organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1177-o1178

N-Acetyl-N-[2,4-di­cyano-1-(4-meth­­oxy­phen­yl)-9,10-di­hydro­phenanthren-3-yl]acetamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 March 2012; accepted 21 March 2012; online 24 March 2012)

In the title compound, C27H21N3O3, the cyclo­hexa-1,3-diene ring has a screw-boat conformation, and the fused ring system is folded, the dihedral angle between the outer benzene rings being 27.61 (6)°. The N-acetyl­acetamide residue (r.m.s. deviation = 0.0935 Å) has an anti conformation and is essentially perpendicular to the benzene ring to which it is connected [dihedral angle = 89.14 (6)°]; the meth­oxy­benzene group is also twisted out of this ring [dihedral angle = 59.47 (7)°]. The three-dimensional architecture is consolidated by C—H⋯O and C—H⋯π inter­actions.

Related literature

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010[Wang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337-12342.]); Rostom et al. (2011[Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260-1272.]). For related structures, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.]); Al-Youbi et al. (2012[Al-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027-o1028.]). For additional conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H21N3O3

  • Mr = 435.47

  • Orthorhombic, P b c a

  • a = 8.3321 (4) Å

  • b = 19.4037 (11) Å

  • c = 27.5887 (14) Å

  • V = 4460.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.966, Tmax = 0.991

  • 11528 measured reflections

  • 5106 independent reflections

  • 3488 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.166

  • S = 1.02

  • 5106 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4–C9 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.40 3.255 (3) 150
C25—H25⋯O2ii 0.95 2.59 3.154 (3) 119
C26—H26⋯O2ii 0.95 2.54 3.141 (3) 121
C27—H27A⋯O1iii 0.98 2.41 3.160 (3) 133
C3—H3BCg1iv 0.99 2.74 3.696 (3) 164
C19—H19ACg2v 0.98 2.82 3.618 (3) 139
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The biological activity of phenanthrene compounds (Wang et al. 2010; Rostom et al., 2011), has motivated structural studies on these systems Asiri et al., 2011; Al-Youbi et al., 2012) and led to the characterization of the title compound, (I).

In (I), Fig. 1, the cyclohexa-1,3-diene ring has a screw-boat conformation as quantified by the following geometric parameters (Cremer & Pople, 1975): puckering parameters q2 = 0.499 (2) Å and q3 = 0.176 (2) Å, and amplitudes: Q = 0.529 (2) Å, θ = 70.6 (2)° and φ2 = 91.2 (3)°. The benzene rings of the 1,2-dihydronaphthalene and methoxybenzene residues form dihedral angles of 27.61 (6) and 59.47 (7)°, respectively, with the central dicyanobenzene ring, indicating a fold in the fused ring system and a twist of the methoxybenzene ring out of the plane of the benzene ring to which it is connected. The N-acetylacetamide residue has an anti conformation and is essentially planar. The r.m.s. deviation for the seven fitted atoms = 0.0935 Å with maximum deviations of 0.1476 (15) Å for the O2 atom and -0.1378 (15) Å for the C19 atom. This residue is inclined in a perpendicular fashion with respect to the benzene ring to which it is connected, forming a dihedral angle of 89.14 (6)°.

The three-dimensional architecture of (I) is stabilized by C—H···O and C—H···π interactions, Fig. 2 and Table 1. Notably, the O2 atom of the N-acetylacetamide, i.e. the oxygen atom residue directed away from the rest of the molecule, participates in three C—H···O interactions, Table 1.

Related literature top

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010); Rostom et al. (2011). For related structures, see: Asiri et al. (2011); Al-Youbi et al. (2012). For additional conformational analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 3-amino-1-(4-methoxyphenyl)-9,10- dihydrophenanthrene-2,4-dicarbonitrile (0.01 mmol), acetic anhydride (5 ml) and conc. H2SO4 (0.5 ml) was heated over a boiling water bath for 10 min. The solution was cooled, poured onto ice-cold water, treated with 20% NaOH solution till alkaline (pH = 11). The crude solid product was filtered and recrystallized from ethanol. Yield: 68%. M.pt: 455–457 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

The biological activity of phenanthrene compounds (Wang et al. 2010; Rostom et al., 2011), has motivated structural studies on these systems Asiri et al., 2011; Al-Youbi et al., 2012) and led to the characterization of the title compound, (I).

In (I), Fig. 1, the cyclohexa-1,3-diene ring has a screw-boat conformation as quantified by the following geometric parameters (Cremer & Pople, 1975): puckering parameters q2 = 0.499 (2) Å and q3 = 0.176 (2) Å, and amplitudes: Q = 0.529 (2) Å, θ = 70.6 (2)° and φ2 = 91.2 (3)°. The benzene rings of the 1,2-dihydronaphthalene and methoxybenzene residues form dihedral angles of 27.61 (6) and 59.47 (7)°, respectively, with the central dicyanobenzene ring, indicating a fold in the fused ring system and a twist of the methoxybenzene ring out of the plane of the benzene ring to which it is connected. The N-acetylacetamide residue has an anti conformation and is essentially planar. The r.m.s. deviation for the seven fitted atoms = 0.0935 Å with maximum deviations of 0.1476 (15) Å for the O2 atom and -0.1378 (15) Å for the C19 atom. This residue is inclined in a perpendicular fashion with respect to the benzene ring to which it is connected, forming a dihedral angle of 89.14 (6)°.

The three-dimensional architecture of (I) is stabilized by C—H···O and C—H···π interactions, Fig. 2 and Table 1. Notably, the O2 atom of the N-acetylacetamide, i.e. the oxygen atom residue directed away from the rest of the molecule, participates in three C—H···O interactions, Table 1.

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010); Rostom et al. (2011). For related structures, see: Asiri et al. (2011); Al-Youbi et al. (2012). For additional conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
N-Acetyl-N-[2,4-dicyano-1-(4-methoxyphenyl)-9,10- dihydrophenanthren-3-yl]acetamide top
Crystal data top
C27H21N3O3F(000) = 1824
Mr = 435.47Dx = 1.297 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2867 reflections
a = 8.3321 (4) Åθ = 2.4–27.5°
b = 19.4037 (11) ŵ = 0.09 mm1
c = 27.5887 (14) ÅT = 100 K
V = 4460.4 (4) Å3Prism, light-brown
Z = 80.40 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5106 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3488 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω scanh = 107
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1325
Tmin = 0.966, Tmax = 0.991l = 3521
11528 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0647P)2 + 2.7824P]
where P = (Fo2 + 2Fc2)/3
5106 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C27H21N3O3V = 4460.4 (4) Å3
Mr = 435.47Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.3321 (4) ŵ = 0.09 mm1
b = 19.4037 (11) ÅT = 100 K
c = 27.5887 (14) Å0.40 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5106 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3488 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.991Rint = 0.041
11528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
5106 reflectionsΔρmin = 0.29 e Å3
300 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2784 (2)0.49381 (8)0.63579 (6)0.0326 (4)
O20.1406 (2)0.59674 (9)0.61677 (7)0.0403 (5)
O30.0262 (2)0.10850 (9)0.47080 (6)0.0332 (4)
N10.0632 (3)0.51602 (11)0.74941 (8)0.0433 (6)
N20.0092 (2)0.49981 (9)0.62945 (7)0.0213 (4)
N30.0310 (3)0.41448 (11)0.51859 (8)0.0392 (6)
C10.0157 (2)0.28935 (11)0.67074 (8)0.0189 (5)
C20.0293 (3)0.21508 (11)0.68718 (8)0.0210 (5)
H2A0.07250.18660.66040.025*
H2B0.07850.19730.69560.025*
C30.1396 (3)0.20966 (11)0.73113 (8)0.0217 (5)
H3A0.14330.16130.74260.026*
H3B0.24970.22370.72200.026*
C40.0780 (2)0.25552 (11)0.77096 (8)0.0205 (5)
C50.0778 (3)0.23518 (12)0.81939 (8)0.0245 (5)
H50.12250.19180.82800.029*
C60.0133 (3)0.27708 (13)0.85540 (8)0.0273 (5)
H60.01670.26290.88830.033*
C70.0557 (3)0.33955 (13)0.84298 (8)0.0269 (5)
H70.10240.36770.86740.032*
C80.0567 (3)0.36109 (12)0.79510 (8)0.0241 (5)
H80.10480.40390.78690.029*
C90.0125 (3)0.32038 (11)0.75861 (8)0.0206 (5)
C100.0137 (3)0.34111 (11)0.70697 (8)0.0200 (5)
C110.0169 (3)0.41078 (11)0.69237 (8)0.0202 (5)
C120.0090 (3)0.42839 (11)0.64368 (8)0.0222 (5)
C130.0038 (3)0.37711 (11)0.60844 (8)0.0204 (5)
C140.0111 (2)0.30663 (11)0.62148 (8)0.0189 (4)
C150.0407 (3)0.46807 (12)0.72585 (9)0.0295 (5)
C160.2878 (3)0.49315 (14)0.63111 (11)0.0379 (6)
H16A0.38230.52300.62880.057*
H16B0.28630.47050.66290.057*
H16C0.29220.45820.60550.057*
C170.1384 (3)0.53571 (12)0.62517 (9)0.0288 (5)
C180.1648 (3)0.52930 (12)0.62423 (8)0.0247 (5)
C190.1828 (3)0.60013 (12)0.60405 (9)0.0336 (6)
H19A0.29630.60910.59710.050*
H19B0.14360.63380.62770.050*
H19C0.12040.60400.57410.050*
C200.0140 (3)0.39733 (12)0.55834 (9)0.0268 (5)
C210.0139 (3)0.25367 (11)0.58236 (8)0.0200 (5)
C220.1360 (3)0.25280 (12)0.54760 (8)0.0251 (5)
H220.21920.28620.54920.030*
C230.1380 (3)0.20432 (12)0.51101 (8)0.0266 (5)
H230.22240.20420.48790.032*
C240.0150 (3)0.15530 (12)0.50807 (8)0.0243 (5)
C250.1080 (3)0.15542 (11)0.54194 (8)0.0223 (5)
H250.19220.12260.53990.027*
C260.1067 (3)0.20427 (11)0.57908 (8)0.0205 (5)
H260.19000.20380.60260.025*
C270.1006 (3)0.06072 (15)0.46578 (10)0.0420 (7)
H27A0.07890.03040.43810.063*
H27B0.20140.08550.46030.063*
H27C0.10930.03310.49540.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0286 (9)0.0278 (9)0.0413 (10)0.0001 (7)0.0040 (8)0.0001 (8)
O20.0445 (11)0.0217 (9)0.0548 (12)0.0075 (8)0.0187 (9)0.0036 (8)
O30.0439 (10)0.0312 (9)0.0244 (9)0.0042 (8)0.0033 (8)0.0079 (7)
N10.0689 (17)0.0307 (12)0.0303 (11)0.0073 (12)0.0001 (12)0.0032 (10)
N20.0276 (10)0.0130 (9)0.0234 (9)0.0005 (7)0.0038 (8)0.0006 (7)
N30.0618 (15)0.0267 (11)0.0291 (12)0.0033 (11)0.0083 (11)0.0036 (9)
C10.0163 (10)0.0169 (11)0.0235 (11)0.0004 (8)0.0023 (9)0.0018 (9)
C20.0236 (11)0.0179 (11)0.0217 (11)0.0010 (9)0.0001 (9)0.0039 (9)
C30.0211 (11)0.0203 (11)0.0237 (11)0.0020 (9)0.0015 (9)0.0035 (9)
C40.0156 (10)0.0226 (11)0.0232 (11)0.0022 (8)0.0014 (9)0.0019 (9)
C50.0209 (11)0.0274 (12)0.0252 (12)0.0025 (9)0.0028 (9)0.0064 (10)
C60.0261 (12)0.0351 (14)0.0208 (11)0.0021 (10)0.0005 (10)0.0044 (10)
C70.0270 (12)0.0300 (13)0.0238 (11)0.0001 (10)0.0016 (10)0.0025 (10)
C80.0230 (11)0.0227 (12)0.0267 (12)0.0003 (9)0.0006 (10)0.0011 (9)
C90.0177 (10)0.0205 (11)0.0237 (11)0.0018 (9)0.0014 (9)0.0006 (9)
C100.0170 (10)0.0199 (11)0.0230 (11)0.0005 (8)0.0003 (9)0.0023 (9)
C110.0223 (11)0.0178 (11)0.0204 (11)0.0010 (9)0.0012 (9)0.0010 (9)
C120.0238 (11)0.0167 (11)0.0261 (12)0.0015 (9)0.0022 (9)0.0001 (9)
C130.0226 (11)0.0190 (11)0.0196 (10)0.0014 (9)0.0016 (9)0.0005 (8)
C140.0182 (10)0.0171 (11)0.0215 (10)0.0010 (8)0.0009 (9)0.0015 (9)
C150.0393 (14)0.0232 (12)0.0259 (12)0.0004 (11)0.0007 (11)0.0005 (10)
C160.0293 (13)0.0353 (15)0.0490 (16)0.0035 (11)0.0028 (12)0.0001 (12)
C170.0349 (13)0.0248 (13)0.0266 (12)0.0042 (10)0.0079 (11)0.0037 (10)
C180.0326 (13)0.0219 (12)0.0195 (11)0.0005 (10)0.0038 (10)0.0044 (9)
C190.0438 (15)0.0241 (13)0.0328 (13)0.0054 (11)0.0042 (12)0.0029 (10)
C200.0372 (13)0.0158 (11)0.0273 (12)0.0028 (10)0.0025 (11)0.0003 (9)
C210.0236 (11)0.0172 (10)0.0191 (10)0.0040 (9)0.0006 (9)0.0045 (8)
C220.0266 (12)0.0220 (12)0.0269 (12)0.0024 (9)0.0037 (10)0.0038 (9)
C230.0307 (12)0.0248 (12)0.0244 (11)0.0008 (10)0.0086 (10)0.0034 (9)
C240.0330 (13)0.0227 (11)0.0173 (10)0.0040 (10)0.0006 (10)0.0000 (9)
C250.0223 (11)0.0219 (11)0.0226 (11)0.0016 (9)0.0007 (9)0.0004 (9)
C260.0220 (11)0.0203 (11)0.0193 (10)0.0014 (9)0.0017 (9)0.0009 (9)
C270.0426 (16)0.0434 (16)0.0400 (15)0.0022 (13)0.0020 (13)0.0141 (13)
Geometric parameters (Å, º) top
O1—C181.213 (3)C10—C111.411 (3)
O2—C171.207 (3)C11—C121.388 (3)
O3—C241.375 (3)C11—C151.459 (3)
O3—C271.412 (3)C12—C131.392 (3)
N1—C151.150 (3)C13—C141.415 (3)
N2—C171.418 (3)C13—C201.445 (3)
N2—C181.425 (3)C14—C211.490 (3)
N2—C121.440 (3)C16—C171.503 (4)
N3—C201.155 (3)C16—H16A0.9800
C1—C141.400 (3)C16—H16B0.9800
C1—C101.417 (3)C16—H16C0.9800
C1—C21.515 (3)C18—C191.490 (3)
C2—C31.525 (3)C19—H19A0.9800
C2—H2A0.9900C19—H19B0.9800
C2—H2B0.9900C19—H19C0.9800
C3—C41.504 (3)C21—C261.392 (3)
C3—H3A0.9900C21—C221.399 (3)
C3—H3B0.9900C22—C231.380 (3)
C4—C51.393 (3)C22—H220.9500
C4—C91.414 (3)C23—C241.400 (3)
C5—C61.392 (3)C23—H230.9500
C5—H50.9500C24—C251.387 (3)
C6—C71.385 (3)C25—C261.396 (3)
C6—H60.9500C25—H250.9500
C7—C81.385 (3)C26—H260.9500
C7—H70.9500C27—H27A0.9800
C8—C91.403 (3)C27—H27B0.9800
C8—H80.9500C27—H27C0.9800
C9—C101.481 (3)
C24—O3—C27117.15 (19)C14—C13—C20120.66 (19)
C17—N2—C18125.69 (19)C1—C14—C13118.62 (19)
C17—N2—C12119.62 (19)C1—C14—C21122.50 (19)
C18—N2—C12114.52 (18)C13—C14—C21118.87 (19)
C14—C1—C10120.98 (19)N1—C15—C11175.0 (3)
C14—C1—C2121.35 (19)C17—C16—H16A109.5
C10—C1—C2117.63 (19)C17—C16—H16B109.5
C1—C2—C3110.40 (18)H16A—C16—H16B109.5
C1—C2—H2A109.6C17—C16—H16C109.5
C3—C2—H2A109.6H16A—C16—H16C109.5
C1—C2—H2B109.6H16B—C16—H16C109.5
C3—C2—H2B109.6O2—C17—N2120.8 (2)
H2A—C2—H2B108.1O2—C17—C16123.2 (2)
C4—C3—C2109.55 (17)N2—C17—C16116.1 (2)
C4—C3—H3A109.8O1—C18—N2117.1 (2)
C2—C3—H3A109.8O1—C18—C19122.9 (2)
C4—C3—H3B109.8N2—C18—C19120.0 (2)
C2—C3—H3B109.8C18—C19—H19A109.5
H3A—C3—H3B108.2C18—C19—H19B109.5
C5—C4—C9118.9 (2)H19A—C19—H19B109.5
C5—C4—C3122.2 (2)C18—C19—H19C109.5
C9—C4—C3118.85 (19)H19A—C19—H19C109.5
C6—C5—C4121.3 (2)H19B—C19—H19C109.5
C6—C5—H5119.3N3—C20—C13178.5 (3)
C4—C5—H5119.3C26—C21—C22118.2 (2)
C7—C6—C5119.7 (2)C26—C21—C14120.73 (19)
C7—C6—H6120.2C22—C21—C14121.1 (2)
C5—C6—H6120.2C23—C22—C21121.2 (2)
C6—C7—C8120.2 (2)C23—C22—H22119.4
C6—C7—H7119.9C21—C22—H22119.4
C8—C7—H7119.9C22—C23—C24119.8 (2)
C7—C8—C9120.8 (2)C22—C23—H23120.1
C7—C8—H8119.6C24—C23—H23120.1
C9—C8—H8119.6O3—C24—C25123.7 (2)
C8—C9—C4119.1 (2)O3—C24—C23116.3 (2)
C8—C9—C10122.7 (2)C25—C24—C23120.0 (2)
C4—C9—C10118.10 (19)C24—C25—C26119.4 (2)
C11—C10—C1118.5 (2)C24—C25—H25120.3
C11—C10—C9122.35 (19)C26—C25—H25120.3
C1—C10—C9119.11 (19)C21—C26—C25121.4 (2)
C12—C11—C10120.8 (2)C21—C26—H26119.3
C12—C11—C15115.6 (2)C25—C26—H26119.3
C10—C11—C15123.5 (2)O3—C27—H27A109.5
C11—C12—C13120.1 (2)O3—C27—H27B109.5
C11—C12—N2120.04 (19)H27A—C27—H27B109.5
C13—C12—N2119.8 (2)O3—C27—H27C109.5
C12—C13—C14120.8 (2)H27A—C27—H27C109.5
C12—C13—C20118.5 (2)H27B—C27—H27C109.5
C14—C1—C2—C3141.1 (2)C11—C12—C13—C141.8 (3)
C10—C1—C2—C336.6 (3)N2—C12—C13—C14177.00 (19)
C1—C2—C3—C456.6 (2)C11—C12—C13—C20176.4 (2)
C2—C3—C4—C5139.1 (2)N2—C12—C13—C204.8 (3)
C2—C3—C4—C938.3 (3)C10—C1—C14—C130.2 (3)
C9—C4—C5—C60.6 (3)C2—C1—C14—C13177.90 (19)
C3—C4—C5—C6176.9 (2)C10—C1—C14—C21179.67 (19)
C4—C5—C6—C71.6 (3)C2—C1—C14—C212.0 (3)
C5—C6—C7—C81.7 (4)C12—C13—C14—C13.1 (3)
C6—C7—C8—C90.3 (3)C20—C13—C14—C1175.0 (2)
C7—C8—C9—C42.5 (3)C12—C13—C14—C21176.8 (2)
C7—C8—C9—C10179.8 (2)C20—C13—C14—C215.0 (3)
C5—C4—C9—C82.6 (3)C18—N2—C17—O20.6 (3)
C3—C4—C9—C8174.98 (19)C12—N2—C17—O2174.6 (2)
C5—C4—C9—C10179.99 (19)C18—N2—C17—C16178.7 (2)
C3—C4—C9—C102.4 (3)C12—N2—C17—C166.1 (3)
C14—C1—C10—C113.8 (3)C17—N2—C18—O1169.7 (2)
C2—C1—C10—C11173.92 (19)C12—N2—C18—O15.6 (3)
C14—C1—C10—C9177.67 (19)C17—N2—C18—C1911.9 (3)
C2—C1—C10—C94.6 (3)C12—N2—C18—C19172.7 (2)
C8—C9—C10—C1129.9 (3)C1—C14—C21—C2660.5 (3)
C4—C9—C10—C11152.8 (2)C13—C14—C21—C26119.5 (2)
C8—C9—C10—C1151.6 (2)C1—C14—C21—C22120.4 (2)
C4—C9—C10—C125.7 (3)C13—C14—C21—C2259.5 (3)
C1—C10—C11—C125.2 (3)C26—C21—C22—C230.2 (3)
C9—C10—C11—C12176.4 (2)C14—C21—C22—C23179.3 (2)
C1—C10—C11—C15170.0 (2)C21—C22—C23—C240.6 (4)
C9—C10—C11—C158.5 (3)C27—O3—C24—C253.7 (3)
C10—C11—C12—C132.4 (3)C27—O3—C24—C23177.0 (2)
C15—C11—C12—C13173.1 (2)C22—C23—C24—O3179.5 (2)
C10—C11—C12—N2178.78 (19)C22—C23—C24—C250.2 (3)
C15—C11—C12—N25.7 (3)O3—C24—C25—C26178.6 (2)
C17—N2—C12—C1189.7 (3)C23—C24—C25—C260.7 (3)
C18—N2—C12—C1186.0 (2)C22—C21—C26—C250.7 (3)
C17—N2—C12—C1391.5 (3)C14—C21—C26—C25178.4 (2)
C18—N2—C12—C1392.8 (2)C24—C25—C26—C211.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.403.255 (3)150
C25—H25···O2ii0.952.593.154 (3)119
C26—H26···O2ii0.952.543.141 (3)121
C27—H27A···O1iii0.982.413.160 (3)133
C3—H3B···Cg1iv0.992.743.696 (3)164
C19—H19A···Cg2v0.982.823.618 (3)139
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x1/2, y1/2, z; (iii) x1/2, y+1/2, z+1; (iv) x1/2, y, z+1/2; (v) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC27H21N3O3
Mr435.47
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)8.3321 (4), 19.4037 (11), 27.5887 (14)
V3)4460.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.966, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
11528, 5106, 3488
Rint0.041
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.166, 1.02
No. of reflections5106
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.403.255 (3)150
C25—H25···O2ii0.952.593.154 (3)119
C26—H26···O2ii0.952.543.141 (3)121
C27—H27A···O1iii0.982.413.160 (3)133
C3—H3B···Cg1iv0.992.743.696 (3)164
C19—H19A···Cg2v0.982.823.618 (3)139
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x1/2, y1/2, z; (iii) x1/2, y+1/2, z+1; (iv) x1/2, y, z+1/2; (v) x, y1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027–o1028.  CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationRostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260–1272.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337–12342.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1177-o1178
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds