organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl­pyrrolidine-1-carbo­thio­amide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 20 March 2012; accepted 23 March 2012; online 28 March 2012)

In the title mol­ecule, C11H20N2S, the five-membered ring has an envelope conformation and the cyclo­hexane ring is in a chair conformation. The N—H group is not involved in any intra- or inter­molecular inter­actions.

Related literature

For the medicinal properties of pyrrolidine compounds, see: Yang et al. (1997[Yang, D., Soulier, J. L., Sicsic, S., Mathe-Allainmat, M., Bremont, B., Croci, T., Cardamone, R., Aureggi, G. & Langlois, M. (1997). J. Med. Chem. 40, 608-621.]). For related structures, see: Köhn et al. (2004[Köhn, U., Günther, W., Görls, H. & Anders, E. (2004). Tetrahedron Asymmetry, 15, 1419-1426.]); Li (2011[Li, Y.-F. (2011). Acta Cryst. E67, o1792.]).

[Scheme 1]

Experimental

Crystal data
  • C11H20N2S

  • Mr = 212.35

  • Orthorhombic, P b c a

  • a = 9.3808 (19) Å

  • b = 10.925 (2) Å

  • c = 23.540 (5) Å

  • V = 2412.6 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 22078 measured reflections

  • 2766 independent reflections

  • 1700 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.190

  • S = 1.18

  • 2766 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrrolidine compounds have been shown to have medicinal properties (Yang et al., 1997). The molecular structure of the title compound is shown in Fig. 1. The five-membered ring has an envelope conformation with atom C2 forming the flap. The structures related compounds have been determined (Köhn et al., 2004; Li, 2011).

Related literature top

For the medicinal properties of pyrrolidine compounds, see: Yang et al. (1997). For related structures, see: Köhn et al. (2004); Li (2011).

Experimental top

A mixture of pyrrolidine (0.6 mol), and N-cyclohexylmethanethioamide (0.6 mol) was stirred in refluxing ethanol (14 ml) for 4 h to afford the title compound (0.51 mol, yield 85%). Colourless blocks of the title compound were obtained by recrystallization of a solution of the title compound ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å; N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Pyrrolidine compounds have been shown to have medicinal properties (Yang et al., 1997). The molecular structure of the title compound is shown in Fig. 1. The five-membered ring has an envelope conformation with atom C2 forming the flap. The structures related compounds have been determined (Köhn et al., 2004; Li, 2011).

For the medicinal properties of pyrrolidine compounds, see: Yang et al. (1997). For related structures, see: Köhn et al. (2004); Li (2011).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
N-Cyclohexylpyrrolidine-1-carbothioamide top
Crystal data top
C11H20N2SF(000) = 928
Mr = 212.35Dx = 1.169 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1700 reflections
a = 9.3808 (19) Åθ = 3.4–27.5°
b = 10.925 (2) ŵ = 0.24 mm1
c = 23.540 (5) ÅT = 293 K
V = 2412.6 (8) Å3Block, colorless
Z = 80.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1700 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
φ and ω scansh = 1212
22078 measured reflectionsk = 1314
2766 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.1021P)2]
where P = (Fo2 + 2Fc2)/3
2766 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C11H20N2SV = 2412.6 (8) Å3
Mr = 212.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.3808 (19) ŵ = 0.24 mm1
b = 10.925 (2) ÅT = 293 K
c = 23.540 (5) Å0.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1700 reflections with I > 2σ(I)
22078 measured reflectionsRint = 0.046
2766 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.18Δρmax = 0.25 e Å3
2766 reflectionsΔρmin = 0.35 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07717 (8)0.34275 (5)0.16033 (2)0.0727 (3)
N20.1756 (2)0.57053 (15)0.14966 (7)0.0649 (5)
H2A0.21050.63540.16500.078*
N10.1569 (2)0.49963 (16)0.24023 (7)0.0625 (5)
C50.1402 (2)0.47798 (18)0.18465 (8)0.0533 (5)
C60.1600 (2)0.57042 (18)0.08782 (8)0.0565 (6)
H6A0.09410.50460.07730.068*
C70.3007 (3)0.54772 (19)0.05863 (8)0.0604 (6)
H7A0.33780.46860.07010.072*
H7B0.36870.60980.07020.072*
C90.2197 (3)0.6700 (2)0.02522 (9)0.0637 (6)
H9A0.28650.73590.01790.076*
H9B0.20320.66640.06590.076*
C100.0817 (2)0.6969 (2)0.00449 (10)0.0647 (6)
H10A0.01030.63820.00760.078*
H10B0.04900.77780.00640.078*
C110.0964 (2)0.6912 (2)0.06890 (10)0.0657 (6)
H11A0.15690.75780.08170.079*
H11B0.00340.70150.08620.079*
C80.2838 (3)0.5505 (2)0.00562 (8)0.0655 (6)
H8A0.37630.53960.02330.079*
H8B0.22300.48340.01750.079*
C40.2130 (3)0.6141 (2)0.26409 (9)0.0751 (7)
H4A0.15030.68240.25570.090*
H4B0.30730.63190.24930.090*
C30.2184 (4)0.5887 (3)0.32761 (10)0.0947 (10)
H3A0.31200.55960.33880.114*
H3B0.19600.66190.34920.114*
C20.1095 (5)0.4934 (3)0.33665 (10)0.1053 (11)
H2B0.01630.53020.34180.126*
H2C0.13200.44510.37000.126*
C10.1110 (4)0.4151 (3)0.28475 (9)0.0917 (9)
H1A0.17760.34770.28880.110*
H1B0.01690.38260.27680.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1120 (6)0.0526 (4)0.0536 (4)0.0127 (3)0.0018 (3)0.0005 (2)
N20.0950 (14)0.0592 (11)0.0406 (9)0.0187 (10)0.0007 (8)0.0041 (7)
N10.0922 (14)0.0560 (10)0.0393 (9)0.0013 (9)0.0052 (9)0.0024 (7)
C50.0651 (13)0.0519 (11)0.0429 (10)0.0033 (9)0.0023 (9)0.0004 (8)
C60.0732 (14)0.0557 (12)0.0408 (10)0.0137 (10)0.0010 (9)0.0014 (8)
C70.0765 (14)0.0565 (12)0.0482 (11)0.0150 (10)0.0002 (10)0.0070 (9)
C90.0625 (14)0.0741 (14)0.0545 (12)0.0005 (10)0.0019 (10)0.0182 (10)
C100.0600 (14)0.0720 (14)0.0620 (13)0.0034 (11)0.0089 (10)0.0097 (11)
C110.0650 (14)0.0706 (14)0.0617 (13)0.0093 (11)0.0000 (10)0.0031 (11)
C80.0774 (15)0.0722 (14)0.0468 (11)0.0104 (12)0.0073 (10)0.0057 (10)
C40.1016 (19)0.0753 (14)0.0484 (12)0.0030 (14)0.0013 (12)0.0143 (11)
C30.139 (3)0.096 (2)0.0492 (13)0.0122 (19)0.0130 (15)0.0142 (12)
C20.155 (3)0.119 (3)0.0421 (14)0.003 (2)0.0090 (15)0.0021 (14)
C10.156 (3)0.0742 (17)0.0452 (13)0.0016 (16)0.0119 (14)0.0066 (11)
Geometric parameters (Å, º) top
S1—C51.691 (2)C10—H10A0.9700
N2—C51.346 (3)C10—H10B0.9700
N2—C61.463 (2)C11—H11A0.9700
N2—H2A0.8600C11—H11B0.9700
N1—C51.339 (3)C8—H8A0.9700
N1—C11.462 (3)C8—H8B0.9700
N1—C41.469 (3)C4—C31.522 (3)
C6—C71.509 (3)C4—H4A0.9700
C6—C111.515 (3)C4—H4B0.9700
C6—H6A0.9800C3—C21.475 (4)
C7—C81.521 (3)C3—H3A0.9700
C7—H7A0.9700C3—H3B0.9700
C7—H7B0.9700C2—C11.491 (4)
C9—C101.500 (3)C2—H2B0.9700
C9—C81.510 (3)C2—H2C0.9700
C9—H9A0.9700C1—H1A0.9700
C9—H9B0.9700C1—H1B0.9700
C10—C111.524 (3)
C5—N2—C6125.71 (17)C10—C11—H11A109.4
C5—N2—H2A117.1C6—C11—H11B109.4
C6—N2—H2A117.1C10—C11—H11B109.4
C5—N1—C1123.67 (19)H11A—C11—H11B108.0
C5—N1—C4124.49 (18)C9—C8—C7111.29 (18)
C1—N1—C4111.69 (18)C9—C8—H8A109.4
N1—C5—N2115.87 (18)C7—C8—H8A109.4
N1—C5—S1121.75 (16)C9—C8—H8B109.4
N2—C5—S1122.37 (15)C7—C8—H8B109.4
N2—C6—C7111.45 (17)H8A—C8—H8B108.0
N2—C6—C11109.34 (16)N1—C4—C3103.42 (19)
C7—C6—C11110.72 (16)N1—C4—H4A111.1
N2—C6—H6A108.4C3—C4—H4A111.1
C7—C6—H6A108.4N1—C4—H4B111.1
C11—C6—H6A108.4C3—C4—H4B111.1
C6—C7—C8110.99 (18)H4A—C4—H4B109.0
C6—C7—H7A109.4C2—C3—C4104.3 (2)
C8—C7—H7A109.4C2—C3—H3A110.9
C6—C7—H7B109.4C4—C3—H3A110.9
C8—C7—H7B109.4C2—C3—H3B110.9
H7A—C7—H7B108.0C4—C3—H3B110.9
C10—C9—C8111.75 (18)H3A—C3—H3B108.9
C10—C9—H9A109.3C3—C2—C1106.3 (2)
C8—C9—H9A109.3C3—C2—H2B110.5
C10—C9—H9B109.3C1—C2—H2B110.5
C8—C9—H9B109.3C3—C2—H2C110.5
H9A—C9—H9B107.9C1—C2—H2C110.5
C9—C10—C11112.17 (18)H2B—C2—H2C108.7
C9—C10—H10A109.2N1—C1—C2103.2 (2)
C11—C10—H10A109.2N1—C1—H1A111.1
C9—C10—H10B109.2C2—C1—H1A111.1
C11—C10—H10B109.2N1—C1—H1B111.1
H10A—C10—H10B107.9C2—C1—H1B111.1
C6—C11—C10111.34 (18)H1A—C1—H1B109.1
C6—C11—H11A109.4

Experimental details

Crystal data
Chemical formulaC11H20N2S
Mr212.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.3808 (19), 10.925 (2), 23.540 (5)
V3)2412.6 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22078, 2766, 1700
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.190, 1.18
No. of reflections2766
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.35

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors would like to thank the Natural Science Foundation of Shandong Province (No. ZR2010BL025).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKöhn, U., Günther, W., Görls, H. & Anders, E. (2004). Tetrahedron Asymmetry, 15, 1419–1426.  Google Scholar
First citationLi, Y.-F. (2011). Acta Cryst. E67, o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D., Soulier, J. L., Sicsic, S., Mathe-Allainmat, M., Bremont, B., Croci, T., Cardamone, R., Aureggi, G. & Langlois, M. (1997). J. Med. Chem. 40, 608–621.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds