/C9-C14] and 51.6 (2)° [C15-C20/C23-C28]. In the crystal, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the b axis (Fig. 2). In addition, there is an intramolecular O—H···N hydrogen bond in each molecule.

Related literature top

For the biological properties of hydrazone compounds, see: Ajani et al. (2010); Angelusiu et al. (2010); Zhang et al. (2010); Horiuchi et al. (2009). For the crystal structures of similar hydrazone compounds, see: Ban (2010); Hussain et al. (2010); Shalash et al. (2010); Khaledi et al. (2009). For related structures reported recently by the author, see: Zhang (2011, 2012).

Experimental top

3,5-Dibromo-2-hydroxybenzaldehyde (0.280 g, 1 mmol) and 4-chlorobenzohydrazide (0.171 g, 1 mmol) were mixed in 50 ml methanol. The mixture was stirred and refluxed for 30 min and cooled to room temperature to give a colorless solution. Colorless block-shaped single crystals were obtained on slow evaporation of the solution in air.

Refinement top

H2 and H4 were located in a difference Fourier map and refined with the N—H distances restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically, with C—H = 0.93 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

Benzoylhydrazones are a kind of special Schiff bases bearing the –C(O)—NH—NCH– group. Hydrazone compounds have received much attention for their excellent biological properties (Ajani et al., 2010; Angelusiu et al., 2010; Zhang et al., 2010; Horiuchi et al., 2009) as well as their crystal structures (Ban, 2010; Hussain et al., 2010; Shalash et al., 2010; Khaledi et al., 2009). Recently, the author has reported some hydrazone compounds (Zhang, 2011; Zhang, 2012). In the present paper, the title new hydrazone compound, derived from the reaction of 3,5-dibromo-4-chlorobenzaldehyde with 4-chlorobenzohydrazide, is reported.

The asymmetric unit of the title hydrazone compound contains two independent molecules, as shown in Fig. 1. Each of the molecules of the compound adopts an E configuration about the CN double bond. The dihedral angles between the two substituted benzene rings are 30.0 (2)° [C1-C6/C9-C14] and 51.6 (2)° [C15-C20/C23-C28]. In the crystal, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the b axis (Fig. 2). In addition, there is an intramolecular O—H···N hydrogen bond in each molecule.

For the biological properties of hydrazone compounds, see: Ajani et al. (2010); Angelusiu et al. (2010); Zhang et al. (2010); Horiuchi et al. (2009). For the crystal structures of similar hydrazone compounds, see: Ban (2010); Hussain et al. (2010); Shalash et al. (2010); Khaledi et al. (2009). For related structures reported recently by the author, see: Zhang (2011, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed approximately along the a axis. Hydrogen bonds are shown as dashed lines. H-atoms not involved in hydrogen bonding have been omitted for clarity.
4-Chloro-N'-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H9Br2ClN2O2F(000) = 3360
Mr = 432.50Dx = 1.850 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2652 reflections
a = 21.0503 (19) Åθ = 2.3–24.3°
b = 9.9895 (11) ŵ = 5.40 mm1
c = 30.185 (2) ÅT = 298 K
β = 101.836 (2)°Block, colorless
V = 6212.4 (10) Å30.20 × 0.18 × 0.17 mm
Z = 16
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5775 independent reflections
Radiation source: fine-focus sealed tube2828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.412, Tmax = 0.461k = 1212
21727 measured reflectionsl = 3633
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0375P)2]
where P = (Fo2 + 2Fc2)/3
5775 reflections(Δ/σ)max = 0.001
389 parametersΔρmax = 0.53 e Å3
2 restraintsΔρmin = 0.59 e Å3
Crystal data top
C14H9Br2ClN2O2V = 6212.4 (10) Å3
Mr = 432.50Z = 16
Monoclinic, C2/cMo Kα radiation
a = 21.0503 (19) ŵ = 5.40 mm1
b = 9.9895 (11) ÅT = 298 K
c = 30.185 (2) Å0.20 × 0.18 × 0.17 mm
β = 101.836 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5775 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2828 reflections with I > 2σ(I)
Tmin = 0.412, Tmax = 0.461Rint = 0.093
21727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.53 e Å3
5775 reflectionsΔρmin = 0.59 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.59984 (4)0.15649 (7)0.50684 (2)0.0893 (3)
Br20.60096 (5)0.40530 (8)0.51878 (3)0.1266 (4)
Br30.16100 (3)0.32156 (6)0.13346 (2)0.0621 (2)
Br40.13920 (3)0.88180 (6)0.11656 (2)0.0662 (2)
Cl10.28553 (8)0.0539 (2)0.08490 (5)0.0867 (6)
Cl20.69898 (8)0.5736 (2)0.42951 (6)0.0988 (7)
N10.48103 (18)0.0501 (4)0.34395 (14)0.0364 (10)
N20.4503 (2)0.0679 (4)0.29989 (14)0.0393 (11)
N30.3518 (2)0.5527 (4)0.25814 (14)0.0429 (11)
N40.4089 (2)0.5744 (4)0.28790 (15)0.0452 (12)
O10.5259 (2)0.0988 (3)0.41356 (11)0.0564 (11)
H10.51030.08310.38690.085*
O20.44485 (17)0.1529 (3)0.28785 (12)0.0522 (10)
O30.26677 (17)0.3947 (3)0.21220 (12)0.0469 (9)
H30.30280.41320.22710.070*
O40.43685 (17)0.3578 (3)0.28369 (11)0.0496 (10)
C10.5296 (2)0.1408 (5)0.41481 (18)0.0409 (14)
C20.5433 (2)0.0165 (5)0.43546 (18)0.0444 (14)
C30.5777 (3)0.0117 (6)0.48000 (19)0.0544 (16)
C40.5949 (3)0.1262 (6)0.50448 (19)0.0688 (19)
H4A0.61730.12150.53440.083*
C50.5787 (3)0.2482 (6)0.4843 (2)0.0661 (19)
C60.5472 (3)0.2557 (5)0.44034 (19)0.0547 (16)
H60.53730.33920.42710.066*
C70.4980 (2)0.1532 (5)0.36838 (18)0.0430 (14)
H70.48960.23800.35580.052*
C80.4314 (2)0.0407 (5)0.27356 (18)0.0385 (13)
C90.3945 (2)0.0126 (5)0.22721 (17)0.0355 (13)
C100.3549 (2)0.0978 (5)0.21643 (18)0.0464 (15)
H100.35150.15960.23890.056*
C110.3200 (3)0.1184 (6)0.1727 (2)0.0550 (16)
H110.29300.19240.16570.066*
C120.3265 (3)0.0269 (6)0.13990 (18)0.0499 (15)
C130.3631 (3)0.0858 (6)0.1497 (2)0.0564 (16)
H130.36500.14870.12730.068*
C140.3976 (2)0.1056 (5)0.19342 (19)0.0460 (14)
H140.42310.18180.20030.055*
C150.2601 (2)0.6341 (5)0.20665 (17)0.0387 (13)
C160.2386 (2)0.5064 (5)0.19194 (17)0.0373 (13)
C170.1875 (2)0.4942 (5)0.15544 (17)0.0393 (13)
C180.1587 (2)0.6050 (6)0.13239 (17)0.0460 (14)
H180.12630.59480.10660.055*
C190.1784 (3)0.7297 (5)0.14789 (17)0.0421 (14)
C200.2292 (2)0.7460 (5)0.18405 (16)0.0412 (14)
H200.24310.83160.19350.049*
C210.3177 (2)0.6530 (5)0.24191 (16)0.0417 (14)
H210.32970.73860.25260.050*
C220.4500 (2)0.4694 (5)0.29903 (17)0.0400 (14)
C230.5113 (3)0.5008 (5)0.33136 (16)0.0351 (13)
C240.5150 (3)0.5908 (5)0.36667 (17)0.0451 (15)
H240.47810.63850.36960.054*
C250.5719 (3)0.6111 (5)0.39751 (19)0.0507 (15)
H250.57310.66930.42170.061*
C260.6262 (3)0.5457 (6)0.3924 (2)0.0537 (16)
C270.6246 (3)0.4561 (6)0.3576 (2)0.0648 (18)
H270.66200.41070.35450.078*
C280.5668 (3)0.4343 (5)0.32730 (18)0.0510 (15)
H280.56560.37360.30380.061*
H20.440 (2)0.150 (2)0.2886 (14)0.039 (15)*
H40.4239 (18)0.6586 (17)0.2928 (13)0.028 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1524 (8)0.0620 (5)0.0432 (4)0.0235 (5)0.0042 (4)0.0114 (4)
Br20.2209 (11)0.0680 (5)0.0661 (6)0.0248 (6)0.0282 (6)0.0228 (4)
Br30.0642 (4)0.0549 (4)0.0575 (4)0.0059 (3)0.0101 (3)0.0099 (3)
Br40.0726 (5)0.0615 (4)0.0599 (4)0.0200 (3)0.0025 (3)0.0202 (4)
Cl10.0802 (12)0.1304 (16)0.0417 (10)0.0018 (12)0.0056 (9)0.0045 (10)
Cl20.0554 (11)0.1279 (17)0.0980 (15)0.0097 (11)0.0196 (10)0.0172 (13)
N10.043 (3)0.033 (3)0.029 (3)0.004 (2)0.002 (2)0.005 (2)
N20.054 (3)0.025 (3)0.035 (3)0.003 (2)0.000 (2)0.000 (2)
N30.051 (3)0.032 (3)0.040 (3)0.001 (2)0.004 (2)0.005 (2)
N40.048 (3)0.026 (3)0.050 (3)0.004 (2)0.016 (2)0.003 (2)
O10.093 (3)0.035 (2)0.035 (2)0.003 (2)0.001 (2)0.0007 (18)
O20.065 (3)0.028 (2)0.058 (3)0.0016 (19)0.002 (2)0.0050 (19)
O30.054 (3)0.034 (2)0.046 (3)0.0019 (18)0.0069 (19)0.0033 (18)
O40.072 (3)0.024 (2)0.045 (2)0.0014 (18)0.009 (2)0.0068 (17)
C10.047 (3)0.032 (3)0.042 (4)0.002 (3)0.007 (3)0.001 (3)
C20.052 (4)0.033 (3)0.047 (4)0.003 (3)0.006 (3)0.000 (3)
C30.074 (4)0.050 (4)0.036 (4)0.004 (3)0.002 (3)0.009 (3)
C40.097 (5)0.069 (5)0.030 (4)0.006 (4)0.010 (3)0.010 (4)
C50.099 (5)0.051 (4)0.038 (4)0.007 (4)0.011 (4)0.007 (3)
C60.079 (5)0.038 (4)0.045 (4)0.004 (3)0.006 (3)0.003 (3)
C70.054 (4)0.033 (3)0.040 (4)0.008 (3)0.003 (3)0.005 (3)
C80.040 (3)0.023 (3)0.050 (4)0.001 (3)0.005 (3)0.001 (3)
C90.029 (3)0.032 (3)0.046 (4)0.003 (3)0.007 (3)0.002 (3)
C100.053 (4)0.041 (3)0.042 (4)0.007 (3)0.000 (3)0.006 (3)
C110.057 (4)0.049 (4)0.054 (4)0.006 (3)0.000 (3)0.001 (3)
C120.044 (4)0.069 (4)0.035 (4)0.011 (3)0.003 (3)0.001 (3)
C130.058 (4)0.059 (4)0.048 (4)0.007 (3)0.004 (3)0.016 (3)
C140.044 (4)0.038 (3)0.052 (4)0.005 (3)0.001 (3)0.012 (3)
C150.043 (3)0.039 (3)0.035 (3)0.003 (3)0.009 (3)0.003 (3)
C160.043 (3)0.030 (3)0.037 (3)0.004 (3)0.004 (3)0.001 (3)
C170.037 (3)0.046 (3)0.034 (3)0.003 (3)0.004 (3)0.005 (3)
C180.045 (4)0.062 (4)0.028 (3)0.008 (3)0.001 (3)0.004 (3)
C190.051 (4)0.044 (4)0.029 (3)0.010 (3)0.003 (3)0.010 (3)
C200.049 (4)0.033 (3)0.041 (4)0.005 (3)0.009 (3)0.009 (3)
C210.055 (4)0.033 (3)0.035 (3)0.008 (3)0.003 (3)0.003 (3)
C220.049 (4)0.034 (3)0.033 (3)0.002 (3)0.000 (3)0.006 (3)
C230.047 (4)0.027 (3)0.029 (3)0.002 (3)0.003 (3)0.006 (2)
C240.052 (4)0.031 (3)0.045 (4)0.010 (3)0.009 (3)0.006 (3)
C250.057 (4)0.037 (3)0.053 (4)0.007 (3)0.000 (3)0.005 (3)
C260.042 (4)0.056 (4)0.058 (4)0.005 (3)0.001 (3)0.005 (3)
C270.055 (4)0.071 (5)0.071 (5)0.015 (4)0.020 (4)0.003 (4)
C280.058 (4)0.054 (4)0.042 (4)0.001 (3)0.010 (3)0.003 (3)
Geometric parameters (Å, º) top
Br1—C31.882 (5)C9—C101.380 (6)
Br2—C51.888 (6)C9—C141.391 (6)
Br3—C171.890 (5)C10—C111.389 (7)
Br4—C191.888 (5)C10—H100.9300
Cl1—C121.727 (5)C11—C121.374 (7)
Cl2—C261.724 (6)C11—H110.9300
N1—C71.274 (5)C12—C131.363 (7)
N1—N21.366 (5)C13—C141.383 (7)
N2—C81.356 (6)C13—H130.9300
N2—H20.897 (10)C14—H140.9300
N3—C211.271 (5)C15—C161.396 (6)
N3—N41.362 (5)C15—C201.398 (6)
N4—C221.357 (6)C15—C211.452 (7)
N4—H40.900 (10)C16—C171.379 (6)
O1—C21.341 (5)C17—C181.379 (6)
O1—H10.8200C18—C191.364 (7)
O2—C81.213 (5)C18—H180.9300
O3—C161.349 (5)C19—C201.373 (7)
O3—H30.8200C20—H200.9300
O4—C221.217 (5)C21—H210.9300
C1—C61.390 (6)C22—C231.484 (6)
C1—C21.393 (6)C23—C281.371 (7)
C1—C71.428 (7)C23—C241.384 (6)
C2—C31.390 (7)C24—C251.374 (7)
C3—C41.370 (7)C24—H240.9300
C4—C51.374 (7)C25—C261.352 (7)
C4—H4A0.9300C25—H250.9300
C5—C61.357 (7)C26—C271.376 (7)
C6—H60.9300C27—C281.380 (7)
C7—H70.9300C27—H270.9300
C8—C91.482 (6)C28—H280.9300
C7—N1—N2118.6 (4)C12—C13—H13120.4
C8—N2—N1119.3 (4)C14—C13—H13120.4
C8—N2—H2119 (3)C13—C14—C9120.6 (5)
N1—N2—H2121 (3)C13—C14—H14119.7
C21—N3—N4118.8 (4)C9—C14—H14119.7
C22—N4—N3118.2 (4)C16—C15—C20119.2 (5)
C22—N4—H4120 (3)C16—C15—C21121.3 (5)
N3—N4—H4119 (3)C20—C15—C21119.3 (5)
C2—O1—H1109.5O3—C16—C17119.2 (5)
C16—O3—H3109.5O3—C16—C15121.9 (4)
C6—C1—C2118.7 (5)C17—C16—C15119.0 (5)
C6—C1—C7119.3 (5)C18—C17—C16121.5 (5)
C2—C1—C7121.9 (5)C18—C17—Br3119.2 (4)
O1—C2—C3118.8 (5)C16—C17—Br3119.1 (4)
O1—C2—C1122.3 (5)C19—C18—C17119.3 (5)
C3—C2—C1118.9 (5)C19—C18—H18120.4
C4—C3—C2121.3 (5)C17—C18—H18120.4
C4—C3—Br1119.9 (4)C18—C19—C20120.9 (5)
C2—C3—Br1118.8 (4)C18—C19—Br4119.5 (4)
C3—C4—C5119.1 (5)C20—C19—Br4119.5 (4)
C3—C4—H4A120.4C19—C20—C15120.1 (5)
C5—C4—H4A120.4C19—C20—H20119.9
C6—C5—C4120.6 (5)C15—C20—H20119.9
C6—C5—Br2120.6 (5)N3—C21—C15120.1 (5)
C4—C5—Br2118.8 (4)N3—C21—H21120.0
C5—C6—C1121.2 (5)C15—C21—H21120.0
C5—C6—H6119.4O4—C22—N4122.0 (5)
C1—C6—H6119.4O4—C22—C23122.9 (5)
N1—C7—C1121.1 (5)N4—C22—C23115.1 (5)
N1—C7—H7119.5C28—C23—C24118.0 (5)
C1—C7—H7119.5C28—C23—C22118.8 (5)
O2—C8—N2120.8 (5)C24—C23—C22123.2 (5)
O2—C8—C9123.4 (5)C25—C24—C23121.3 (5)
N2—C8—C9115.8 (4)C25—C24—H24119.3
C10—C9—C14118.6 (5)C23—C24—H24119.3
C10—C9—C8123.3 (5)C26—C25—C24119.5 (5)
C14—C9—C8118.1 (5)C26—C25—H25120.2
C9—C10—C11121.2 (5)C24—C25—H25120.2
C9—C10—H10119.4C25—C26—C27120.8 (5)
C11—C10—H10119.4C25—C26—Cl2120.5 (5)
C12—C11—C10118.4 (5)C27—C26—Cl2118.8 (5)
C12—C11—H11120.8C26—C27—C28119.3 (6)
C10—C11—H11120.8C26—C27—H27120.3
C13—C12—C11121.9 (5)C28—C27—H27120.3
C13—C12—Cl1119.1 (5)C23—C28—C27121.0 (5)
C11—C12—Cl1119.0 (5)C23—C28—H28119.5
C12—C13—C14119.3 (5)C27—C28—H28119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O2i0.90 (1)1.95 (2)2.827 (5)166 (4)
N2—H2···O40.90 (1)2.08 (2)2.941 (5)160 (4)
O3—H3···N30.821.872.569 (5)143
O1—H1···N10.821.872.590 (5)146
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H9Br2ClN2O2
Mr432.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)21.0503 (19), 9.9895 (11), 30.185 (2)
β (°) 101.836 (2)
V3)6212.4 (10)
Z16
Radiation typeMo Kα
µ (mm1)5.40
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.412, 0.461
No. of measured, independent and
observed [I > 2σ(I)] reflections
21727, 5775, 2828
Rint0.093
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 0.95
No. of reflections5775
No. of parameters389
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.59

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O2i0.900 (10)1.947 (15)2.827 (5)166 (4)
N2—H2···O40.897 (10)2.081 (18)2.941 (5)160 (4)
O3—H3···N30.821.872.569 (5)142.9
O1—H1···N10.821.872.590 (5)145.6
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Financial support from Qiqihar University is acknowledged.

References

First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBan, H.-Y. (2010). Acta Cryst. E66, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoriuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850–7860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W.-G. (2011). Acta Cryst. E67, o233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W.-G. (2012). Acta Cryst. E68, o357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y. H., Zhang, L., Liu, L., Guo, J. X., Wu, D. L., Xu, G. C., Wang, X. H. & Jia, D. Z. (2010). Inorg. Chim. Acta, 363, 289–293.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds