organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Fluoro-3,3-di­methyl-1,3-di­hydro-1λ3-benzo[d][1,2]iodoxole

aUniversité de Sherbrooke, Département de chimie, 2500 boul. de l'Université, Sherbrooke, Québec, Canada J1K 2R1
*Correspondence e-mail: claude.legault@usherbrooke.ca

(Received 16 March 2012; accepted 23 March 2012; online 31 March 2012)

The asymmetric unit of the title compound, C9H10FIO, contains two independent mol­ecules which are weakly bound by inter­molecular O⋯I inter­actions [3.046 (4) and 2.947 (4) Å]. The two covalent I—F bonds are slightly longer than the two I—O bonds.

Related literature

For information on the chemistry of hypervalent compounds, see: Zhdankin & Stang (2002[Zhdankin, V. V. & Stang, P. J. (2002). Chem. Rev. 102, 2523-2584.]); Wirth (2005[Wirth, T. (2005). Angew. Chem. Int. Ed. 44, 3656-3665.]). For the synthesis and structural analysis of the bromo analog of the title compound, see: Braddock et al. (2006[Braddock, D. C., Cansell, G., Hermitage, S. A. & White, A. J. P. (2006). Chem. Commun. pp. 1442-1444.]). For the synthesis and structural analysis of the chloro analog of the title compound, see: Amey & Martin (1979[Amey, R. L. & Martin, J. C. (1979). J. Org. Chem. 44, 1779-1784.]); Niedermann et al. (2010[Niedermann, K., Welch, J. M., Koller, R., Cvengro, J., Santschi, N., Battaglia, P. & Togni, A. (2010). Tetrahedron, 66, 5753-5761.]). For related information on the trans effect in hypervalent iodine compounds, see: Ochiai et al. (2006[Ochiai, M., Sueda, T., Miyamoto, K., Kiprof, P. & Zhdankin, V. V. (2006). Angew. Chem. Int. Ed. 45, 8203-8206.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10FIO

  • Mr = 280.07

  • Triclinic, [P \overline 1]

  • a = 7.983 (6) Å

  • b = 10.188 (8) Å

  • c = 11.691 (5) Å

  • α = 83.13 (5)°

  • β = 79.01 (5)°

  • γ = 78.27 (6)°

  • V = 910.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.48 mm−1

  • T = 193 K

  • 0.4 × 0.4 × 0.3 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (NRCVAX; Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]] Tmin = 0.337, Tmax = 0.422

  • 3408 measured reflections

  • 3408 independent reflections

  • 2833 reflections with I > 2σ(I)

  • 1 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.073

  • S = 1.05

  • 3408 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −1.22 e Å−3

Table 1
Selected bond lengths (Å)

C1—I1 2.085 (4)
C10—I2 2.094 (5)
F1—I1 2.045 (3)
F2—I2 2.046 (3)
I1—O1 2.022 (3)
I2—O2 2.017 (3)

Data collection: DIFRAC (Flack et al., 1992[Flack, H. D., Blanc, E. & Schwarzenbach, D. (1992). J. Appl. Cryst. 25, 455-459.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hypervalent iodine compounds have received a growing attention in recent years. This is not surprising considering that these reagents are polyvalent electrophiles and mild oxidants (Zhdankin & Stang, 2002; Wirth, 2005). In this family, haloiodanes are interesting yet under exploited electrophilic halogen sources. A research project currently underway in our group aims to exploit haloiodanes as electrophilic halogen sources. We developed a synthesis to obtain the title compound in order to evaluate and compare its reactivity with its chloro and bromo analogs. This is the first reported synthesis of the title compound.

In the crystal structure, two independent molecules, as shown in Fig. 1, are weakly bound by O···I interactions [3.046 (4) and 2.947 (4)Å]. The two I—O bonds observed measure 2.022 (3) Å and 2.017 (3) Å, respectively. These are shorter than the corresponding I—O bonds found in the chloro (2.042 (2) Å) (Amey & Martin, 1979; Niedermann et al., 2010) and bromo (2.050 (5) Å) (Braddock et al., 2006) analogs. This is consistent with the trans effect behavior described in a variety of hypervalent λ3-iodane compounds (Ochiai et al., 2006). In contrast to the bromo analog, the title compound was found to be completely unreactive for the fluorination of anisole. While the title compound is a stable solid, caution must be taken when drying the crude solution. The use of anhydrous MgSO4 to dry the solution results in the displacement of the fluorine by a sulfate dianion. Drying by co-evaporation with benzene prevents this side reaction. A more in-depth study of the reactivity of this novel fluoroiodane is currently underway.

Related literature top

For information on the chemistry of hypervalent compounds, see: Zhdankin & Stang (2002); Wirth (2005). For the synthesis and structural analysis of the bromo analog of the title compound, see: Braddock et al. (2006). For the synthesis and structural analysis of the chloro analog of the title compound, see: Amey & Martin (1979); Niedermann et al. (2010). For related information on the trans effect in hypervalent iodine compounds, see: Ochiai et al. (2006).

Experimental top

2-(2-Iodophenyl)-propan-2-ol (164 mg, 0.63 mmol) was dissolved in MeCN (3 ml) and SelectFluor (289 mg, 0.81 mmol) was added in one portion. The reaction was then stirred at room temperature for 16 h. The mixture was concentrated under reduced pressure. The crude product was dissolved in CH2Cl2 (10 ml), washed once with water (10 ml), and concentrated under reduced pressure. The crude product was dried by coevaporation with benzene. Crystals were grown by slow diffusion of a pentane solution on a CH2Cl2 solution of the title compound at room temperature.

Refinement top

The hydrogen atoms were placed at idealized calculated geometric positions and refined isotropically using a riding model.

Structure description top

Hypervalent iodine compounds have received a growing attention in recent years. This is not surprising considering that these reagents are polyvalent electrophiles and mild oxidants (Zhdankin & Stang, 2002; Wirth, 2005). In this family, haloiodanes are interesting yet under exploited electrophilic halogen sources. A research project currently underway in our group aims to exploit haloiodanes as electrophilic halogen sources. We developed a synthesis to obtain the title compound in order to evaluate and compare its reactivity with its chloro and bromo analogs. This is the first reported synthesis of the title compound.

In the crystal structure, two independent molecules, as shown in Fig. 1, are weakly bound by O···I interactions [3.046 (4) and 2.947 (4)Å]. The two I—O bonds observed measure 2.022 (3) Å and 2.017 (3) Å, respectively. These are shorter than the corresponding I—O bonds found in the chloro (2.042 (2) Å) (Amey & Martin, 1979; Niedermann et al., 2010) and bromo (2.050 (5) Å) (Braddock et al., 2006) analogs. This is consistent with the trans effect behavior described in a variety of hypervalent λ3-iodane compounds (Ochiai et al., 2006). In contrast to the bromo analog, the title compound was found to be completely unreactive for the fluorination of anisole. While the title compound is a stable solid, caution must be taken when drying the crude solution. The use of anhydrous MgSO4 to dry the solution results in the displacement of the fluorine by a sulfate dianion. Drying by co-evaporation with benzene prevents this side reaction. A more in-depth study of the reactivity of this novel fluoroiodane is currently underway.

For information on the chemistry of hypervalent compounds, see: Zhdankin & Stang (2002); Wirth (2005). For the synthesis and structural analysis of the bromo analog of the title compound, see: Braddock et al. (2006). For the synthesis and structural analysis of the chloro analog of the title compound, see: Amey & Martin (1979); Niedermann et al. (2010). For related information on the trans effect in hypervalent iodine compounds, see: Ochiai et al. (2006).

Computing details top

Data collection: DIFRAC (Flack et al., 1992); cell refinement: DIFRAC (Flack et al., 1992); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The I···O interactions are shown by dotted lines. H atoms are depicted as circles of arbitrary size.
1-Fluoro-3,3-dimethyl-1,3-dihydro-1λ3-benzo[d][1,2]iodoxole top
Crystal data top
C9H10FIOZ = 4
Mr = 280.07F(000) = 536
Triclinic, P1Dx = 2.043 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.983 (6) ÅCell parameters from 20 reflections
b = 10.188 (8) Åθ = 10–12.5°
c = 11.691 (5) ŵ = 3.48 mm1
α = 83.13 (5)°T = 193 K
β = 79.01 (5)°Prism, white
γ = 78.27 (6)°0.4 × 0.4 × 0.3 mm
V = 910.6 (11) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0
Graphite monochromatorθmax = 25.6°, θmin = 1.8°
ω scansh = 99
Absorption correction: ψ scan
(NRCVAX; Gabe et al., 1989]
k = 012
Tmin = 0.337, Tmax = 0.422l = 1314
3408 measured reflections1 standard reflections every 100 reflections
3408 independent reflections intensity decay: none
2833 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.462P]
where P = (Fo2 + 2Fc2)/3
3408 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
C9H10FIOγ = 78.27 (6)°
Mr = 280.07V = 910.6 (11) Å3
Triclinic, P1Z = 4
a = 7.983 (6) ÅMo Kα radiation
b = 10.188 (8) ŵ = 3.48 mm1
c = 11.691 (5) ÅT = 193 K
α = 83.13 (5)°0.4 × 0.4 × 0.3 mm
β = 79.01 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2833 reflections with I > 2σ(I)
Absorption correction: ψ scan
(NRCVAX; Gabe et al., 1989]
Rint = 0
Tmin = 0.337, Tmax = 0.4221 standard reflections every 100 reflections
3408 measured reflections intensity decay: none
3408 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.05Δρmax = 0.64 e Å3
3408 reflectionsΔρmin = 1.22 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The DIFRAC(Flack, 1992) program was used for centering, indexing, and data collection. One standard reflection was measured every 100 reflections, no decay was observed during data collection. The data were corrected for absorption by empirical methods based on psi scans and reduced with the NRCVAX (Gabe, 1989) programs. They were solved using SHELXS97(Sheldrick, 2008) and refined by full-matrix least squares on F2 with SHELXL97(Sheldrick, 2008). The non-hydrogen atoms were refined anisotropically. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5725 (6)0.6621 (4)0.4130 (4)0.0211 (9)
C20.7221 (6)0.5801 (5)0.4421 (4)0.0272 (10)
H20.80380.53050.38530.033*
C30.7484 (7)0.5727 (5)0.5550 (5)0.0339 (12)
H30.8490.51640.57770.041*
C40.6295 (6)0.6467 (5)0.6364 (4)0.0288 (11)
H40.64890.63990.71480.035*
C50.4833 (6)0.7300 (5)0.6056 (4)0.0270 (10)
H50.40450.78270.66170.032*
C60.4513 (6)0.7368 (4)0.4917 (4)0.0227 (9)
C70.2966 (6)0.8263 (4)0.4478 (4)0.0227 (9)
C80.3279 (7)0.9700 (5)0.4218 (4)0.0299 (11)
H8A0.22721.02730.39350.045*
H8B0.43160.97230.36180.045*
H8C0.34511.00310.49330.045*
C90.1276 (6)0.8183 (5)0.5324 (4)0.0309 (11)
H9A0.03110.87760.50080.046*
H9B0.13530.84670.60810.046*
H9C0.10770.72550.54260.046*
C100.0885 (6)0.8468 (4)0.0402 (4)0.0215 (9)
C110.2429 (6)0.9114 (5)0.0057 (5)0.0320 (12)
H110.32640.97040.05420.038*
C120.2712 (6)0.8866 (5)0.1023 (5)0.0308 (11)
H120.37580.92920.12910.037*
C130.1484 (6)0.8006 (5)0.1711 (4)0.0302 (11)
H130.16870.78440.24520.036*
C140.0050 (6)0.7373 (4)0.1332 (4)0.0245 (10)
H140.08870.6780.18140.029*
C150.0367 (6)0.7600 (4)0.0255 (4)0.0212 (9)
C160.1966 (6)0.6918 (4)0.0259 (4)0.0204 (9)
C170.3625 (6)0.6881 (5)0.0644 (4)0.0267 (10)
H17A0.46250.64340.02810.04*
H17B0.37630.78020.09370.04*
H17C0.35540.63840.12960.04*
C180.1750 (6)0.5513 (4)0.0787 (4)0.0274 (10)
H18A0.27840.50750.11180.041*
H18B0.16010.49850.01780.041*
H18C0.07260.55740.14060.041*
F10.7418 (4)0.5802 (3)0.1913 (3)0.0372 (7)
F20.2633 (4)0.9676 (3)0.2491 (3)0.0437 (8)
I10.50006 (4)0.68702 (3)0.24847 (2)0.02221 (10)
I20.01657 (4)0.86419 (3)0.20011 (2)0.02531 (10)
O10.2750 (4)0.7761 (3)0.3428 (3)0.0283 (7)
O20.2131 (4)0.7722 (3)0.1146 (3)0.0250 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (2)0.018 (2)0.022 (2)0.0066 (18)0.0071 (18)0.0021 (17)
C20.022 (2)0.027 (2)0.031 (3)0.000 (2)0.004 (2)0.0025 (19)
C30.031 (3)0.032 (3)0.041 (3)0.005 (2)0.018 (2)0.005 (2)
C40.037 (3)0.030 (3)0.023 (2)0.010 (2)0.015 (2)0.0036 (19)
C50.038 (3)0.027 (2)0.018 (2)0.012 (2)0.005 (2)0.0010 (18)
C60.024 (2)0.020 (2)0.024 (2)0.0023 (18)0.0066 (19)0.0019 (17)
C70.022 (2)0.025 (2)0.020 (2)0.0004 (18)0.0024 (18)0.0050 (18)
C80.036 (3)0.024 (2)0.026 (2)0.000 (2)0.003 (2)0.0009 (19)
C90.027 (3)0.034 (3)0.027 (3)0.002 (2)0.005 (2)0.003 (2)
C100.020 (2)0.022 (2)0.021 (2)0.0058 (18)0.0004 (18)0.0009 (17)
C110.021 (2)0.025 (2)0.045 (3)0.001 (2)0.000 (2)0.002 (2)
C120.021 (2)0.032 (3)0.040 (3)0.007 (2)0.012 (2)0.008 (2)
C130.033 (3)0.027 (2)0.034 (3)0.013 (2)0.012 (2)0.007 (2)
C140.032 (3)0.023 (2)0.021 (2)0.009 (2)0.0069 (19)0.0009 (18)
C150.022 (2)0.018 (2)0.024 (2)0.0076 (18)0.0021 (18)0.0011 (17)
C160.017 (2)0.024 (2)0.018 (2)0.0022 (18)0.0009 (17)0.0054 (17)
C170.025 (2)0.029 (2)0.024 (2)0.002 (2)0.0009 (19)0.0056 (19)
C180.030 (3)0.024 (2)0.027 (2)0.002 (2)0.007 (2)0.0010 (19)
F10.0276 (16)0.0464 (18)0.0335 (16)0.0017 (13)0.0032 (13)0.0155 (13)
F20.0304 (17)0.0502 (19)0.0433 (18)0.0012 (14)0.0115 (14)0.0189 (15)
I10.02218 (17)0.02611 (17)0.01820 (16)0.00355 (12)0.00138 (12)0.00623 (11)
I20.02468 (18)0.02723 (17)0.02327 (17)0.00611 (13)0.00320 (12)0.00869 (12)
O10.0204 (17)0.0395 (19)0.0243 (17)0.0040 (14)0.0070 (14)0.0113 (14)
O20.0195 (16)0.0316 (17)0.0235 (16)0.0007 (13)0.0009 (13)0.0122 (14)
Geometric parameters (Å, º) top
C1—C61.374 (6)C10—I22.094 (5)
C1—C21.386 (6)C11—H110.950
C1—I12.085 (4)C11—C121.385 (7)
C2—C31.367 (7)C12—C131.377 (7)
C2—H20.950C13—C141.389 (7)
C3—C41.382 (7)C14—C151.385 (6)
C4—C51.378 (7)C15—C161.519 (6)
C5—C61.394 (6)C16—O21.437 (5)
C6—C71.514 (6)C16—C181.519 (6)
C7—O11.437 (5)C16—C171.525 (6)
C7—C81.521 (6)F1—I12.045 (3)
C7—C91.523 (6)F2—I22.046 (3)
C10—C151.372 (6)I1—O12.022 (3)
C10—C111.382 (6)I2—O22.017 (3)
C6—C1—C2123.2 (4)H11—C11—C10121.3
C6—C1—I1111.5 (3)C13—C12—C11120.3 (5)
C2—C1—I1125.3 (4)C12—C13—C14120.6 (5)
C3—C2—C1117.9 (5)C15—C14—C13120.4 (4)
H2—C2—C1121.0C10—C15—C14117.3 (4)
C2—C3—C4120.4 (5)C10—C15—C16118.2 (4)
C5—C4—C3120.9 (4)C14—C15—C16124.5 (4)
C4—C5—C6119.7 (5)O2—C16—C15107.5 (3)
C1—C6—C5117.7 (4)O2—C16—C18110.3 (4)
C1—C6—C7118.1 (4)C15—C16—C18109.6 (4)
C5—C6—C7124.2 (4)O2—C16—C17106.0 (3)
O1—C7—C6108.1 (4)C15—C16—C17111.9 (4)
O1—C7—C8109.8 (4)C18—C16—C17111.3 (4)
C6—C7—C8109.9 (4)O1—I1—F1166.40 (12)
O1—C7—C9104.8 (4)O1—I1—C180.58 (16)
C6—C7—C9112.1 (4)F1—I1—C186.21 (16)
C8—C7—C9111.8 (4)O2—I2—F2166.81 (13)
C15—C10—C11124.0 (4)O2—I2—C1080.30 (16)
C15—C10—I2111.0 (3)F2—I2—C1087.13 (16)
C11—C10—I2124.9 (4)C7—O1—I1113.7 (3)
C10—C11—C12117.4 (5)C16—O2—I2113.6 (3)
C6—C1—C2—C30.7 (7)C13—C14—C15—C100.2 (6)
I1—C1—C2—C3178.5 (4)C13—C14—C15—C16177.5 (4)
C1—C2—C3—C40.8 (7)C10—C15—C16—O222.0 (5)
C2—C3—C4—C50.6 (8)C14—C15—C16—O2160.3 (4)
C3—C4—C5—C62.1 (7)C10—C15—C16—C1897.9 (5)
C2—C1—C6—C50.8 (7)C14—C15—C16—C1879.8 (5)
I1—C1—C6—C5179.8 (3)C10—C15—C16—C17138.1 (4)
C2—C1—C6—C7177.8 (4)C14—C15—C16—C1744.3 (6)
I1—C1—C6—C72.8 (5)C6—C1—I1—O111.4 (3)
C4—C5—C6—C12.2 (7)C2—C1—I1—O1168.0 (4)
C4—C5—C6—C7179.0 (4)C6—C1—I1—F1171.9 (3)
C1—C6—C7—O121.8 (5)C2—C1—I1—F18.8 (4)
C5—C6—C7—O1161.3 (4)C15—C10—I2—O213.5 (3)
C1—C6—C7—C898.0 (5)C11—C10—I2—O2167.8 (4)
C5—C6—C7—C878.8 (5)C15—C10—I2—F2170.5 (3)
C1—C6—C7—C9136.9 (4)C11—C10—I2—F28.2 (4)
C5—C6—C7—C946.3 (6)C6—C7—O1—I131.0 (4)
C15—C10—C11—C120.3 (7)C8—C7—O1—I189.0 (4)
I2—C10—C11—C12178.8 (3)C9—C7—O1—I1150.7 (3)
C10—C11—C12—C130.0 (7)F1—I1—O1—C738.2 (7)
C11—C12—C13—C140.2 (7)C1—I1—O1—C724.4 (3)
C12—C13—C14—C150.1 (7)C15—C16—O2—I233.1 (4)
C11—C10—C15—C140.4 (6)C18—C16—O2—I286.4 (4)
I2—C10—C15—C14179.0 (3)C17—C16—O2—I2153.0 (3)
C11—C10—C15—C16177.4 (4)F2—I2—O2—C1644.7 (7)
I2—C10—C15—C161.2 (5)C10—I2—O2—C1626.9 (3)

Experimental details

Crystal data
Chemical formulaC9H10FIO
Mr280.07
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)7.983 (6), 10.188 (8), 11.691 (5)
α, β, γ (°)83.13 (5), 79.01 (5), 78.27 (6)
V3)910.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.48
Crystal size (mm)0.4 × 0.4 × 0.3
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(NRCVAX; Gabe et al., 1989]
Tmin, Tmax0.337, 0.422
No. of measured, independent and
observed [I > 2σ(I)] reflections
3408, 3408, 2833
Rint0
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.05
No. of reflections3408
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 1.22

Computer programs: DIFRAC (Flack et al., 1992), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
C1—I12.085 (4)F2—I22.046 (3)
C10—I22.094 (5)I1—O12.022 (3)
F1—I12.045 (3)I2—O22.017 (3)
 

Acknowledgements

This work was supported by the National Science and Engineering Research Council (NSERC) of Canada, the Fonds Québecois de Recherche – Nature et Technologies (FQRNT), the Canada Foundation for Innovation (CFI), the FQRNT Centre in Green Chemistry and Catalysis (CGCC), and the Université de Sherbrooke. We thank Daniel Fortin for the structural analysis.

References

First citationAmey, R. L. & Martin, J. C. (1979). J. Org. Chem. 44, 1779–1784.  CrossRef CAS Web of Science Google Scholar
First citationBraddock, D. C., Cansell, G., Hermitage, S. A. & White, A. J. P. (2006). Chem. Commun. pp. 1442–1444.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D., Blanc, E. & Schwarzenbach, D. (1992). J. Appl. Cryst. 25, 455–459.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNiedermann, K., Welch, J. M., Koller, R., Cvengro, J., Santschi, N., Battaglia, P. & Togni, A. (2010). Tetrahedron, 66, 5753–5761.  Web of Science CSD CrossRef CAS Google Scholar
First citationOchiai, M., Sueda, T., Miyamoto, K., Kiprof, P. & Zhdankin, V. V. (2006). Angew. Chem. Int. Ed. 45, 8203–8206.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWirth, T. (2005). Angew. Chem. Int. Ed. 44, 3656–3665.  Web of Science CrossRef CAS Google Scholar
First citationZhdankin, V. V. & Stang, P. J. (2002). Chem. Rev. 102, 2523–2584.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds