organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)-3-(morpholin-4-yl)urea

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 20 March 2012; accepted 23 March 2012; online 28 March 2012)

In the title mol­ecule, C11H14ClN3O2, the morpholine ring has a chair conformation. In the crystal, pairs of mol­ecules are linked into inversion dimers by N—H⋯O hydrogen bonds.

Related literature

For the medicinal properties of related compounds, see: Yang et al. (1997[Yang, D., Soulier, J. L., Sicsic, S., Mathe-Allainmat, M., Bremont, B., Croci, T., Cardamone, R., Aureggi, G. & Langlois, M. (1997). J. Med. Chem. 40, 608-621.]). For a related structure, see: Li (2011[Li, Y.-F. (2011). Acta Cryst. E67, o1792.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14ClN3O2

  • Mr = 255.70

  • Monoclinic, P 21 /c

  • a = 13.684 (3) Å

  • b = 9.3612 (19) Å

  • c = 9.758 (2) Å

  • β = 94.03 (3)°

  • V = 1246.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 11894 measured reflections

  • 2857 independent reflections

  • 1502 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.180

  • S = 1.17

  • 2857 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.03 2.865 (3) 162
Symmetry code: (i) -x+3, -y, -z.

Data collection: SMART (Bruker 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some compounds which are related to the title compound have been shown to have medicinal properties (Yang et al., 1997). The molecular structure of the title compound is shown in Fig .1. The morpholine ring (C1-C4/O1/N1) has a chair conformation. The bond lengths and angles can be compared to those within a related structure (Li, 2011). In the crystal, pairs of molecules are linked into inversion dimers by N—H···O hydrogen bonds.

Related literature top

For the medicinal properties of related compounds, see: Yang et al. (1997). For a related structure, see: Li (2011).

Experimental top

A mixture of 4-aminomorpholine (0.08 mol), and (4-chlorophenyl)carbamic chloride (0.08 mol) was stirred in refluxing ethanol (18 ml) for 4 h to afford the title compound (0.064 mol, yield 80%). Colourless blocks of the title compound were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å; N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Some compounds which are related to the title compound have been shown to have medicinal properties (Yang et al., 1997). The molecular structure of the title compound is shown in Fig .1. The morpholine ring (C1-C4/O1/N1) has a chair conformation. The bond lengths and angles can be compared to those within a related structure (Li, 2011). In the crystal, pairs of molecules are linked into inversion dimers by N—H···O hydrogen bonds.

For the medicinal properties of related compounds, see: Yang et al. (1997). For a related structure, see: Li (2011).

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SAINT (Bruker 1997); data reduction: SAINT (Bruker 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids.
1-(4-Chlorophenyl)-3-(morpholin-4-yl)urea top
Crystal data top
C11H14ClN3O2F(000) = 536
Mr = 255.70Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1502 reflections
a = 13.684 (3) Åθ = 3.0–27.5°
b = 9.3612 (19) ŵ = 0.30 mm1
c = 9.758 (2) ÅT = 293 K
β = 94.03 (3)°Block, colorless
V = 1246.8 (4) Å30.22 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1502 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
φ and ω scansh = 1717
11894 measured reflectionsk = 1212
2857 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.085P)2 + 0.0207P]
where P = (Fo2 + 2Fc2)/3
2857 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H14ClN3O2V = 1246.8 (4) Å3
Mr = 255.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.684 (3) ŵ = 0.30 mm1
b = 9.3612 (19) ÅT = 293 K
c = 9.758 (2) Å0.22 × 0.20 × 0.19 mm
β = 94.03 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1502 reflections with I > 2σ(I)
11894 measured reflectionsRint = 0.043
2857 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.17Δρmax = 0.20 e Å3
2857 reflectionsΔρmin = 0.29 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.92775 (5)0.08842 (12)0.30739 (8)0.0988 (4)
O21.39233 (12)0.0438 (2)0.09026 (16)0.0612 (5)
C61.18312 (16)0.0784 (3)0.0412 (2)0.0493 (6)
N31.25450 (14)0.0646 (2)0.0549 (2)0.0561 (5)
H3A1.23450.07080.14030.067*
N11.35490 (13)0.0024 (2)0.26930 (19)0.0535 (5)
O11.35069 (15)0.0687 (2)0.55127 (17)0.0697 (5)
N21.40369 (14)0.0221 (3)0.1380 (2)0.0656 (6)
H2A1.46670.02120.12920.079*
C51.35207 (17)0.0425 (3)0.0260 (2)0.0504 (6)
C81.1131 (2)0.0212 (3)0.2519 (3)0.0674 (7)
H8A1.11850.02170.33810.081*
C111.09794 (16)0.1525 (3)0.0004 (3)0.0592 (6)
H11A1.09310.19860.08500.071*
C91.02870 (18)0.0905 (3)0.2072 (3)0.0644 (7)
C101.02095 (18)0.1582 (3)0.0826 (3)0.0672 (7)
H10A0.96410.20760.05430.081*
C71.19009 (18)0.0152 (3)0.1684 (2)0.0608 (7)
H7A1.24740.03210.19860.073*
C31.3409 (2)0.0735 (3)0.5071 (3)0.0734 (8)
H3B1.27200.09540.50200.088*
H3C1.36690.13730.57390.088*
C41.3938 (2)0.0989 (3)0.3690 (3)0.0666 (7)
H4A1.46340.08220.37410.080*
H4B1.38470.19720.34090.080*
C21.3146 (2)0.1633 (3)0.4542 (2)0.0763 (8)
H2B1.32260.26090.48490.092*
H2C1.24510.14620.44780.092*
C11.3671 (2)0.1449 (3)0.3145 (3)0.0709 (8)
H1A1.34040.21010.24960.085*
H1B1.43620.16620.31910.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0664 (5)0.1530 (10)0.0797 (6)0.0135 (5)0.0244 (4)0.0336 (5)
O20.0541 (9)0.0801 (13)0.0483 (10)0.0043 (8)0.0044 (8)0.0082 (8)
C60.0484 (12)0.0545 (15)0.0446 (12)0.0017 (10)0.0000 (10)0.0067 (10)
N30.0462 (10)0.0747 (15)0.0468 (11)0.0059 (9)0.0007 (8)0.0015 (9)
N10.0532 (11)0.0632 (14)0.0438 (10)0.0018 (9)0.0020 (9)0.0021 (9)
O10.0918 (13)0.0737 (13)0.0449 (9)0.0106 (10)0.0143 (9)0.0027 (9)
N20.0474 (11)0.0996 (19)0.0493 (11)0.0054 (11)0.0004 (9)0.0114 (11)
C50.0500 (12)0.0519 (15)0.0488 (13)0.0021 (10)0.0005 (10)0.0025 (10)
C80.0644 (15)0.090 (2)0.0474 (13)0.0009 (15)0.0025 (12)0.0051 (13)
C110.0540 (13)0.0626 (17)0.0605 (14)0.0053 (12)0.0002 (11)0.0021 (13)
C90.0565 (14)0.080 (2)0.0576 (15)0.0081 (13)0.0085 (12)0.0203 (14)
C100.0518 (13)0.073 (2)0.0767 (18)0.0061 (13)0.0022 (13)0.0102 (15)
C70.0557 (13)0.0742 (19)0.0519 (14)0.0092 (13)0.0002 (11)0.0006 (13)
C30.093 (2)0.069 (2)0.0590 (16)0.0070 (16)0.0062 (14)0.0129 (14)
C40.0748 (17)0.0613 (18)0.0641 (16)0.0030 (13)0.0083 (13)0.0052 (13)
C20.111 (2)0.0663 (19)0.0530 (15)0.0077 (17)0.0139 (15)0.0052 (13)
C10.103 (2)0.0593 (17)0.0501 (13)0.0035 (16)0.0059 (14)0.0055 (12)
Geometric parameters (Å, º) top
Cl1—C91.748 (3)C8—H8A0.9300
O2—C51.226 (3)C11—C101.374 (3)
C6—C71.373 (3)C11—H11A0.9300
C6—C111.392 (3)C9—C101.369 (4)
C6—N31.407 (3)C10—H10A0.9300
N3—C51.361 (3)C7—H7A0.9300
N3—H3A0.8600C3—C41.503 (4)
N1—N21.414 (3)C3—H3B0.9700
N1—C41.456 (3)C3—H3C0.9700
N1—C11.461 (3)C4—H4A0.9700
O1—C31.409 (4)C4—H4B0.9700
O1—C21.411 (3)C2—C11.505 (4)
N2—C51.356 (3)C2—H2B0.9700
N2—H2A0.8600C2—H2C0.9700
C8—C91.369 (4)C1—H1A0.9700
C8—C71.377 (4)C1—H1B0.9700
C7—C6—C11118.8 (2)C6—C7—C8120.7 (2)
C7—C6—N3123.8 (2)C6—C7—H7A119.7
C11—C6—N3117.3 (2)C8—C7—H7A119.7
C5—N3—C6126.35 (19)O1—C3—C4112.0 (2)
C5—N3—H3A116.8O1—C3—H3B109.2
C6—N3—H3A116.8C4—C3—H3B109.2
N2—N1—C4110.6 (2)O1—C3—H3C109.2
N2—N1—C1109.9 (2)C4—C3—H3C109.2
C4—N1—C1109.2 (2)H3B—C3—H3C107.9
C3—O1—C2110.0 (2)N1—C4—C3109.0 (2)
C5—N2—N1120.60 (19)N1—C4—H4A109.9
C5—N2—H2A119.7C3—C4—H4A109.9
N1—N2—H2A119.7N1—C4—H4B109.9
O2—C5—N2121.4 (2)C3—C4—H4B109.9
O2—C5—N3124.1 (2)H4A—C4—H4B108.3
N2—C5—N3114.4 (2)O1—C2—C1111.6 (2)
C9—C8—C7119.6 (3)O1—C2—H2B109.3
C9—C8—H8A120.2C1—C2—H2B109.3
C7—C8—H8A120.2O1—C2—H2C109.3
C10—C11—C6120.6 (2)C1—C2—H2C109.3
C10—C11—H11A119.7H2B—C2—H2C108.0
C6—C11—H11A119.7N1—C1—C2108.9 (2)
C8—C9—C10120.9 (2)N1—C1—H1A109.9
C8—C9—Cl1119.9 (2)C2—C1—H1A109.9
C10—C9—Cl1119.1 (2)N1—C1—H1B109.9
C9—C10—C11119.4 (2)C2—C1—H1B109.9
C9—C10—H10A120.3H1A—C1—H1B108.3
C11—C10—H10A120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.032.865 (3)162
Symmetry code: (i) x+3, y, z.

Experimental details

Crystal data
Chemical formulaC11H14ClN3O2
Mr255.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.684 (3), 9.3612 (19), 9.758 (2)
β (°) 94.03 (3)
V3)1246.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11894, 2857, 1502
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.180, 1.17
No. of reflections2857
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.29

Computer programs: SMART (Bruker 1997), SAINT (Bruker 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.032.865 (3)162
Symmetry code: (i) x+3, y, z.
 

Acknowledgements

The authors would like to thank the Natural Science Foundation of Shandong Province (No. ZR2010BL025).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. (2011). Acta Cryst. E67, o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D., Soulier, J. L., Sicsic, S., Mathe-Allainmat, M., Bremont, B., Croci, T., Cardamone, R., Aureggi, G. & Langlois, M. (1997). J. Med. Chem. 40, 608–621.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds