metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m355-m356

Bis(9-amino­acridinium) bis­­(pyridine-2,6-di­carboxyl­ato)zincate(II) trihydrate

aDepartment of Chemistry, Ferdowsi University of Mashhad, 917791436 Mashhad, Iran, and bLaboratory of Chemical Crystallography and Biocrystallography, Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
*Correspondence e-mail: mirzaeesh@um.ac.ir

(Received 19 January 2012; accepted 9 February 2012; online 3 March 2012)

In the title compound, (C13H11N2)2[Zn(C7H3NO4)2]·3H2O, the ZnII ion is six-coordinated with the N4O2 donor set being a distorted octa­hedron through two almost perpendicular (r.m.s. deviation of ligand atoms from the mean plane is 0.057 Å) tridentate pyridine-2,6-dicarboxyl­ate ligands [dihedral angle between the ligands = 86.06 (4)°]. The charge is compensated by two 9-amino­acridinium cations protonated on the ring N atom. A variety of inter­molecular contacts, such as ion–ion, N—H⋯O and O—H⋯O hydrogen bonds, and ππ stacking [centroid–centroid distances = 3.4907 (9)–4.1128 (8) Å], between cations and between anions, play important roles in the formation of the three-dimensional network.

Related literature

For the behaviour of 9-amino­acridine in coordination compounds see: Derikvand et al. (2010[Derikvand, Z., Attar Gharamaleki, J. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1316-m1317.]); Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al. (2011[Eshtiagh-Hosseini, H., Mirzaei, M., Eydizadeh, E., Yousefi, Z. & Molčanov, K. (2011). Acta Cryst. E67, m1411-m1412.]). For a brief review of the pyridine­dicarboxyl­ate family of ligands, see: Mirzaei et al. (2011[Mirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580-607.]). For related structures, see: Aghabozorg et al. (2008[Aghabozorg, H., Ghadermazi, M., Zabihi, F., Nakhjavan, B., Soleimannejad, J., Sadr-khanlou, E. & Moghimi, A. (2008). J. Chem. Crystallogr. 38, 645-654.]); Derikvand et al. (2010[Derikvand, Z., Attar Gharamaleki, J. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1316-m1317.]); Eshtiagh-Hosseini, Yousefi, Mirzaei et al. (2010[Eshtiagh-Hosseini, H., Yousefi, Z., Mirzaei, M., Chen, Y.-G., Beyramabadi, S. A., Shokrollahi, A. & Aghaei, R. (2010). J. Mol. Struct. 973, 1-8.]); Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al. (2011[Eshtiagh-Hosseini, H., Mirzaei, M., Eydizadeh, E., Yousefi, Z. & Molčanov, K. (2011). Acta Cryst. E67, m1411-m1412.]); Eshtiagh-Hosseini, Mirzaei, Yousefi et al. (2011[Eshtiagh-Hosseini, H., Mirzaei, M., Yousefi, Z., Puschmann, H., Shokrollahi, A. & Aghaei, R. (2011). J. Coord. Chem. 64, 3969-3979.]); Eshtiagh-Hosseini, Yousefi, Shafiee et al. (2010[Eshtiagh-Hosseini, H., Yousefi, Z., Shafiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187-3197.]); Harrison et al. (2006[Harrison, W. T. A., Ramadevi, P. & Kumaresan, S. (2006). Acta Cryst. E62, m513-m515.]); MacDonald et al. (2000[MacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692-11702.]); Park et al. (2007[Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819-2823.]); Tabatabaee et al. (2009[Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H11N2)2[Zn(C7H3NO4)2]·3H2O

  • Mr = 840.1

  • Triclinic, [P \overline 1]

  • a = 10.8763 (3) Å

  • b = 13.3802 (3) Å

  • c = 13.9920 (4) Å

  • α = 102.359 (2)°

  • β = 103.585 (2)°

  • γ = 105.137 (2)°

  • V = 1826.44 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.57 mm−1

  • T = 293 K

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Xcalibur Nova R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.786, Tmax = 1

  • 18061 measured reflections

  • 7540 independent reflections

  • 6901 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.03

  • 7540 reflections

  • 547 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O9 0.86 1.89 2.7013 (18) 157
N4—H4A⋯O8i 0.86 1.98 2.8005 (18) 160
N4—H4B⋯O3ii 0.86 2.21 2.9589 (19) 145
N5—H5A⋯O4 0.86 1.88 2.7351 (19) 174
N6—H6A⋯O2iii 0.86 2.21 2.9763 (18) 148
N6—H6B⋯O11 0.86 2.10 2.899 (2) 154
O9—H9A⋯O8iv 0.93 (3) 1.85 (3) 2.768 (2) 170 (2)
O9—H9B⋯O10 0.89 (2) 1.86 (2) 2.745 (2) 173 (2)
O10—H10A⋯O2v 0.94 (2) 1.91 (2) 2.838 (2) 175 (2)
O10—H10B⋯O2 0.95 (3) 1.91 (3) 2.830 (2) 161 (2)
O11—H11A⋯O6vi 0.90 (3) 1.93 (3) 2.825 (2) 176 (3)
O11—H11B⋯O1iii 0.90 (2) 1.99 (2) 2.8869 (19) 174 (2)
Symmetry codes: (i) x, y-1, z-1; (ii) -x+1, -y+1, -z; (iii) x-1, y, z-1; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+2, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The pyridinedicarboxylate family of ligands has attracted much attention in coordination and supramolecular chemistry because of the versatile coordination modes and variety of inter- and intramolecular interactions (Mirzaei et al., 2011). Among different derivatives of pyridinedicarboxylate, pyridine-2,6-dicarboxylic acid (pydcH2), also called dipicolinic acid (H2pdic), has been widely considered because of its high symmetry and bioactive properties. The most common coordination mode of (pydc)2- is as a tridentate ligand via N and two carboxylate groups that can be coordinated to a metal in a meridional fashion (Eshtiagh-Hosseini, Mirzaei, Yousefi et al., 2011; Park et al., 2007).

So far, our group has reported several coordination compounds bearing the (pydc)2- ligand with different heterocyclic cations prepared by proton transfer methodology (Eshtiagh-Hosseini, Yousefi, Mirzaei et al., 2010; Eshtiagh-Hosseini, Yousefi, Shafiee et al., 2010).

In this contribution, we have synthesized and characterized a new coordination compound with (pydc)2- coordinated to ZnII and protonated 9-aminoacridine as the cation which is formulated as (9aaH)2[Zn(pydc)2].3H2O.

The asymmetric unit of the title compound comprises a dianionic complex, [Zn(pydc)2]2-, two 9aaH+ cations and three water molecules (Fig. 1). In the anionic complex, ZnII is six-coordinated via two (pydc)2- ions with the ZnN2O4 donor set in a distorted octahedral geometry. The two (pydc)2- moieties are almost perpendicular to each other (the angle between the mean ligand planes (rms deviation of ligand atoms from the mean plane is 0.057 Å) intersecting at Zn1 is 86.62 (2)°). Bond lengths and angles are comparable with those in similar structures (Tabatabaee et al., 2009; MacDonald et al., 2000; Aghabozorg et al., 2008; Harrison et al., 2006). Recently, our group reported a similar compound with Mn(II) as a metal center which has the same stochiometery as the title compound (Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al., 2011). Binding of the H2O molecules to the anionic complex and the 9aaH+ cations occur via N—H···O and O—H···O hydrogen bonds creating two different motifs with graph sets R42(8) and R33(9) (Fig. 2). In Fig. 3, a packing diagram of the title compound viewed down the b axis is shown in which a variety of intermolecular contacts can be observed. The most significant additional interactions are π-π stacking between (pydc)2- ligands in adjacent anions and between sets of 9aaH+ cations (Fig. 3).

Related literature top

For the behaviour of 9-aminoacridine in coordination compounds see: Derikvand et al. (2010); Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al. (2011). For a brief review on the pyridinedicarboxylate family of ligands, see: Mirzaei et al. (2011). For related structures, see: Aghabozorg et al. (2008); Derikvand et al. (2010); Eshtiagh-Hosseini, Yousefi, Mirzaei et al. (2010); Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al. (2011); Eshtiagh-Hosseini, Mirzaei, Yousefi et al. (2011); Eshtiagh-Hosseini, Yousefi, Shafiee et al. (2010); Harrison et al. (2006); MacDonald et al. (2000); Park et al. (2007); Tabatabaee et al. (2009).

Experimental top

To 5 mL of an aqeous solution of pydcH2 (0.026 g, 0.15 mmol), 5 mL of a methanolic solution of 9aa (0.030 g,0.15 mmol) was added dropwise. Then, powdered ZnCl2.2H2O (0.011 g, 0.075 mmol) was added and the resulting solution was heated and stirred for 3 hrs at 60°C. Yellow crystals were obtained by slow evaporation of the solvent at room temperature after 3 days.

Refinement top

A full-matrix least-squares refinement implemented in the SHELXL97 (Sheldrick, 2008) was used. All non-H atoms were refined anisotropically. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and 0.97 Å for C and 0.86 Å for N atom and Uiso(H) = 1.2 Ueq(C,N). The H atoms of water were located in difference map and refined with the following restraints: O—H = 0.95 (2) Å and H···H = 1.50 (4) Å (total of 9 restraints were used).

Structure description top

The pyridinedicarboxylate family of ligands has attracted much attention in coordination and supramolecular chemistry because of the versatile coordination modes and variety of inter- and intramolecular interactions (Mirzaei et al., 2011). Among different derivatives of pyridinedicarboxylate, pyridine-2,6-dicarboxylic acid (pydcH2), also called dipicolinic acid (H2pdic), has been widely considered because of its high symmetry and bioactive properties. The most common coordination mode of (pydc)2- is as a tridentate ligand via N and two carboxylate groups that can be coordinated to a metal in a meridional fashion (Eshtiagh-Hosseini, Mirzaei, Yousefi et al., 2011; Park et al., 2007).

So far, our group has reported several coordination compounds bearing the (pydc)2- ligand with different heterocyclic cations prepared by proton transfer methodology (Eshtiagh-Hosseini, Yousefi, Mirzaei et al., 2010; Eshtiagh-Hosseini, Yousefi, Shafiee et al., 2010).

In this contribution, we have synthesized and characterized a new coordination compound with (pydc)2- coordinated to ZnII and protonated 9-aminoacridine as the cation which is formulated as (9aaH)2[Zn(pydc)2].3H2O.

The asymmetric unit of the title compound comprises a dianionic complex, [Zn(pydc)2]2-, two 9aaH+ cations and three water molecules (Fig. 1). In the anionic complex, ZnII is six-coordinated via two (pydc)2- ions with the ZnN2O4 donor set in a distorted octahedral geometry. The two (pydc)2- moieties are almost perpendicular to each other (the angle between the mean ligand planes (rms deviation of ligand atoms from the mean plane is 0.057 Å) intersecting at Zn1 is 86.62 (2)°). Bond lengths and angles are comparable with those in similar structures (Tabatabaee et al., 2009; MacDonald et al., 2000; Aghabozorg et al., 2008; Harrison et al., 2006). Recently, our group reported a similar compound with Mn(II) as a metal center which has the same stochiometery as the title compound (Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al., 2011). Binding of the H2O molecules to the anionic complex and the 9aaH+ cations occur via N—H···O and O—H···O hydrogen bonds creating two different motifs with graph sets R42(8) and R33(9) (Fig. 2). In Fig. 3, a packing diagram of the title compound viewed down the b axis is shown in which a variety of intermolecular contacts can be observed. The most significant additional interactions are π-π stacking between (pydc)2- ligands in adjacent anions and between sets of 9aaH+ cations (Fig. 3).

For the behaviour of 9-aminoacridine in coordination compounds see: Derikvand et al. (2010); Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al. (2011). For a brief review on the pyridinedicarboxylate family of ligands, see: Mirzaei et al. (2011). For related structures, see: Aghabozorg et al. (2008); Derikvand et al. (2010); Eshtiagh-Hosseini, Yousefi, Mirzaei et al. (2010); Eshtiagh-Hosseini, Mirzaei, Eydizadeh et al. (2011); Eshtiagh-Hosseini, Mirzaei, Yousefi et al. (2011); Eshtiagh-Hosseini, Yousefi, Shafiee et al. (2010); Harrison et al. (2006); MacDonald et al. (2000); Park et al. (2007); Tabatabaee et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of the title compound with numbering of the non-hydrogen atoms (probability 50%)
[Figure 2] Fig. 2. The chain formed by the anionic complex and the water molecules. Zinc ions are depicted as spheres of arbitrary radii.
[Figure 3] Fig. 3. The ππ stacking interactions between the cations and between the anions. (Cg1 and Cg2: N1, C1, C2, C3, C4 and C5; Cg8: C15, C16, C17, C18, C19 and C20; Cg3 and Cg6: N3, C15, C20, C21, C22 and C27; Cg4 and Cg5: C22, C23, C24, C25, C26 and C27; Cg8: C35, C36, C37, C38, C39 and C40;Cg9: N5, C28, C33, C34, C35 and C40; Cg10: C28, C29, C30, C31, C32 and C33)
Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato)zincate(II) trihydrate top
Crystal data top
(C13H11N2)2[Zn(C7H3NO4)2]·3H2OZ = 2
Mr = 840.1F(000) = 868
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 10.8763 (3) ÅCell parameters from 12486 reflections
b = 13.3802 (3) Åθ = 3.4–75.7°
c = 13.9920 (4) ŵ = 1.57 mm1
α = 102.359 (2)°T = 293 K
β = 103.585 (2)°Prism, yellow
γ = 105.137 (2)°0.1 × 0.1 × 0.1 mm
V = 1826.44 (8) Å3
Data collection top
Xcalibur Nova R CCD
diffractometer
6901 reflections with I > 2σ(I)
ω scansRint = 0.023
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
θmax = 75.9°, θmin = 3.4°
Tmin = 0.786, Tmax = 1h = 1313
18061 measured reflectionsk = 1516
7540 independent reflectionsl = 1714
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.2947P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.23 e Å3
7540 reflectionsΔρmin = 0.33 e Å3
547 parameters
Crystal data top
(C13H11N2)2[Zn(C7H3NO4)2]·3H2Oγ = 105.137 (2)°
Mr = 840.1V = 1826.44 (8) Å3
Triclinic, P1Z = 2
a = 10.8763 (3) ÅCu Kα radiation
b = 13.3802 (3) ŵ = 1.57 mm1
c = 13.9920 (4) ÅT = 293 K
α = 102.359 (2)°0.1 × 0.1 × 0.1 mm
β = 103.585 (2)°
Data collection top
Xcalibur Nova R CCD
diffractometer
7540 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
6901 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 1Rint = 0.023
18061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0329 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
7540 reflectionsΔρmin = 0.33 e Å3
547 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.63843 (2)0.757062 (15)0.410290 (14)0.04351 (8)
N10.56573 (12)0.59395 (9)0.37952 (8)0.0339 (2)
N20.71182 (13)0.91958 (9)0.46845 (9)0.0389 (2)
O10.79818 (13)0.71221 (9)0.51306 (9)0.0519 (3)
O20.85048 (12)0.56753 (10)0.53916 (9)0.0507 (3)
O70.53943 (14)0.79380 (9)0.52860 (9)0.0514 (3)
O30.44757 (13)0.71287 (9)0.29115 (8)0.0494 (3)
O50.75856 (15)0.80175 (10)0.31737 (9)0.0560 (3)
O80.52661 (14)0.93159 (10)0.64241 (9)0.0555 (3)
O60.90581 (15)0.94355 (12)0.30107 (11)0.0626 (3)
C60.77303 (15)0.61256 (12)0.49985 (10)0.0394 (3)
O40.26883 (14)0.56750 (12)0.19614 (11)0.0649 (4)
C50.44187 (14)0.54306 (11)0.31581 (10)0.0361 (3)
C140.57104 (17)0.89226 (12)0.57460 (10)0.0414 (3)
C10.63454 (14)0.54097 (11)0.42913 (9)0.0339 (3)
C20.57841 (16)0.43143 (12)0.41608 (11)0.0397 (3)
H20.62660.39470.45040.048*
C120.67212 (16)0.96945 (11)0.54266 (10)0.0397 (3)
C80.80023 (16)0.97360 (12)0.43042 (11)0.0424 (3)
C70.37918 (16)0.61393 (13)0.26292 (11)0.0436 (3)
C130.82615 (18)0.90143 (13)0.34225 (12)0.0464 (3)
C110.7210 (2)1.08125 (13)0.58237 (12)0.0503 (4)
H110.69171.11660.63280.06*
C30.44891 (17)0.37785 (12)0.35081 (12)0.0441 (3)
H30.40880.30450.34150.053*
C40.37925 (16)0.43381 (13)0.29935 (11)0.0432 (3)
H40.29250.39880.25490.052*
C90.8561 (2)1.08539 (14)0.46910 (14)0.0544 (4)
H90.921.12360.44450.065*
C100.8145 (2)1.13889 (14)0.54521 (14)0.0590 (4)
H100.84961.21390.57140.071*
H11A0.024 (3)0.9280 (18)0.289 (2)0.097 (10)*
H11B0.120 (2)0.8243 (18)0.3509 (14)0.076 (7)*
H9A0.620 (2)0.160 (2)0.339 (2)0.098 (9)*
H9B0.749 (2)0.2507 (17)0.3719 (15)0.073 (7)*
H10B0.866 (3)0.4303 (18)0.480 (2)0.101 (10)*
H10A0.971 (2)0.383 (2)0.466 (2)0.100 (10)*
N50.14315 (12)0.60732 (10)0.02168 (9)0.0392 (2)
H5A0.17750.59160.07610.047*
C280.10576 (13)0.69735 (12)0.03227 (11)0.0372 (3)
C350.07187 (15)0.56409 (13)0.16288 (11)0.0420 (3)
N60.01511 (16)0.68630 (13)0.23874 (10)0.0527 (3)
H6A0.02390.64640.29860.063*
H6B0.03780.74370.23290.063*
O110.08439 (18)0.86907 (13)0.28590 (11)0.0707 (4)
C330.04982 (13)0.72633 (12)0.05563 (11)0.0381 (3)
C290.12309 (16)0.76160 (14)0.13159 (11)0.0447 (3)
H290.15970.74210.1890.054*
C320.01335 (15)0.82143 (13)0.03963 (13)0.0453 (3)
H320.0240.84210.0960.054*
C400.12830 (14)0.54121 (12)0.07164 (11)0.0396 (3)
C390.17044 (17)0.44950 (13)0.07668 (13)0.0484 (3)
H390.20690.43420.01660.058*
C310.03218 (17)0.88292 (14)0.05684 (14)0.0501 (4)
H310.00920.94580.06580.06*
C300.08634 (18)0.85207 (15)0.14347 (13)0.0506 (4)
H300.0970.89380.20910.061*
C340.03351 (14)0.65921 (13)0.15526 (11)0.0411 (3)
C370.1025 (2)0.40490 (16)0.26117 (14)0.0606 (4)
H370.09470.35940.32420.073*
C360.0601 (2)0.49258 (15)0.25790 (13)0.0556 (4)
H360.02290.50570.3190.067*
C380.15744 (19)0.38316 (15)0.17021 (16)0.0573 (4)
H380.18550.32290.17330.069*
C270.67785 (14)0.08240 (13)0.05915 (11)0.0407 (3)
N30.66525 (13)0.17238 (11)0.11676 (9)0.0439 (3)
H3A0.69480.18860.18270.053*
N40.54649 (14)0.10780 (11)0.19805 (9)0.0443 (3)
H4B0.51270.15040.2250.053*
H4A0.55740.05360.23660.053*
C230.65311 (16)0.03901 (13)0.10529 (13)0.0453 (3)
H230.62850.05750.17670.054*
C210.58166 (13)0.12563 (11)0.09735 (10)0.0359 (3)
C200.56319 (14)0.21631 (12)0.03328 (10)0.0372 (3)
C150.60783 (15)0.23768 (12)0.07443 (11)0.0408 (3)
C220.63677 (14)0.05541 (12)0.04935 (11)0.0375 (3)
C190.49415 (16)0.28113 (13)0.07401 (12)0.0446 (3)
H190.46080.26650.14490.054*
C240.70489 (18)0.10350 (14)0.05529 (16)0.0542 (4)
H240.7140.16590.09290.065*
C250.74415 (17)0.07573 (16)0.05241 (16)0.0560 (4)
H250.77880.12030.08550.067*
C260.73230 (16)0.01550 (15)0.10917 (14)0.0512 (4)
H260.760.03370.18060.061*
C180.4757 (2)0.36484 (15)0.01080 (15)0.0546 (4)
H180.42940.40650.03870.066*
C170.5266 (2)0.38842 (15)0.09648 (15)0.0593 (4)
H170.51630.44730.13910.071*
C160.59065 (19)0.32654 (15)0.13869 (13)0.0530 (4)
H160.62320.34260.20980.064*
O90.68488 (17)0.20134 (14)0.31754 (10)0.0723 (4)
O100.88557 (15)0.36441 (12)0.47389 (13)0.0688 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.06383 (14)0.02983 (11)0.03874 (11)0.01721 (9)0.01691 (9)0.01034 (8)
N10.0428 (6)0.0324 (5)0.0296 (5)0.0167 (5)0.0112 (4)0.0100 (4)
N20.0525 (7)0.0318 (5)0.0337 (5)0.0155 (5)0.0126 (5)0.0110 (4)
O10.0553 (7)0.0368 (5)0.0517 (6)0.0123 (5)0.0013 (5)0.0098 (5)
O20.0455 (6)0.0502 (6)0.0523 (6)0.0214 (5)0.0025 (5)0.0135 (5)
O70.0785 (8)0.0352 (5)0.0488 (6)0.0195 (5)0.0323 (6)0.0138 (4)
O30.0652 (7)0.0457 (6)0.0444 (5)0.0271 (5)0.0125 (5)0.0210 (5)
O50.0796 (9)0.0433 (6)0.0523 (6)0.0203 (6)0.0349 (6)0.0126 (5)
O80.0712 (8)0.0487 (6)0.0445 (6)0.0158 (6)0.0273 (6)0.0037 (5)
O60.0747 (9)0.0645 (8)0.0610 (7)0.0219 (7)0.0370 (7)0.0262 (6)
C60.0440 (7)0.0399 (7)0.0354 (6)0.0174 (6)0.0094 (5)0.0117 (5)
O40.0563 (7)0.0733 (9)0.0597 (7)0.0205 (6)0.0035 (6)0.0330 (7)
C50.0422 (7)0.0390 (7)0.0300 (6)0.0169 (6)0.0106 (5)0.0125 (5)
C140.0568 (8)0.0387 (7)0.0320 (6)0.0197 (6)0.0146 (6)0.0110 (5)
C10.0417 (7)0.0347 (6)0.0299 (5)0.0183 (5)0.0118 (5)0.0107 (5)
C20.0498 (8)0.0378 (7)0.0393 (6)0.0219 (6)0.0151 (6)0.0157 (5)
C120.0522 (8)0.0340 (7)0.0318 (6)0.0166 (6)0.0094 (6)0.0085 (5)
C80.0520 (8)0.0388 (7)0.0390 (7)0.0159 (6)0.0133 (6)0.0160 (6)
C70.0498 (8)0.0520 (9)0.0372 (7)0.0243 (7)0.0126 (6)0.0212 (6)
C130.0576 (9)0.0475 (8)0.0408 (7)0.0204 (7)0.0188 (7)0.0186 (6)
C110.0702 (11)0.0367 (7)0.0395 (7)0.0173 (7)0.0145 (7)0.0055 (6)
C30.0528 (8)0.0340 (7)0.0462 (7)0.0125 (6)0.0153 (6)0.0150 (6)
C40.0427 (7)0.0432 (8)0.0395 (7)0.0104 (6)0.0085 (6)0.0128 (6)
C90.0640 (10)0.0408 (8)0.0532 (9)0.0069 (7)0.0187 (8)0.0153 (7)
C100.0770 (12)0.0323 (7)0.0558 (9)0.0079 (8)0.0163 (9)0.0064 (7)
N50.0397 (6)0.0423 (6)0.0369 (6)0.0156 (5)0.0086 (5)0.0153 (5)
C280.0324 (6)0.0401 (7)0.0391 (7)0.0114 (5)0.0099 (5)0.0134 (5)
C350.0380 (7)0.0430 (7)0.0393 (7)0.0092 (6)0.0079 (5)0.0101 (6)
N60.0608 (8)0.0557 (8)0.0366 (6)0.0206 (7)0.0037 (6)0.0140 (6)
O110.0858 (10)0.0624 (8)0.0520 (7)0.0127 (8)0.0082 (7)0.0216 (6)
C330.0315 (6)0.0423 (7)0.0397 (7)0.0113 (5)0.0083 (5)0.0146 (6)
C290.0456 (8)0.0514 (8)0.0386 (7)0.0173 (7)0.0129 (6)0.0146 (6)
C320.0385 (7)0.0502 (8)0.0515 (8)0.0192 (6)0.0113 (6)0.0209 (7)
C400.0347 (6)0.0394 (7)0.0421 (7)0.0094 (5)0.0106 (5)0.0114 (6)
C390.0472 (8)0.0444 (8)0.0557 (9)0.0176 (7)0.0154 (7)0.0164 (7)
C310.0463 (8)0.0492 (9)0.0606 (9)0.0230 (7)0.0189 (7)0.0159 (7)
C300.0523 (9)0.0530 (9)0.0471 (8)0.0200 (7)0.0183 (7)0.0090 (7)
C340.0336 (6)0.0462 (8)0.0385 (7)0.0087 (6)0.0056 (5)0.0141 (6)
C370.0655 (11)0.0529 (10)0.0512 (9)0.0151 (8)0.0160 (8)0.0014 (7)
C360.0596 (10)0.0558 (10)0.0413 (8)0.0155 (8)0.0088 (7)0.0060 (7)
C380.0573 (10)0.0433 (8)0.0699 (11)0.0185 (7)0.0216 (8)0.0089 (8)
C270.0317 (6)0.0490 (8)0.0420 (7)0.0092 (6)0.0112 (5)0.0194 (6)
N30.0416 (6)0.0543 (7)0.0332 (5)0.0112 (6)0.0111 (5)0.0134 (5)
N40.0589 (8)0.0430 (6)0.0347 (6)0.0248 (6)0.0132 (5)0.0101 (5)
C230.0426 (7)0.0415 (7)0.0522 (8)0.0150 (6)0.0138 (6)0.0139 (6)
C210.0344 (6)0.0363 (6)0.0360 (6)0.0099 (5)0.0119 (5)0.0099 (5)
C200.0358 (6)0.0381 (7)0.0371 (6)0.0102 (5)0.0138 (5)0.0094 (5)
C150.0380 (7)0.0449 (8)0.0374 (7)0.0086 (6)0.0152 (5)0.0099 (6)
C220.0331 (6)0.0389 (7)0.0406 (7)0.0100 (5)0.0118 (5)0.0136 (5)
C190.0494 (8)0.0428 (8)0.0456 (7)0.0176 (6)0.0179 (6)0.0143 (6)
C240.0473 (8)0.0433 (8)0.0768 (11)0.0182 (7)0.0197 (8)0.0222 (8)
C250.0417 (8)0.0595 (10)0.0783 (12)0.0185 (7)0.0175 (8)0.0418 (9)
C260.0386 (7)0.0645 (10)0.0565 (9)0.0142 (7)0.0137 (7)0.0343 (8)
C180.0624 (10)0.0467 (9)0.0655 (10)0.0259 (8)0.0292 (8)0.0177 (8)
C170.0756 (12)0.0459 (9)0.0629 (10)0.0222 (8)0.0386 (9)0.0069 (7)
C160.0615 (10)0.0520 (9)0.0418 (7)0.0120 (8)0.0241 (7)0.0056 (7)
O90.0747 (9)0.0853 (10)0.0369 (6)0.0009 (8)0.0153 (6)0.0135 (6)
O100.0567 (8)0.0507 (7)0.0871 (10)0.0111 (6)0.0171 (7)0.0099 (7)
Geometric parameters (Å, º) top
Zn1—N22.0146 (12)C33—C321.418 (2)
Zn1—N12.0274 (11)C33—C341.430 (2)
Zn1—O52.1162 (12)C29—C301.360 (2)
Zn1—O32.1793 (12)C29—H290.93
Zn1—O72.2151 (11)C32—C311.359 (2)
Zn1—O12.2775 (12)C32—H320.93
N1—C51.3304 (19)C40—C391.412 (2)
N1—C11.3372 (17)C39—C381.368 (3)
N2—C81.331 (2)C39—H390.93
N2—C121.3321 (19)C31—C301.412 (2)
O1—C61.2518 (19)C31—H310.93
O2—C61.2508 (18)C30—H300.93
O7—C141.2507 (19)C37—C361.364 (3)
O3—C71.259 (2)C37—C381.398 (3)
O5—C131.269 (2)C37—H370.93
O8—C141.2430 (19)C36—H360.93
O6—C131.232 (2)C38—H380.93
C6—C11.519 (2)C27—N31.357 (2)
O4—C71.239 (2)C27—C261.411 (2)
C5—C41.384 (2)C27—C221.413 (2)
C5—C71.5207 (18)N3—C151.355 (2)
C14—C121.520 (2)N3—H3A0.86
C1—C21.386 (2)N4—C211.3206 (18)
C2—C31.386 (2)N4—H4B0.86
C2—H20.93N4—H4A0.86
C12—C111.385 (2)C23—C241.370 (2)
C8—C91.387 (2)C23—C221.414 (2)
C8—C131.526 (2)C23—H230.93
C11—C101.382 (3)C21—C201.4361 (19)
C11—H110.93C21—C221.4382 (19)
C3—C41.387 (2)C20—C151.4100 (19)
C3—H30.93C20—C191.411 (2)
C4—H40.93C15—C161.412 (2)
C9—C101.386 (3)C19—C181.361 (2)
C9—H90.93C19—H190.93
C10—H100.93C24—C251.402 (3)
N5—C401.359 (2)C24—H240.93
N5—C281.3588 (19)C25—C261.361 (3)
N5—H5A0.86C25—H250.93
C28—C291.409 (2)C26—H260.93
C28—C331.4173 (18)C18—C171.405 (3)
C35—C401.413 (2)C18—H180.93
C35—C361.418 (2)C17—C161.355 (3)
C35—C341.430 (2)C17—H170.93
N6—C341.3291 (19)C16—H160.93
N6—H6A0.86O9—H9A0.928 (17)
N6—H6B0.86O9—H9B0.890 (16)
O11—H11A0.900 (17)O10—H10B0.948 (17)
O11—H11B0.903 (16)O10—H10A0.940 (17)
N2—Zn1—N1169.12 (4)C28—C33—C32117.75 (14)
N2—Zn1—O577.62 (5)C28—C33—C34118.85 (13)
N1—Zn1—O5111.49 (5)C32—C33—C34123.40 (13)
N2—Zn1—O3108.72 (5)C30—C29—C28120.01 (14)
N1—Zn1—O377.03 (4)C30—C29—H29120
O5—Zn1—O395.55 (5)C28—C29—H29120
N2—Zn1—O775.67 (5)C31—C32—C33121.01 (14)
N1—Zn1—O795.48 (4)C31—C32—H32119.5
O5—Zn1—O7153.00 (4)C33—C32—H32119.5
O3—Zn1—O789.34 (5)N5—C40—C39119.33 (13)
N2—Zn1—O199.73 (5)N5—C40—C35120.47 (13)
N1—Zn1—O174.39 (4)C39—C40—C35120.20 (14)
O5—Zn1—O193.41 (5)C38—C39—C40119.78 (16)
O3—Zn1—O1151.38 (4)C38—C39—H39120.1
O7—Zn1—O194.87 (5)C40—C39—H39120.1
C5—N1—C1121.08 (12)C32—C31—C30120.49 (15)
C5—N1—Zn1117.51 (9)C32—C31—H31119.8
C1—N1—Zn1121.10 (10)C30—C31—H31119.8
C8—N2—C12122.19 (13)C29—C30—C31120.39 (15)
C8—N2—Zn1117.72 (10)C29—C30—H30119.8
C12—N2—Zn1120.10 (10)C31—C30—H30119.8
C6—O1—Zn1114.35 (10)N6—C34—C35121.08 (15)
C14—O7—Zn1114.84 (10)N6—C34—C33120.02 (15)
C7—O3—Zn1114.70 (9)C35—C34—C33118.90 (13)
C13—O5—Zn1116.07 (10)C36—C37—C38120.31 (17)
O2—C6—O1126.28 (15)C36—C37—H37119.8
O2—C6—C1117.83 (13)C38—C37—H37119.8
O1—C6—C1115.89 (12)C37—C36—C35121.13 (16)
N1—C5—C4121.23 (12)C37—C36—H36119.4
N1—C5—C7114.56 (13)C35—C36—H36119.4
C4—C5—C7124.19 (13)C39—C38—C37120.76 (17)
O8—C14—O7125.98 (15)C39—C38—H38119.6
O8—C14—C12118.02 (14)C37—C38—H38119.6
O7—C14—C12116.00 (13)N3—C27—C26119.00 (14)
N1—C1—C2120.86 (13)N3—C27—C22120.76 (13)
N1—C1—C6113.66 (12)C26—C27—C22120.24 (15)
C2—C1—C6125.46 (12)C15—N3—C27122.52 (12)
C3—C2—C1118.57 (12)C15—N3—H3A118.7
C3—C2—H2120.7C27—N3—H3A118.7
C1—C2—H2120.7C21—N4—H4B120
N2—C12—C11120.49 (15)C21—N4—H4A120
N2—C12—C14113.39 (12)H4B—N4—H4A120
C11—C12—C14126.11 (14)C24—C23—C22120.64 (16)
N2—C8—C9120.14 (15)C24—C23—H23119.7
N2—C8—C13113.60 (13)C22—C23—H23119.7
C9—C8—C13126.22 (15)N4—C21—C20119.76 (13)
O4—C7—O3127.83 (14)N4—C21—C22121.71 (13)
O4—C7—C5116.49 (15)C20—C21—C22118.53 (12)
O3—C7—C5115.66 (13)C15—C20—C19118.30 (13)
O6—C13—O5126.46 (16)C15—C20—C21119.08 (13)
O6—C13—C8118.82 (15)C19—C20—C21122.49 (13)
O5—C13—C8114.70 (14)N3—C15—C20120.40 (14)
C10—C11—C12118.33 (16)N3—C15—C16119.69 (14)
C10—C11—H11120.8C20—C15—C16119.90 (15)
C12—C11—H11120.8C27—C22—C23118.21 (13)
C2—C3—C4119.85 (14)C27—C22—C21118.51 (13)
C2—C3—H3120.1C23—C22—C21123.27 (13)
C4—C3—H3120.1C18—C19—C20120.83 (15)
C5—C4—C3118.40 (14)C18—C19—H19119.6
C5—C4—H4120.8C20—C19—H19119.6
C3—C4—H4120.8C23—C24—C25120.27 (17)
C10—C9—C8118.51 (16)C23—C24—H24119.9
C10—C9—H9120.7C25—C24—H24119.9
C8—C9—H9120.7C26—C25—C24120.93 (15)
C11—C10—C9120.30 (16)C26—C25—H25119.5
C11—C10—H10119.9C24—C25—H25119.5
C9—C10—H10119.9C25—C26—C27119.70 (16)
C40—N5—C28122.46 (12)C25—C26—H26120.1
C40—N5—H5A118.8C27—C26—H26120.1
C28—N5—H5A118.8C19—C18—C17120.14 (17)
N5—C28—C29119.30 (12)C19—C18—H18119.9
N5—C28—C33120.36 (13)C17—C18—H18119.9
C29—C28—C33120.34 (13)C16—C17—C18120.86 (16)
C40—C35—C36117.82 (15)C16—C17—H17119.6
C40—C35—C34118.93 (14)C18—C17—H17119.6
C36—C35—C34123.22 (14)C17—C16—C15119.84 (16)
C34—N6—H6A120C17—C16—H16120.1
C34—N6—H6B120C15—C16—H16120.1
H6A—N6—H6B120H9A—O9—H9B110 (2)
H11A—O11—H11B105 (2)H10B—O10—H10A102 (2)
N2—Zn1—N1—C5116.6 (3)N2—C8—C13—O51.1 (2)
O5—Zn1—N1—C597.47 (10)C9—C8—C13—O5176.85 (16)
O3—Zn1—N1—C56.56 (9)N2—C12—C11—C101.9 (2)
O7—Zn1—N1—C581.49 (10)C14—C12—C11—C10179.04 (15)
O1—Zn1—N1—C5175.03 (10)C1—C2—C3—C40.8 (2)
N2—Zn1—N1—C157.0 (3)N1—C5—C4—C30.2 (2)
O5—Zn1—N1—C188.95 (10)C7—C5—C4—C3178.49 (14)
O3—Zn1—N1—C1179.86 (11)C2—C3—C4—C50.5 (2)
O7—Zn1—N1—C192.09 (10)N2—C8—C9—C102.0 (3)
O1—Zn1—N1—C11.45 (10)C13—C8—C9—C10175.78 (16)
N1—Zn1—N2—C8143.5 (2)C12—C11—C10—C90.9 (3)
O5—Zn1—N2—C84.29 (11)C8—C9—C10—C111.0 (3)
O3—Zn1—N2—C896.02 (11)C40—N5—C28—C29179.43 (13)
O7—Zn1—N2—C8179.67 (12)C40—N5—C28—C330.5 (2)
O1—Zn1—N2—C887.09 (11)N5—C28—C33—C32179.70 (13)
N1—Zn1—N2—C1236.3 (3)C29—C28—C33—C320.3 (2)
O5—Zn1—N2—C12175.94 (12)N5—C28—C33—C340.0 (2)
O3—Zn1—N2—C1284.21 (11)C29—C28—C33—C34179.92 (13)
O7—Zn1—N2—C120.10 (11)N5—C28—C29—C30179.90 (15)
O1—Zn1—N2—C1292.68 (11)C33—C28—C29—C300.1 (2)
N2—Zn1—O1—C6174.45 (11)C28—C33—C32—C310.3 (2)
N1—Zn1—O1—C63.84 (11)C34—C33—C32—C31179.37 (15)
O5—Zn1—O1—C6107.54 (12)C28—N5—C40—C39179.49 (14)
O3—Zn1—O1—C60.61 (18)C28—N5—C40—C350.2 (2)
O7—Zn1—O1—C698.19 (12)C36—C35—C40—N5179.45 (15)
N2—Zn1—O7—C140.37 (11)C34—C35—C40—N51.4 (2)
N1—Zn1—O7—C14173.94 (11)C36—C35—C40—C390.2 (2)
O5—Zn1—O7—C148.18 (19)C34—C35—C40—C39178.29 (14)
O3—Zn1—O7—C14109.16 (12)N5—C40—C39—C38179.20 (15)
O1—Zn1—O7—C1499.19 (12)C35—C40—C39—C380.5 (2)
N2—Zn1—O3—C7166.74 (11)C33—C32—C31—C301.2 (3)
N1—Zn1—O3—C73.66 (11)C28—C29—C30—C310.7 (3)
O5—Zn1—O3—C7114.47 (11)C32—C31—C30—C291.4 (3)
O7—Zn1—O3—C792.12 (11)C40—C35—C34—N6177.36 (14)
O1—Zn1—O3—C76.85 (17)C36—C35—C34—N60.6 (2)
N2—Zn1—O5—C134.95 (12)C40—C35—C34—C331.8 (2)
N1—Zn1—O5—C13168.84 (12)C36—C35—C34—C33179.79 (15)
O3—Zn1—O5—C13112.94 (13)C28—C33—C34—N6178.06 (14)
O7—Zn1—O5—C1313.4 (2)C32—C33—C34—N61.7 (2)
O1—Zn1—O5—C1394.27 (13)C28—C33—C34—C351.2 (2)
Zn1—O1—C6—O2172.37 (13)C32—C33—C34—C35179.13 (14)
Zn1—O1—C6—C17.72 (16)C38—C37—C36—C350.7 (3)
C1—N1—C5—C40.7 (2)C40—C35—C36—C370.3 (3)
Zn1—N1—C5—C4172.91 (11)C34—C35—C36—C37177.63 (17)
C1—N1—C5—C7178.13 (12)C40—C39—C38—C370.2 (3)
Zn1—N1—C5—C78.29 (15)C36—C37—C38—C390.4 (3)
Zn1—O7—C14—O8178.80 (13)C26—C27—N3—C15176.61 (14)
Zn1—O7—C14—C120.54 (17)C22—C27—N3—C153.1 (2)
C5—N1—C1—C20.41 (19)N4—C21—C20—C15176.62 (14)
Zn1—N1—C1—C2172.94 (10)C22—C21—C20—C154.3 (2)
C5—N1—C1—C6178.99 (11)N4—C21—C20—C197.6 (2)
Zn1—N1—C1—C65.63 (15)C22—C21—C20—C19171.54 (13)
O2—C6—C1—N1171.15 (13)C27—N3—C15—C202.7 (2)
O1—C6—C1—N18.94 (18)C27—N3—C15—C16176.26 (14)
O2—C6—C1—C210.4 (2)C19—C20—C15—N3174.83 (14)
O1—C6—C1—C2169.56 (14)C21—C20—C15—N31.1 (2)
N1—C1—C2—C30.3 (2)C19—C20—C15—C164.1 (2)
C6—C1—C2—C3178.07 (13)C21—C20—C15—C16179.95 (14)
C8—N2—C12—C110.9 (2)N3—C27—C22—C23179.63 (13)
Zn1—N2—C12—C11179.33 (12)C26—C27—C22—C230.6 (2)
C8—N2—C12—C14179.89 (13)N3—C27—C22—C210.2 (2)
Zn1—N2—C12—C140.14 (16)C26—C27—C22—C21179.93 (13)
O8—C14—C12—N2178.93 (14)C24—C23—C22—C271.3 (2)
O7—C14—C12—N20.47 (19)C24—C23—C22—C21179.26 (15)
O8—C14—C12—C110.2 (2)N4—C21—C22—C27177.11 (13)
O7—C14—C12—C11179.61 (15)C20—C21—C22—C273.8 (2)
C12—N2—C8—C91.1 (2)N4—C21—C22—C232.3 (2)
Zn1—N2—C8—C9178.67 (12)C20—C21—C22—C23176.81 (13)
C12—N2—C8—C13176.99 (13)C15—C20—C19—C182.5 (2)
Zn1—N2—C8—C133.25 (17)C21—C20—C19—C18178.36 (15)
Zn1—O3—C7—O4178.96 (15)C22—C23—C24—C250.9 (3)
Zn1—O3—C7—C50.54 (17)C23—C24—C25—C260.3 (3)
N1—C5—C7—O4173.70 (14)C24—C25—C26—C271.0 (2)
C4—C5—C7—O45.1 (2)N3—C27—C26—C25179.23 (14)
N1—C5—C7—O34.91 (19)C22—C27—C26—C250.5 (2)
C4—C5—C7—O3176.33 (14)C20—C19—C18—C170.6 (3)
Zn1—O5—C13—O6177.06 (14)C19—C18—C17—C162.2 (3)
Zn1—O5—C13—C84.65 (18)C18—C17—C16—C150.6 (3)
N2—C8—C13—O6179.52 (15)N3—C15—C16—C17176.35 (16)
C9—C8—C13—O61.6 (3)C20—C15—C16—C172.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O90.861.892.7013 (18)157
N4—H4A···O8i0.861.982.8005 (18)160
N4—H4B···O3ii0.862.212.9589 (19)145
N5—H5A···O40.861.882.7351 (19)174
N6—H6A···O2iii0.862.212.9763 (18)148
N6—H6B···O110.862.102.899 (2)154
O9—H9A···O8iv0.93 (3)1.85 (3)2.768 (2)170 (2)
O9—H9B···O100.89 (2)1.86 (2)2.745 (2)173 (2)
O10—H10A···O2v0.94 (2)1.91 (2)2.838 (2)175 (2)
O10—H10B···O20.95 (3)1.91 (3)2.830 (2)161 (2)
O11—H11A···O6vi0.90 (3)1.93 (3)2.825 (2)176 (3)
O11—H11B···O1iii0.90 (2)1.99 (2)2.8869 (19)174 (2)
Symmetry codes: (i) x, y1, z1; (ii) x+1, y+1, z; (iii) x1, y, z1; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula(C13H11N2)2[Zn(C7H3NO4)2]·3H2O
Mr840.1
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8763 (3), 13.3802 (3), 13.9920 (4)
α, β, γ (°)102.359 (2), 103.585 (2), 105.137 (2)
V3)1826.44 (8)
Z2
Radiation typeCu Kα
µ (mm1)1.57
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerXcalibur Nova R CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.786, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
18061, 7540, 6901
Rint0.023
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.03
No. of reflections7540
No. of parameters547
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.33

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O90.861.892.7013 (18)157
N4—H4A···O8i0.861.982.8005 (18)160
N4—H4B···O3ii0.862.212.9589 (19)145
N5—H5A···O40.861.882.7351 (19)174
N6—H6A···O2iii0.862.212.9763 (18)148
N6—H6B···O110.862.102.899 (2)154
O9—H9A···O8iv0.93 (3)1.85 (3)2.768 (2)170 (2)
O9—H9B···O100.89 (2)1.86 (2)2.745 (2)173 (2)
O10—H10A···O2v0.94 (2)1.91 (2)2.838 (2)174.6 (17)
O10—H10B···O20.95 (3)1.91 (3)2.830 (2)161 (2)
O11—H11A···O6vi0.90 (3)1.93 (3)2.825 (2)176 (3)
O11—H11B···O1iii0.90 (2)1.99 (2)2.8869 (19)174 (2)
Symmetry codes: (i) x, y1, z1; (ii) x+1, y+1, z; (iii) x1, y, z1; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+2, z.
 

Acknowledgements

The authors thank the Ferdowsi University of Mashhad (grant No. 1506/.3) and the Ministry of Science, Education and Sports, Republic of Croatia (grant No. 098-1191344-2943) for financial support of this article.

References

First citationAghabozorg, H., Ghadermazi, M., Zabihi, F., Nakhjavan, B., Soleimannejad, J., Sadr-khanlou, E. & Moghimi, A. (2008). J. Chem. Crystallogr. 38, 645–654.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationDerikvand, Z., Attar Gharamaleki, J. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1316–m1317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Mirzaei, M., Eydizadeh, E., Yousefi, Z. & Molčanov, K. (2011). Acta Cryst. E67, m1411–m1412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Mirzaei, M., Yousefi, Z., Puschmann, H., Shokrollahi, A. & Aghaei, R. (2011). J. Coord. Chem. 64, 3969–3979.  CAS Google Scholar
First citationEshtiagh-Hosseini, H., Yousefi, Z., Mirzaei, M., Chen, Y.-G., Beyramabadi, S. A., Shokrollahi, A. & Aghaei, R. (2010). J. Mol. Struct. 973, 1–8.  CAS Google Scholar
First citationEshtiagh-Hosseini, H., Yousefi, Z., Shafiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187–3197.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ramadevi, P. & Kumaresan, S. (2006). Acta Cryst. E62, m513–m515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.  Web of Science CSD CrossRef CAS Google Scholar
First citationMirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580–607.  CrossRef CAS Google Scholar
First citationPark, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819–2823.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m355-m356
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds