metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m462-m463

Bis(guanidinium) tris­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)zirconate(II) tetra­hydrate

aDepartment of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran, bDepartment of Chemistry, Faculty of Science, Khorramabad Branch, Islamic Azad, University, Khorramabad, Iran, and cFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 4 March 2012; accepted 15 March 2012; online 24 March 2012)

In the title complex, (CH6N3)2[Zr(C7H3NO4)3]·4H2O, the ZrIV ion lies on a twofold rotation axes and is coordinated by six O and three N atoms of three tridentate pyridine-2,6-dicarboxyl­ate ligands, forming a slightly distorted tricapped trigonal–prismatic geometry. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the components into a three-dimensional network.

Related literature

For related structures, see: Aghabozorg et al. (2005[Aghabozorg, H., Moghimi, A., Manteghi, F. & Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909-913.]); Tabatabaee (2010[Tabatabaee, M. (2010). Acta Cryst. E66, m647-m648.]); Tabatabaee et al. (2009[Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.], 2011a[Tabatabaee, M., Kukovec, B. M. & Kazeroonizadeh, M. (2011a). Polyhedron, 30, 1114-1119.],b[Tabatabaee, M., Abbasi, F., Kukovec, B. M. & Nasirizadeh, N. (2011b). J. Coord. Chem. 64, 1718-1728.],c[Tabatabaee, M., Tahriri, M., Tahriri, M., Dušek, M. & Fejfarová, K. (2011c). Acta Cryst. E67, m769-m770.], 2012[Tabatabaee, M., Tahriri, M., Tahriri, M., Ozawa, Y., Neumuller, B., Fujioka, H. & Toriumi, K. (2012). Polyhedron, 33, 336-340.]); Derikvand et al. (2010[Derikvand, Z., Talei, G. R., Aghabozorg, H., Olmstead, M. M., Azadbakht, A., Nemati, A. & Attar Gharamaleki, J. (2010). Chin. J. Chem. 28, 2167-2173.]); Attar Gharamaleki et al. (2009[Attar Gharamaleki, J., Aghabozorg, H., Derikvand, Z. & Yousefi, M. (2009). Acta Cryst. E65, m824-m825.]).

[Scheme 1]

Experimental

Crystal data
  • (CH6N3)2[Zr(C7H3NO4)3]·4H2O

  • Mr = 778.77

  • Orthorhombic, P b c n

  • a = 17.2444 (9) Å

  • b = 10.8583 (5) Å

  • c = 16.5268 (8) Å

  • V = 3094.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 120 K

  • 0.17 × 0.15 × 0.07 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.970

  • 32229 measured reflections

  • 4116 independent reflections

  • 2884 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.146

  • S = 1.07

  • 4116 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3NA⋯O1 0.77 2.23 3.003 (4) 175
N3—H3NB⋯O2Wi 0.86 2.15 2.930 (4) 150
N4—H4NA⋯O2Wi 0.83 2.04 2.818 (4) 156
N4—H4NB⋯O1Wii 0.78 2.06 2.834 (4) 175
N5—H5NA⋯O2 0.88 1.95 2.828 (4) 171
N5—H5NB⋯O3iii 0.79 2.45 3.143 (4) 148
N5—H5NB⋯O4iii 0.79 2.52 3.171 (4) 141
O1W—H1WA⋯O3iv 0.84 2.33 3.041 (3) 143
O1W—H1WA⋯O5iv 0.84 2.38 3.076 (3) 140
O1W—H1WB⋯O6 0.89 1.87 2.761 (3) 175
O2W—H2WA⋯O5iv 0.86 2.07 2.909 (3) 165
O2W—H2WA⋯O6iv 0.86 2.57 3.085 (3) 119
O2W—H2WB⋯O4v 0.94 1.84 2.745 (3) 160
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z; (v) x, y-1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, our research group has been interested in the synthesis of proton transfer compounds and study of their behavior with metal ions. We have focused on the proton delivery of polycarboxylic acids. Pyridine-2,6-dicarboxylic acid (pydcH2) is a very important carboxylate derivative and has attracted much interest in coordination chemistry. This is the acid we have utilized widely in our studies (Tabatabaee et al., 2010, 2011a, 2011b, 2011c, 2012; Derikvand et al., 2010; Attar Gharamaleki et al., 2009). In this paper we report the crystal structure of the title complex (I). The ZrIV ion lies on a twofold rotation axis. The asymmetric unit and the symmetry complete cation is shown in Fig. 1. The ZrIV atom is coordinated by three tridentate pydc ligands forming a slightly distorted tricapped trigonal prismatic environment (Fig. 2). The Zr—N distances and Zr—O distances are consistent with those found in (pydaH)2[Zr(pydc)3].5H2O (Aghabozorg et al., 2005). In the crystal, O—H···O and N—H···O hydrogen bonds (Table 1) link the components into a three-dimensional network (Fig. 3).

Related literature top

For related structures, see: Aghabozorg et al. (2005); Tabatabaee et al. (2009, 2010, 2011a,b,c, 2012); Derikvand et al. (2010); Attar Gharamaleki et al. (2009).

Experimental top

An aqueous solution of ZrOCl2.8H2O, (161 mg, 0.5 mmol) in water (5 ml) was added to a stirring solution of (20 ml) pyridine-2,6-dicarboxylic acid (176 mg, 1 mmol) and guanidine hydrochloride (95 mg, 1 mmol). The reaction mixture was stirred at 298K for 1 h. Colorless crystals of the title compound were obtained after 4 days by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C atoms were placed in calculated positions. The H atoms of water molecules and NH2 groups were located in difference Fourier maps and included in 'as found' positions. All hydrogen atoms were refined in isotropic approximatiom in a riding-model approximation with Uiso(H) parameters equal to 1.2 Ueq(C), 1.5 Ueq(O,N).

Structure description top

In recent years, our research group has been interested in the synthesis of proton transfer compounds and study of their behavior with metal ions. We have focused on the proton delivery of polycarboxylic acids. Pyridine-2,6-dicarboxylic acid (pydcH2) is a very important carboxylate derivative and has attracted much interest in coordination chemistry. This is the acid we have utilized widely in our studies (Tabatabaee et al., 2010, 2011a, 2011b, 2011c, 2012; Derikvand et al., 2010; Attar Gharamaleki et al., 2009). In this paper we report the crystal structure of the title complex (I). The ZrIV ion lies on a twofold rotation axis. The asymmetric unit and the symmetry complete cation is shown in Fig. 1. The ZrIV atom is coordinated by three tridentate pydc ligands forming a slightly distorted tricapped trigonal prismatic environment (Fig. 2). The Zr—N distances and Zr—O distances are consistent with those found in (pydaH)2[Zr(pydc)3].5H2O (Aghabozorg et al., 2005). In the crystal, O—H···O and N—H···O hydrogen bonds (Table 1) link the components into a three-dimensional network (Fig. 3).

For related structures, see: Aghabozorg et al. (2005); Tabatabaee et al. (2009, 2010, 2011a,b,c, 2012); Derikvand et al. (2010); Attar Gharamaleki et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 50% probability level. The unlabeled atoms are related by the symmetry operator (-x+1, y, -z+1/2). Only the symmetry unique anions and water molecules are shown.
[Figure 2] Fig. 2. View of the coordination environment of the ZrIV ion.
[Figure 3] Fig. 3. Part of the crystal structure of (I). The donor to acceptor distances of the hydrogen bonds are shown as dotted lines.
Bis(guanidinium) tris(pyridine-2,6-dicarboxylato- κ3O2,N,O6)zirconate(II) tetrahydrate top
Crystal data top
(CH6N3)2[Zr(C7H3NO4)3]·4H2OF(000) = 1592
Mr = 778.77Dx = 1.672 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4151 reflections
a = 17.2444 (9) Åθ = 2.3–26.0°
b = 10.8583 (5) ŵ = 0.45 mm1
c = 16.5268 (8) ÅT = 120 K
V = 3094.6 (3) Å3Prism, colorless
Z = 40.17 × 0.15 × 0.07 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4116 independent reflections
Radiation source: normal-focus sealed tube2884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2323
Tmin = 0.884, Tmax = 0.970k = 1414
32229 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: mixed
wR(F2) = 0.146H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0562P)2 + 8.430P]
where P = (Fo2 + 2Fc2)/3
4116 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
(CH6N3)2[Zr(C7H3NO4)3]·4H2OV = 3094.6 (3) Å3
Mr = 778.77Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 17.2444 (9) ŵ = 0.45 mm1
b = 10.8583 (5) ÅT = 120 K
c = 16.5268 (8) Å0.17 × 0.15 × 0.07 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4116 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2884 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.970Rint = 0.068
32229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.07Δρmax = 0.87 e Å3
4116 reflectionsΔρmin = 0.47 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.50000.72625 (4)0.25000.01631 (13)
O10.38154 (13)0.6592 (2)0.28200 (14)0.0245 (5)
O20.25204 (15)0.6675 (3)0.27362 (17)0.0349 (6)
O30.54360 (12)0.8668 (2)0.16530 (13)0.0226 (5)
O40.53142 (16)1.0370 (2)0.09047 (17)0.0362 (6)
O50.47334 (14)0.6443 (2)0.12914 (14)0.0236 (5)
O60.42065 (17)0.4926 (2)0.05627 (15)0.0354 (6)
N10.40034 (15)0.8418 (2)0.18731 (16)0.0214 (5)
N20.50000.5072 (3)0.25000.0171 (7)
C10.32630 (19)0.8123 (3)0.20019 (19)0.0225 (6)
C20.2655 (2)0.8764 (3)0.1641 (2)0.0292 (7)
H2A0.21310.85330.17310.035*
C30.2842 (2)0.9750 (3)0.1146 (2)0.0295 (7)
H3A0.24411.02160.08980.035*
C40.3609 (2)1.0061 (3)0.1010 (2)0.0273 (7)
H4A0.37431.07330.06700.033*
C50.41742 (19)0.9359 (3)0.13861 (19)0.0219 (6)
C60.31649 (18)0.7054 (3)0.25566 (19)0.0218 (6)
C70.50369 (18)0.9516 (3)0.12932 (18)0.0205 (6)
C80.47612 (18)0.4462 (3)0.18438 (19)0.0222 (6)
C90.4742 (2)0.3187 (3)0.1823 (2)0.0273 (7)
H9A0.45570.27610.13600.033*
C100.50000.2551 (4)0.25000.0284 (10)
H10A0.50000.16760.25000.034*
C110.45375 (19)0.5307 (3)0.1163 (2)0.0240 (6)
N30.33875 (17)0.4432 (3)0.38628 (19)0.0312 (7)
H3NA0.34820.50160.36160.047*
H3NB0.37520.40390.41120.047*
N40.25724 (18)0.3150 (3)0.45574 (18)0.0314 (7)
H4NA0.29710.27490.46520.047*
H4NB0.21580.28850.46260.047*
N50.20814 (17)0.4727 (3)0.3776 (2)0.0364 (8)
H5NA0.21660.53440.34390.055*
H5NB0.16540.45170.38650.055*
C120.26720 (19)0.4098 (3)0.4060 (2)0.0268 (7)
O1W0.39648 (14)0.2667 (2)0.01609 (15)0.0279 (5)
H1WA0.41950.26420.06070.042*
H1WB0.40260.33770.01000.042*
O2W0.58669 (15)0.2479 (2)0.01935 (16)0.0310 (6)
H2WA0.57680.27470.02870.047*
H2WB0.56310.17220.03190.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0173 (2)0.0148 (2)0.0169 (2)0.0000.00061 (15)0.000
O10.0241 (12)0.0232 (11)0.0261 (11)0.0009 (9)0.0003 (9)0.0031 (9)
O20.0217 (12)0.0369 (15)0.0462 (15)0.0031 (11)0.0017 (11)0.0095 (12)
O30.0213 (11)0.0233 (11)0.0232 (11)0.0011 (9)0.0001 (9)0.0015 (9)
O40.0327 (13)0.0314 (14)0.0444 (15)0.0070 (11)0.0008 (12)0.0144 (12)
O50.0280 (11)0.0211 (11)0.0216 (11)0.0035 (9)0.0030 (9)0.0003 (9)
O60.0521 (16)0.0249 (12)0.0292 (13)0.0054 (11)0.0141 (12)0.0004 (10)
N10.0231 (13)0.0206 (13)0.0205 (13)0.0005 (10)0.0002 (10)0.0013 (10)
N20.0149 (15)0.0161 (16)0.0203 (16)0.0000.0013 (13)0.000
C10.0236 (15)0.0212 (14)0.0228 (15)0.0026 (12)0.0013 (12)0.0011 (12)
C20.0220 (16)0.0310 (18)0.0345 (19)0.0021 (13)0.0010 (14)0.0036 (15)
C30.0256 (17)0.0336 (18)0.0294 (17)0.0077 (14)0.0024 (14)0.0045 (15)
C40.0311 (17)0.0233 (16)0.0276 (16)0.0032 (13)0.0045 (13)0.0055 (13)
C50.0260 (15)0.0163 (14)0.0235 (15)0.0008 (12)0.0029 (12)0.0002 (12)
C60.0192 (14)0.0226 (15)0.0235 (15)0.0006 (11)0.0006 (12)0.0015 (12)
C70.0258 (15)0.0177 (13)0.0179 (13)0.0029 (12)0.0011 (12)0.0001 (11)
C80.0199 (14)0.0238 (16)0.0230 (15)0.0014 (12)0.0018 (11)0.0023 (13)
C90.0365 (18)0.0214 (16)0.0239 (16)0.0030 (14)0.0006 (13)0.0025 (13)
C100.040 (3)0.020 (2)0.025 (2)0.0000.003 (2)0.000
C110.0244 (15)0.0240 (16)0.0235 (15)0.0002 (12)0.0027 (12)0.0022 (12)
N30.0240 (14)0.0321 (16)0.0375 (17)0.0040 (12)0.0005 (12)0.0113 (13)
N40.0269 (15)0.0324 (16)0.0348 (16)0.0033 (12)0.0041 (12)0.0093 (13)
N50.0208 (14)0.0441 (19)0.0444 (19)0.0014 (13)0.0018 (13)0.0160 (15)
C120.0275 (17)0.0300 (17)0.0228 (16)0.0002 (14)0.0002 (12)0.0000 (13)
O1W0.0299 (12)0.0258 (12)0.0280 (12)0.0058 (10)0.0040 (10)0.0057 (10)
O2W0.0336 (13)0.0273 (12)0.0323 (13)0.0075 (10)0.0053 (11)0.0050 (10)
Geometric parameters (Å, º) top
Zr1—O32.203 (2)C3—H3A0.9500
Zr1—O3i2.203 (2)C4—C51.384 (4)
Zr1—O1i2.232 (2)C4—H4A0.9500
Zr1—O12.232 (2)C5—C71.505 (4)
Zr1—O52.234 (2)C8—C91.384 (5)
Zr1—O5i2.234 (2)C8—C111.503 (5)
Zr1—N1i2.366 (3)C9—C101.388 (4)
Zr1—N12.366 (3)C9—H9A0.9500
Zr1—N22.378 (4)C10—C9i1.388 (4)
O1—C61.304 (4)C10—H10A0.9500
O2—C61.222 (4)N3—C121.327 (4)
O3—C71.294 (4)N3—H3NA0.7713
O4—C71.225 (4)N3—H3NB0.8647
O5—C111.297 (4)N4—C121.329 (4)
O6—C111.217 (4)N4—H4NA0.8289
N1—C11.333 (4)N4—H4NB0.7790
N1—C51.334 (4)N5—C121.312 (4)
N2—C81.336 (4)N5—H5NA0.8832
N2—C8i1.336 (4)N5—H5NB0.7861
C1—C21.393 (5)O1W—H1WA0.8370
C1—C61.489 (5)O1W—H1WB0.8899
C2—C31.386 (5)O2W—H2WA0.8620
C2—H2A0.9500O2W—H2WB0.9408
C3—C41.382 (5)
O3—Zr1—O3i92.30 (12)N1—C1—C6113.2 (3)
O3—Zr1—O1i76.29 (8)C2—C1—C6124.6 (3)
O3i—Zr1—O1i133.53 (8)C3—C2—C1117.6 (3)
O3—Zr1—O1133.53 (8)C3—C2—H2A121.2
O3i—Zr1—O176.29 (8)C1—C2—H2A121.2
O1i—Zr1—O1141.94 (12)C4—C3—C2120.5 (3)
O3—Zr1—O577.18 (8)C4—C3—H3A119.8
O3i—Zr1—O5140.67 (8)C2—C3—H3A119.8
O1i—Zr1—O581.18 (9)C3—C4—C5117.8 (3)
O1—Zr1—O583.89 (9)C3—C4—H4A121.1
O3—Zr1—O5i140.67 (8)C5—C4—H4A121.1
O3i—Zr1—O5i77.18 (8)N1—C5—C4122.5 (3)
O1i—Zr1—O5i83.89 (9)N1—C5—C7111.5 (3)
O1—Zr1—O5i81.18 (9)C4—C5—C7126.0 (3)
O5—Zr1—O5i133.07 (12)O2—C6—O1124.9 (3)
O3—Zr1—N1i70.31 (8)O2—C6—C1121.0 (3)
O3i—Zr1—N1i66.58 (8)O1—C6—C1114.1 (3)
O1i—Zr1—N1i67.17 (9)O4—C7—O3124.9 (3)
O1—Zr1—N1i137.20 (9)O4—C7—C5121.7 (3)
O5—Zr1—N1i138.75 (9)O3—C7—C5113.4 (3)
O5i—Zr1—N1i70.75 (9)N2—C8—C9121.6 (3)
O3—Zr1—N166.58 (8)N2—C8—C11112.6 (3)
O3i—Zr1—N170.31 (8)C9—C8—C11125.9 (3)
O1i—Zr1—N1137.20 (9)C8—C9—C10118.1 (3)
O1—Zr1—N167.17 (9)C8—C9—H9A121.0
O5—Zr1—N170.75 (9)C10—C9—H9A121.0
O5i—Zr1—N1138.75 (9)C9—C10—C9i120.2 (4)
N1i—Zr1—N1115.98 (13)C9—C10—H10A119.9
O3—Zr1—N2133.85 (6)C9i—C10—H10A119.9
O3i—Zr1—N2133.85 (6)O6—C11—O5125.4 (3)
O1i—Zr1—N270.97 (6)O6—C11—C8121.6 (3)
O1—Zr1—N270.97 (6)O5—C11—C8113.1 (3)
O5—Zr1—N266.54 (6)C12—N3—H3NA123.4
O5i—Zr1—N266.54 (6)C12—N3—H3NB115.1
N1i—Zr1—N2122.01 (6)H3NA—N3—H3NB120.4
N1—Zr1—N2122.01 (6)C12—N4—H4NA114.6
C6—O1—Zr1125.7 (2)C12—N4—H4NB119.6
C7—O3—Zr1127.11 (19)H4NA—N4—H4NB122.8
C11—O5—Zr1125.4 (2)C12—N5—H5NA119.5
C1—N1—C5119.5 (3)C12—N5—H5NB120.7
C1—N1—Zr1119.9 (2)H5NA—N5—H5NB119.5
C5—N1—Zr1120.7 (2)N5—C12—N3119.5 (3)
C8—N2—C8i120.5 (4)N5—C12—N4121.6 (3)
C8—N2—Zr1119.8 (2)N3—C12—N4118.9 (3)
C8i—N2—Zr1119.8 (2)H1WA—O1W—H1WB113.4
N1—C1—C2122.2 (3)H2WA—O2W—H2WB114.3
O3—Zr1—O1—C65.4 (3)O3—Zr1—N2—C8i130.96 (17)
O3i—Zr1—O1—C674.6 (2)O3i—Zr1—N2—C8i49.04 (17)
O1i—Zr1—O1—C6138.4 (3)O1i—Zr1—N2—C8i83.72 (17)
O5—Zr1—O1—C671.2 (3)O1—Zr1—N2—C8i96.28 (17)
O5i—Zr1—O1—C6153.4 (3)O5—Zr1—N2—C8i172.17 (17)
N1i—Zr1—O1—C6104.6 (3)O5i—Zr1—N2—C8i7.83 (17)
N1—Zr1—O1—C60.5 (2)N1i—Zr1—N2—C8i38.12 (17)
N2—Zr1—O1—C6138.4 (3)N1—Zr1—N2—C8i141.88 (17)
O3i—Zr1—O3—C759.3 (2)C5—N1—C1—C20.3 (5)
O1i—Zr1—O3—C7166.3 (3)Zr1—N1—C1—C2179.3 (2)
O1—Zr1—O3—C713.9 (3)C5—N1—C1—C6179.9 (3)
O5—Zr1—O3—C782.4 (2)Zr1—N1—C1—C60.4 (4)
O5i—Zr1—O3—C7131.8 (2)N1—C1—C2—C31.2 (5)
N1i—Zr1—O3—C7123.4 (3)C6—C1—C2—C3179.2 (3)
N1—Zr1—O3—C78.1 (2)C1—C2—C3—C41.1 (5)
N2—Zr1—O3—C7120.7 (2)C2—C3—C4—C50.2 (5)
O3—Zr1—O5—C11166.3 (3)C1—N1—C5—C40.7 (5)
O3i—Zr1—O5—C11116.0 (3)Zr1—N1—C5—C4179.7 (2)
O1i—Zr1—O5—C1188.4 (3)C1—N1—C5—C7177.9 (3)
O1—Zr1—O5—C1156.4 (3)Zr1—N1—C5—C71.7 (3)
O5i—Zr1—O5—C1115.4 (2)C3—C4—C5—N10.7 (5)
N1i—Zr1—O5—C11127.9 (2)C3—C4—C5—C7177.7 (3)
N1—Zr1—O5—C11124.3 (3)Zr1—O1—C6—O2179.8 (3)
N2—Zr1—O5—C1115.4 (2)Zr1—O1—C6—C10.4 (4)
O3—Zr1—N1—C1175.0 (3)N1—C1—C6—O2179.8 (3)
O3i—Zr1—N1—C183.4 (2)C2—C1—C6—O20.6 (5)
O1i—Zr1—N1—C1143.0 (2)N1—C1—C6—O10.0 (4)
O1—Zr1—N1—C10.4 (2)C2—C1—C6—O1179.7 (3)
O5—Zr1—N1—C191.0 (2)Zr1—O3—C7—O4170.7 (2)
O5i—Zr1—N1—C143.3 (3)Zr1—O3—C7—C59.9 (4)
N1i—Zr1—N1—C1133.3 (3)N1—C5—C7—O4176.1 (3)
N2—Zr1—N1—C146.7 (3)C4—C5—C7—O45.4 (5)
O3—Zr1—N1—C54.5 (2)N1—C5—C7—O34.5 (4)
O3i—Zr1—N1—C597.1 (2)C4—C5—C7—O3174.0 (3)
O1i—Zr1—N1—C536.6 (3)C8i—N2—C8—C90.9 (2)
O1—Zr1—N1—C5180.0 (3)Zr1—N2—C8—C9179.1 (2)
O5—Zr1—N1—C588.5 (2)C8i—N2—C8—C11178.4 (3)
O5i—Zr1—N1—C5137.1 (2)Zr1—N2—C8—C111.6 (3)
N1i—Zr1—N1—C547.2 (2)N2—C8—C9—C101.8 (5)
N2—Zr1—N1—C5132.8 (2)C11—C8—C9—C10177.4 (3)
O3—Zr1—N2—C849.04 (17)C8—C9—C10—C9i0.9 (2)
O3i—Zr1—N2—C8130.96 (17)Zr1—O5—C11—O6160.2 (3)
O1i—Zr1—N2—C896.28 (17)Zr1—O5—C11—C819.8 (4)
O1—Zr1—N2—C883.72 (17)N2—C8—C11—O6169.6 (3)
O5—Zr1—N2—C87.83 (17)C9—C8—C11—O611.1 (5)
O5i—Zr1—N2—C8172.17 (17)N2—C8—C11—O510.4 (4)
N1i—Zr1—N2—C8141.88 (17)C9—C8—C11—O5168.9 (3)
N1—Zr1—N2—C838.12 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3NA···O10.772.233.003 (4)175
N3—H3NB···O2Wi0.862.152.930 (4)150
N4—H4NA···O2Wi0.832.042.818 (4)156
N4—H4NB···O1Wii0.782.062.834 (4)175
N5—H5NA···O20.881.952.828 (4)171
N5—H5NB···O3iii0.792.453.143 (4)148
N5—H5NB···O4iii0.792.523.171 (4)141
O1W—H1WA···O3iv0.842.333.041 (3)143
O1W—H1WA···O5iv0.842.383.076 (3)140
O1W—H1WB···O60.891.872.761 (3)175
O2W—H2WA···O5iv0.862.072.909 (3)165
O2W—H2WA···O6iv0.862.573.085 (3)119
O2W—H2WB···O4v0.941.842.745 (3)160
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula(CH6N3)2[Zr(C7H3NO4)3]·4H2O
Mr778.77
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)120
a, b, c (Å)17.2444 (9), 10.8583 (5), 16.5268 (8)
V3)3094.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.17 × 0.15 × 0.07
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.884, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
32229, 4116, 2884
Rint0.068
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.146, 1.07
No. of reflections4116
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.47

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3NA···O10.772.233.003 (4)175
N3—H3NB···O2Wi0.862.152.930 (4)150
N4—H4NA···O2Wi0.832.042.818 (4)156
N4—H4NB···O1Wii0.782.062.834 (4)175
N5—H5NA···O20.881.952.828 (4)171
N5—H5NB···O3iii0.792.453.143 (4)148
N5—H5NB···O4iii0.792.523.171 (4)141
O1W—H1WA···O3iv0.842.333.041 (3)143
O1W—H1WA···O5iv0.842.383.076 (3)140
O1W—H1WB···O60.891.872.761 (3)175
O2W—H2WA···O5iv0.862.072.909 (3)165
O2W—H2WA···O6iv0.862.573.085 (3)119
O2W—H2WB···O4v0.941.842.745 (3)160
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x, y1, z.
 

Acknowledgements

The authors wish to express their deepest appreciation to the late Professor Dr. H Aghabozorg who has inspired, advised and assisted during this study.

References

First citationAghabozorg, H., Moghimi, A., Manteghi, F. & Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationAttar Gharamaleki, J., Aghabozorg, H., Derikvand, Z. & Yousefi, M. (2009). Acta Cryst. E65, m824–m825.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerikvand, Z., Talei, G. R., Aghabozorg, H., Olmstead, M. M., Azadbakht, A., Nemati, A. & Attar Gharamaleki, J. (2010). Chin. J. Chem. 28, 2167–2173.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M. (2010). Acta Cryst. E66, m647–m648.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M., Abbasi, F., Kukovec, B. M. & Nasirizadeh, N. (2011b). J. Coord. Chem. 64, 1718–1728.  Web of Science CSD CrossRef CAS Google Scholar
First citationTabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M., Kukovec, B. M. & Kazeroonizadeh, M. (2011a). Polyhedron, 30, 1114–1119.  Web of Science CSD CrossRef CAS Google Scholar
First citationTabatabaee, M., Tahriri, M., Tahriri, M., Dušek, M. & Fejfarová, K. (2011c). Acta Cryst. E67, m769–m770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M., Tahriri, M., Tahriri, M., Ozawa, Y., Neumuller, B., Fujioka, H. & Toriumi, K. (2012). Polyhedron, 33, 336–340.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m462-m463
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds