metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m512-m513

Di­aqua­bis­­(pyrazine-2-carboxamide-κ2N1,O)cobalt(II) dinitrate

aDepartment of Earth System Sciences, Yonsei University, Seoul 120-749, Republic of Korea
*Correspondence e-mail: YongjaeLee@yonsei.ac.kr

(Received 31 January 2012; accepted 22 March 2012; online 31 March 2012)

The asymmetric unit of the title complex, [Co(C5H5N3O)2(H2O)2](NO3)2, contains one half of a CoII cationic unit and a nitrate anion. The entire [Co(C5H5N3O)2(H2O)2]2+ cationic unit is completed by the application of inversion symmetry at the CoII site, generating a six-coordinate distorted octa­hedral environment for the metal ion. The chelating pyrazine-2-carboxamide mol­ecules are bound to cobalt via N and O atoms, forming a square plane, while the remaining two trans positions in the octa­hedron are occupied by two coordinated water mol­ecules.

Related literature

For the monodentate coordination mode of the pyrazine-2-carboxamide ligand, see: Azhdari Tehrani et al. (2010[Azhdari Tehrani, A., Mir Mohammad Sadegh, B. & Khavasi, H. R. (2010). Acta Cryst. E66, m261.]); Mir Mohammad Sadegh et al. (2010[Mir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.]); Goher & Mautner (1999[Goher, M. A. S. & Mautner, F. A. (1999). J. Chem. Soc. Dalton Trans. pp. 1535-1536.], 2001[Goher, M. A. S. & Mautner, F. A. (2001). J. Coord. Chem. 53, 79-89.]). For the chelating bidentate coordination mode, see: Tanase et al. (2008[Tanase, S., Evangelisti, M., de Jongh, L. J., Smits, J. M. M. & de Gelder, R. (2008). Inorg. Chim. Acta, 361, 3548-3554.]); Prins et al. (2007[Prins, F., Pasca, E., de Jongh, L. J., Kooijman, H., Spek, A. L. & Tanase, S. (2007). Angew. Chem. Int. Ed. 46, 6081-6084.]); Sekisaki (1973[Sekisaki, M. (1973). Acta Cryst. B29, 327-331.]). For coordination by pyrazine carboxamide moieties, see: Hausmann & Brooker (2004[Hausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530-1531.]); Cati & Stoeckli-Evans (2004[Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177-m179.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H5N3O)2(H2O)2](NO3)2

  • Mr = 465.22

  • Monoclinic, P 21 /c

  • a = 10.149 (5) Å

  • b = 6.715 (3) Å

  • c = 13.080 (5) Å

  • β = 104.397 (4)°

  • V = 863.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Rigaku R-AXIS IV++ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.815, Tmax = 0.831

  • 4254 measured reflections

  • 1958 independent reflections

  • 1831 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.097

  • S = 1.07

  • 1958 reflections

  • 140 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O4i 0.82 (1) 1.93 (1) 2.742 (2) 170 (3)
O1W—H2W⋯O4ii 0.82 (1) 1.92 (1) 2.722 (2) 164 (3)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The ligand pyrazine-2-carboxamide can coordinate to a metal center in a monodentate fashion through the pyrazine nitrogen atom which is meta to the carboxamide group. Alternatively, when the ligand uses both the carboxamide oxygen atom and the pyrazine nitrogen atom ortho to it for coordination, a stable five member ring is formed as a result of the ligand coordinating in chelating bidentate fashion.

In the present study we report the synthesis, molecular and crystal structure of an octahedral complex of CoII with the pyrazine-2-carboxamide ligand, [Co(C5H5N3O)2(H2O)2](NO3)2. The molecular structure of this complex is shown in Fig. 1. In this complex, the CoII atom lies on a center of inversion and adopts an octahedral geometry. Two pyrazine-2-carboxamide ligand molecules, each coordinating to the CoII center in a chelating bidentate fashion and forming a stable five membered ring, form a square planar arrangement around the metal center. The remaining two trans positions in the octahedron are occupied by two coordinated water molecules. The crystal packing is dominated by O—H···O hydrogen bonding interactions between the complex molecules and the nitrate ions present in the crystal lattice which leads to the formation of a two-dimensional sheet parallel to the bc plane (Fig. 2, Table 1).

Related literature top

For the monodentate coordination mode of the pyrazine-2-carboxamide ligand, see: Azhdari Tehrani et al. (2010); Mir Mohammad Sadegh et al. (2010); Goher & Mautner (1999, 2001). For the chelating bidentate coordination mode, see: Tanase et al. (2008); Prins et al. (2007); Sekisaki (1973). For coordination by pyrazine carboxamide moieties, see: Hausmann & Brooker (2004); Cati & Stoeckli-Evans (2004).

Experimental top

A solution of pyrazine-2-carboxamide (0.246 g, 2.0 mmol) in ethanol (10 ml) was added to a solution of cobalt(II) nitrate hexahydrate (0.291 g, 1.0 mmol) in water (5 ml) at room temperature. After stirring the resulting solution for 3–4 h, an orange colored solid had formed which was filtered off and dried. Orange crystals of the title complex were obtained by slow evaporation from acetonitrile solution over two weeks.

Refinement top

All non hydrogen atoms were refined anisotropically. The hydrogen atoms of the coordinated water molecules were located from the Fourier difference maps and included as riding contributions with O—H distances set to 0.82 Å with Uiso(H) = 1.2Ueq(O). All other H atoms were positioned geometrically with C–H = 0.93 and N—H = 0.86 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Structure description top

The ligand pyrazine-2-carboxamide can coordinate to a metal center in a monodentate fashion through the pyrazine nitrogen atom which is meta to the carboxamide group. Alternatively, when the ligand uses both the carboxamide oxygen atom and the pyrazine nitrogen atom ortho to it for coordination, a stable five member ring is formed as a result of the ligand coordinating in chelating bidentate fashion.

In the present study we report the synthesis, molecular and crystal structure of an octahedral complex of CoII with the pyrazine-2-carboxamide ligand, [Co(C5H5N3O)2(H2O)2](NO3)2. The molecular structure of this complex is shown in Fig. 1. In this complex, the CoII atom lies on a center of inversion and adopts an octahedral geometry. Two pyrazine-2-carboxamide ligand molecules, each coordinating to the CoII center in a chelating bidentate fashion and forming a stable five membered ring, form a square planar arrangement around the metal center. The remaining two trans positions in the octahedron are occupied by two coordinated water molecules. The crystal packing is dominated by O—H···O hydrogen bonding interactions between the complex molecules and the nitrate ions present in the crystal lattice which leads to the formation of a two-dimensional sheet parallel to the bc plane (Fig. 2, Table 1).

For the monodentate coordination mode of the pyrazine-2-carboxamide ligand, see: Azhdari Tehrani et al. (2010); Mir Mohammad Sadegh et al. (2010); Goher & Mautner (1999, 2001). For the chelating bidentate coordination mode, see: Tanase et al. (2008); Prins et al. (2007); Sekisaki (1973). For coordination by pyrazine carboxamide moieties, see: Hausmann & Brooker (2004); Cati & Stoeckli-Evans (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram showing the molecular structure of the title complex. The ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by the symmetry transformation (-x, -y, -z + 1) .
[Figure 2] Fig. 2. The two dimensional sheet structure parallel to the bc plane is formed by O—H···O hydrogen bonding interactions between the complex cations and the nitrate ions. H-atoms other than those involved in H-bonding have been omitted for clarity. Hydrogen bonds are shown as dashed lines.
Diaquabis(pyrazine-2-carboxamide-κ2N1,O)cobalt(II) dinitrate top
Crystal data top
[Co(C5H5N3O)2(H2O)2](NO3)2F(000) = 474
Mr = 465.22Dx = 1.789 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 62 reflections
a = 10.149 (5) Åθ = 1.6–30.1°
b = 6.715 (3) ŵ = 1.07 mm1
c = 13.080 (5) ÅT = 295 K
β = 104.397 (4)°Block, orange
V = 863.4 (7) Å30.2 × 0.18 × 0.18 mm
Z = 2
Data collection top
Rigaku R-AXIS IV++
diffractometer
1958 independent reflections
Confocal monochromator1831 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.023
φ scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 1314
Tmin = 0.815, Tmax = 0.831k = 79
4254 measured reflectionsl = 1318
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.1848P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1958 reflectionsΔρmax = 0.42 e Å3
140 parametersΔρmin = 0.55 e Å3
2 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.058 (5)
Crystal data top
[Co(C5H5N3O)2(H2O)2](NO3)2V = 863.4 (7) Å3
Mr = 465.22Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.149 (5) ŵ = 1.07 mm1
b = 6.715 (3) ÅT = 295 K
c = 13.080 (5) Å0.2 × 0.18 × 0.18 mm
β = 104.397 (4)°
Data collection top
Rigaku R-AXIS IV++
diffractometer
1958 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1831 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.831Rint = 0.023
4254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.42 e Å3
1958 reflectionsΔρmin = 0.55 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13028 (17)0.3679 (3)0.37319 (14)0.0252 (4)
H10.0450.42790.39170.03*
C20.2368 (2)0.4620 (3)0.30214 (17)0.0312 (4)
H20.22090.58350.27330.037*
C30.38018 (17)0.2122 (3)0.32023 (14)0.0265 (4)
H30.46680.15650.3050.032*
C40.27504 (15)0.1155 (2)0.38998 (12)0.0187 (3)
C50.28494 (16)0.0812 (3)0.44282 (13)0.0233 (4)
N10.14921 (13)0.1933 (2)0.41483 (10)0.0190 (3)
N20.36101 (16)0.3835 (3)0.27411 (13)0.0328 (4)
N30.40489 (16)0.1673 (3)0.42833 (14)0.0338 (4)
H3A0.41220.27950.45810.041*
H3B0.47580.11120.38910.041*
N40.73095 (19)0.0030 (2)0.13278 (13)0.0257 (4)
O10.17918 (12)0.1555 (2)0.49866 (11)0.0307 (3)
O20.67682 (16)0.1413 (2)0.16811 (14)0.0475 (4)
O30.67169 (18)0.0854 (3)0.05233 (14)0.0574 (5)
O40.85161 (15)0.0470 (2)0.18035 (12)0.0361 (3)
Co1000.50.01880 (16)
O1W0.00264 (16)0.1345 (2)0.35909 (11)0.0400 (4)
H2W0.059 (2)0.215 (3)0.349 (2)0.048*
H1W0.045 (2)0.094 (4)0.3028 (11)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0174 (8)0.0248 (9)0.0307 (9)0.0021 (6)0.0005 (7)0.0021 (6)
C20.0257 (10)0.0232 (8)0.0405 (11)0.0023 (7)0.0002 (8)0.0086 (8)
C30.0129 (8)0.0289 (9)0.0322 (9)0.0019 (6)0.0047 (7)0.0007 (7)
C40.0136 (7)0.0203 (8)0.0204 (7)0.0010 (6)0.0008 (6)0.0017 (6)
C50.0165 (8)0.0267 (9)0.0240 (8)0.0016 (7)0.0000 (6)0.0020 (6)
N10.0124 (6)0.0228 (7)0.0194 (6)0.0017 (5)0.0008 (5)0.0004 (5)
N20.0210 (8)0.0292 (8)0.0409 (9)0.0047 (6)0.0061 (7)0.0078 (6)
N30.0166 (7)0.0363 (9)0.0426 (9)0.0074 (6)0.0040 (6)0.0115 (7)
N40.0229 (9)0.0313 (9)0.0223 (8)0.0009 (5)0.0041 (7)0.0009 (5)
O10.0150 (6)0.0337 (7)0.0383 (7)0.0011 (5)0.0027 (5)0.0143 (6)
O20.0453 (9)0.0434 (9)0.0557 (10)0.0129 (7)0.0163 (8)0.0063 (7)
O30.0407 (9)0.0808 (14)0.0426 (9)0.0083 (9)0.0048 (7)0.0283 (9)
O40.0270 (8)0.0405 (8)0.0351 (8)0.0068 (6)0.0031 (6)0.0039 (6)
Co10.0103 (2)0.0237 (2)0.0192 (2)0.00234 (10)0.00225 (14)0.00248 (10)
O1W0.0415 (9)0.0490 (9)0.0237 (7)0.0229 (7)0.0031 (6)0.0045 (6)
Geometric parameters (Å, º) top
C1—N11.327 (2)N3—H3A0.86
C1—C21.390 (3)N3—H3B0.86
C1—H10.93N4—O21.226 (2)
C2—N21.330 (3)N4—O31.227 (2)
C2—H20.93N4—O41.273 (2)
C3—N21.335 (3)O1—Co12.0934 (14)
C3—C41.382 (2)Co1—O1W2.0586 (15)
C3—H30.93Co1—O1Wi2.0586 (15)
C4—N11.343 (2)Co1—O1i2.0934 (14)
C4—C51.505 (2)Co1—N1i2.0931 (14)
C5—O11.243 (2)O1W—H2W0.820 (2)
C5—N31.318 (2)O1W—H1W0.820 (2)
N1—Co12.0931 (14)
N1—C1—C2120.52 (16)O2—N4—O3121.3 (2)
N1—C1—H1119.7O2—N4—O4118.83 (18)
C2—C1—H1119.7O3—N4—O4119.88 (17)
N2—C2—C1122.04 (18)C5—O1—Co1115.20 (11)
N2—C2—H2119O1W—Co1—O1Wi180
C1—C2—H2119O1W—Co1—O1i91.24 (7)
N2—C3—C4121.87 (16)O1Wi—Co1—O1i88.76 (7)
N2—C3—H3119.1O1W—Co1—O188.76 (7)
C4—C3—H3119.1O1Wi—Co1—O191.24 (7)
N1—C4—C3120.57 (15)O1i—Co1—O1180
N1—C4—C5113.48 (13)O1W—Co1—N187.95 (6)
C3—C4—C5125.94 (15)O1Wi—Co1—N192.05 (6)
O1—C5—N3122.68 (17)O1i—Co1—N1101.95 (6)
O1—C5—C4118.41 (14)O1—Co1—N178.05 (6)
N3—C5—C4118.91 (15)O1W—Co1—N1i92.05 (6)
C1—N1—C4118.09 (14)O1Wi—Co1—N1i87.95 (6)
C1—N1—Co1127.39 (11)O1i—Co1—N1i78.05 (6)
C4—N1—Co1113.95 (11)O1—Co1—N1i101.95 (6)
C2—N2—C3116.81 (16)N1—Co1—N1i180
C5—N3—H3A120Co1—O1W—H2W127 (2)
C5—N3—H3B120Co1—O1W—H1W122 (2)
H3A—N3—H3B120H2W—O1W—H1W110 (3)
N1—C1—C2—N20.8 (3)N3—C5—O1—Co1175.70 (14)
N2—C3—C4—N10.9 (3)C4—C5—O1—Co14.4 (2)
N2—C3—C4—C5177.61 (17)C5—O1—Co1—O1W81.16 (14)
N1—C4—C5—O13.1 (2)C5—O1—Co1—O1Wi98.84 (14)
C3—C4—C5—O1175.52 (17)C5—O1—Co1—N17.01 (13)
N1—C4—C5—N3176.79 (15)C5—O1—Co1—N1i172.99 (13)
C3—C4—C5—N34.6 (3)C1—N1—Co1—O1W90.46 (15)
C2—C1—N1—C42.9 (2)C4—N1—Co1—O1W80.57 (12)
C2—C1—N1—Co1167.77 (14)C1—N1—Co1—O1Wi89.54 (15)
C3—C4—N1—C12.1 (2)C4—N1—Co1—O1Wi99.43 (12)
C5—C4—N1—C1179.19 (14)C1—N1—Co1—O1i0.38 (15)
C3—C4—N1—Co1169.81 (13)C4—N1—Co1—O1i171.41 (11)
C5—C4—N1—Co18.89 (17)C1—N1—Co1—O1179.62 (15)
C1—C2—N2—C32.2 (3)C4—N1—Co1—O18.60 (11)
C4—C3—N2—C23.0 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4ii0.82 (1)1.93 (1)2.742 (2)170 (3)
O1W—H2W···O4iii0.82 (1)1.92 (1)2.722 (2)164 (3)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C5H5N3O)2(H2O)2](NO3)2
Mr465.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.149 (5), 6.715 (3), 13.080 (5)
β (°) 104.397 (4)
V3)863.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.2 × 0.18 × 0.18
Data collection
DiffractometerRigaku R-AXIS IV++
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.815, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
4254, 1958, 1831
Rint0.023
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.097, 1.07
No. of reflections1958
No. of parameters140
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.55

Computer programs: CrystalClear (Rigaku, 2000), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4i0.820 (2)1.931 (6)2.742 (2)170 (3)
O1W—H2W···O4ii0.820 (2)1.924 (8)2.722 (2)164 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

APSP and YL are thankful to the Industry Academic Cooperation Foundation (IACF), Yonsei University, Seoul, Korea, for financial support. YL is also thankful for the support by the Global Research Laboratory program of the Korean Ministry of Education, Science and Technology, which contributed for the installation of VariMAX/R-Axis IV++/DAC XRD system used in this study.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAzhdari Tehrani, A., Mir Mohammad Sadegh, B. & Khavasi, H. R. (2010). Acta Cryst. E66, m261.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177–m179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoher, M. A. S. & Mautner, F. A. (1999). J. Chem. Soc. Dalton Trans. pp. 1535–1536.  Web of Science CSD CrossRef Google Scholar
First citationGoher, M. A. S. & Mautner, F. A. (2001). J. Coord. Chem. 53, 79–89.  Web of Science CrossRef CAS Google Scholar
First citationHausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530–1531.  Web of Science CSD CrossRef Google Scholar
First citationMir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrins, F., Pasca, E., de Jongh, L. J., Kooijman, H., Spek, A. L. & Tanase, S. (2007). Angew. Chem. Int. Ed. 46, 6081–6084.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSekisaki, M. (1973). Acta Cryst. B29, 327–331.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanase, S., Evangelisti, M., de Jongh, L. J., Smits, J. M. M. & de Gelder, R. (2008). Inorg. Chim. Acta, 361, 3548–3554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m512-m513
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds