metal-organic compounds
(Acetylacetonato-κ2O,O′)[(2-bromophenyl)diphenylphosphane-κP]carbonylrhodium(I)
aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za
In the title compound, [Rh(C5H7O2)(C18H14BrP)(CO)], the RhI atom adopts a slightly distorted square-planar geometry involving two O atoms [Rh—O = 2.077 (2) and 2.033 (2) Å] of the acetylacetonate ligand, one carbonyl C atom [Rh—C = 1.813 (2) Å] and one P atom [Rh—P = 2.242 (5) Å] of the PPh2(2-BrC6H4) phosphane ligand. Difference electron density maps indicate a disorder of the Br atom over two positions in an approximate 0.95:0.05 ratio. However, this disorder could not be resolved satisfactorily with the present data.
Related literature
For background to the ); Moloy & Wegman (1989); Carraz et al. (2000). For related rhodium structures, see: Brink et al. (2007); Coetzee et al. (2007).
of rhodium–phosphane compounds, see: Bonati & Wilkinson (1964Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812011944/mw2054sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812011944/mw2054Isup2.hkl
A solution of [Rh(acac)(CO)2] (42.2 mg, 0.16 mmol) in acetone (5 ml) was added slowly to a solution of [PPh2(2-BrC6H4)] (61.4 mg, 0.18 mmol) in acetone (5 ml). Slow evaporation of the solvent afforded the title compound as yellow crystals. Spectroscopic analysis: 31P{H} NMR (CDCl3, 162 MHz, p.p.m.): 52.4 [d, 1J(Rh—P) = 179.8 Hz]; IR (CH2Cl2) ν(CO): 1975.1 cm-1.
The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and methine H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density. The Br atom was modelled disorderd over two positions in a 95:5 ratio. This resulted in an unacceptably short C26—Br1B distance of 1.657 Å for the minor component.
Applying a distance restraint (SADI or DFIX in SHELXL) to the minor C26—Br1B component resulted in a severe distortion of the phenyl ring. In addition, this resulted in an unstable refinement.
Modelling the complete ring (C21—C26, Br1B) as disorderd over two positions resulted in a 96:4 ratio. This disorder provides a chemically acceptable explanation of the low occupancy of the minor disorder, as it results in distortion of the P coordination sphere. This behaviour is, however, expected in solution at room temperature. Unfortunately modelling the complete ring as a disorder resulted in an unstable
(results file in the supplementary information at the end of the file).Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The labile carbonyl groups in dicarbonyl(acetylacetonate) rhodium(I) complexes promotes easy carbonyl displacement of one carbonyl group with a variety of phosphites or (Bonati and Wilkinson, 1964). This work is part of an on-going investigation aimed at determining the steric effects induced by various phosphane ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square- planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bi-dentate ligand acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000).
In the title compound, [Rh(acac)(CO){PPh2(2-BrC6H4)}] (acac = acetylacetonate, Ph = phenyl), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C1—Rh1—P1 and O2—Rh1—O3 angles of 86.99 (6)° and 89.10 (6)°, respectively. The complex crystallizes in the monoclinic
P2(1)/n, with four molecules in the A larger trans-influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.077 (2) Å) bond compared to Rh—O3 (2.033 (2) Å) bond which is trans to the carbonyl ligand. The steric demand of the phosphane is indicated by the smaller O3—Rh1—P1 angle, (90.52 (4)°), compared to the carbonyl ligand (O2—Rh1—C1 = 93.38 (7)°). All geometric parameters are similar to previous reported complexes of the general formula [Rh(acac)(CO)L]; L = tertiary phosphane ligand (Brink et al. (2007); Coetzee et al. (2007).We modelled the position of the Br atom as a disordered model of 95:5 occupancy over two positions. A chemically more acceptable solution is the modelling of the complete ring C21—C26 as disordered over two positions. This resulted unfortunately in an unstable refinement.
For background to the
of rhodium-phosphane compounds, see: Bonati & Wilkinson (1964); Moloy & Wegman (1989); Carraz et al. (2000). For related rhodium structures, see: Brink et al. (2007); Coetzee et al. (2007).Data collection: APEX2 (Bruker 2010); cell
SAINT (Bruker 2008); data reduction: SAINT and XPREP (Bruker 2008); program(s) used to solve structure: SIR97 (Altomare, et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).[Rh(C5H7O2)(C18H14BrP)(CO)] | F(000) = 1136 |
Mr = 571.19 | Dx = 1.719 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2yn | Cell parameters from 9726 reflections |
a = 9.0503 (2) Å | θ = 4.1–65.7° |
b = 17.8711 (4) Å | µ = 9.26 mm−1 |
c = 13.9552 (3) Å | T = 100 K |
β = 102.133 (1)° | Needle, yellow |
V = 2206.68 (8) Å3 | 0.36 × 0.08 × 0.07 mm |
Z = 4 |
Bruker APEX DUO 4K CCD diffractometer | 3830 independent reflections |
Radiation source: Incoatec IµS microfocus X-ray source | 3800 reflections with I > 2σ(I) |
Incoatec Quazar Multilayer Mirror monochromator | Rint = 0.040 |
Detector resolution: 8.4 pixels mm-1 | θmax = 66.6°, θmin = 4.1° |
φ and ω scans | h = −8→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −21→21 |
Tmin = 0.410, Tmax = 0.753 | l = −16→16 |
51955 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.047 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0153P)2 + 2.7465P] where P = (Fo2 + 2Fc2)/3 |
3830 reflections | (Δ/σ)max = 0.001 |
283 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
[Rh(C5H7O2)(C18H14BrP)(CO)] | V = 2206.68 (8) Å3 |
Mr = 571.19 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 9.0503 (2) Å | µ = 9.26 mm−1 |
b = 17.8711 (4) Å | T = 100 K |
c = 13.9552 (3) Å | 0.36 × 0.08 × 0.07 mm |
β = 102.133 (1)° |
Bruker APEX DUO 4K CCD diffractometer | 3830 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3800 reflections with I > 2σ(I) |
Tmin = 0.410, Tmax = 0.753 | Rint = 0.040 |
51955 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.047 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.35 e Å−3 |
3830 reflections | Δρmin = −0.47 e Å−3 |
283 parameters |
Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 3977 frames were collected with a frame width of 1.5° covering up to θ = 66.56° with 98.4% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 1.0083 (2) | 0.20914 (12) | 0.81292 (15) | 0.0170 (4) | |
C2 | 0.7672 (3) | 0.02131 (12) | 0.96498 (16) | 0.0202 (5) | |
C3 | 0.7635 (3) | 0.07346 (13) | 1.03843 (16) | 0.0227 (5) | |
H3 | 0.7145 | 0.0589 | 1.0894 | 0.027* | |
C4 | 0.8256 (3) | 0.14521 (13) | 1.04395 (16) | 0.0199 (5) | |
C5 | 0.7048 (3) | −0.05622 (13) | 0.97335 (18) | 0.0270 (5) | |
H5A | 0.6712 | −0.0776 | 0.9077 | 0.041* | |
H5B | 0.619 | −0.0533 | 1.0059 | 0.041* | |
H5C | 0.7837 | −0.088 | 1.0118 | 0.041* | |
C6 | 0.8164 (3) | 0.19327 (13) | 1.13130 (17) | 0.0250 (5) | |
H6A | 0.802 | 0.2457 | 1.1107 | 0.038* | |
H6B | 0.9103 | 0.1884 | 1.1808 | 0.038* | |
H6C | 0.7309 | 0.177 | 1.1591 | 0.038* | |
C11 | 0.9193 (2) | 0.13799 (11) | 0.60948 (15) | 0.0141 (4) | |
C13 | 0.7662 (3) | 0.23761 (13) | 0.51864 (17) | 0.0227 (5) | |
H13 | 0.6768 | 0.267 | 0.5069 | 0.027* | |
C14 | 0.8773 (3) | 0.24911 (14) | 0.46495 (17) | 0.0286 (5) | |
H14 | 0.8643 | 0.2874 | 0.4166 | 0.034* | |
C15 | 1.0060 (3) | 0.20565 (13) | 0.48098 (17) | 0.0244 (5) | |
H15 | 1.0803 | 0.2134 | 0.443 | 0.029* | |
C16 | 1.0269 (3) | 0.15034 (12) | 0.55286 (15) | 0.0178 (4) | |
H16 | 1.1159 | 0.1206 | 0.5635 | 0.021* | |
C21 | 0.8375 (2) | −0.00862 (11) | 0.66851 (15) | 0.0144 (4) | |
C22 | 0.7422 (2) | −0.00895 (12) | 0.57576 (15) | 0.0162 (4) | |
H22 | 0.735 | 0.0343 | 0.5354 | 0.019* | |
C23 | 0.6576 (2) | −0.07239 (12) | 0.54206 (16) | 0.0193 (5) | |
H23 | 0.5925 | −0.0721 | 0.479 | 0.023* | |
C24 | 0.6680 (3) | −0.13580 (12) | 0.60010 (18) | 0.0220 (5) | |
H24 | 0.611 | −0.1792 | 0.5768 | 0.026* | |
C25 | 0.7624 (3) | −0.13577 (12) | 0.69277 (17) | 0.0208 (5) | |
H25 | 0.7693 | −0.1792 | 0.7327 | 0.025* | |
C31 | 1.1460 (2) | 0.03819 (11) | 0.71559 (14) | 0.0138 (4) | |
C32 | 1.2678 (3) | 0.07878 (12) | 0.76843 (16) | 0.0195 (5) | |
H32 | 1.2496 | 0.1237 | 0.8005 | 0.023* | |
C33 | 1.4153 (3) | 0.05460 (14) | 0.77495 (17) | 0.0234 (5) | |
H33 | 1.4972 | 0.0831 | 0.8108 | 0.028* | |
C34 | 1.4428 (3) | −0.01132 (14) | 0.72896 (16) | 0.0232 (5) | |
H34 | 1.5436 | −0.0281 | 0.7333 | 0.028* | |
C35 | 1.3233 (3) | −0.05247 (13) | 0.67696 (16) | 0.0207 (5) | |
H35 | 1.3421 | −0.0978 | 0.646 | 0.025* | |
C36 | 1.1750 (2) | −0.02778 (12) | 0.66963 (15) | 0.0171 (4) | |
H36 | 1.0934 | −0.0561 | 0.6331 | 0.021* | |
O1 | 1.05924 (19) | 0.26162 (9) | 0.78518 (12) | 0.0240 (4) | |
O2 | 0.89331 (18) | 0.17500 (8) | 0.98188 (11) | 0.0203 (3) | |
O3 | 0.82285 (18) | 0.03145 (8) | 0.88916 (11) | 0.0212 (3) | |
P1 | 0.95457 (6) | 0.07227 (3) | 0.71283 (4) | 0.01194 (11) | |
Rh1 | 0.923488 (17) | 0.125849 (8) | 0.852474 (11) | 0.01343 (6) | |
C12 | 0.7890 (2) | 0.18222 (12) | 0.58970 (15) | 0.0168 (4) | |
H12 | 0.7132 | 0.174 | 0.6264 | 0.02* | 0.0419 (10) |
C26 | 0.8466 (2) | −0.07255 (12) | 0.72724 (16) | 0.0177 (4) | |
H26 | 0.9104 | −0.0728 | 0.7907 | 0.021* | 0.9581 (10) |
Br1A | 0.63052 (3) | 0.167185 (13) | 0.657862 (17) | 0.01941 (8) | 0.9581 (10) |
Br1B | 0.9534 (7) | −0.0921 (3) | 0.8361 (4) | 0.0277 (19) | 0.0419 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0196 (11) | 0.0181 (11) | 0.0135 (10) | 0.0018 (9) | 0.0037 (9) | −0.0061 (8) |
C2 | 0.0208 (12) | 0.0209 (11) | 0.0186 (11) | −0.0004 (9) | 0.0034 (9) | 0.0040 (9) |
C3 | 0.0295 (13) | 0.0242 (12) | 0.0171 (11) | −0.0035 (10) | 0.0112 (10) | 0.0021 (9) |
C4 | 0.0214 (12) | 0.0215 (11) | 0.0174 (11) | 0.0032 (9) | 0.0055 (9) | 0.0012 (9) |
C5 | 0.0350 (14) | 0.0226 (12) | 0.0241 (12) | −0.0064 (10) | 0.0076 (10) | 0.0027 (10) |
C6 | 0.0302 (13) | 0.0253 (12) | 0.0220 (12) | 0.0002 (10) | 0.0111 (10) | −0.0023 (10) |
C11 | 0.0189 (11) | 0.0104 (9) | 0.0115 (10) | −0.0014 (8) | −0.0003 (8) | −0.0020 (8) |
C13 | 0.0247 (12) | 0.0188 (11) | 0.0217 (11) | 0.0052 (9) | −0.0017 (9) | 0.0025 (9) |
C14 | 0.0395 (15) | 0.0232 (12) | 0.0214 (12) | 0.0050 (11) | 0.0024 (11) | 0.0094 (10) |
C15 | 0.0316 (13) | 0.0244 (12) | 0.0188 (11) | 0.0014 (10) | 0.0087 (10) | 0.0055 (9) |
C16 | 0.0216 (11) | 0.0152 (10) | 0.0166 (10) | 0.0018 (9) | 0.0038 (9) | 0.0002 (8) |
C21 | 0.0143 (10) | 0.0131 (10) | 0.0170 (10) | 0.0017 (8) | 0.0059 (8) | −0.0024 (8) |
C22 | 0.0173 (11) | 0.0160 (10) | 0.0160 (10) | −0.0007 (8) | 0.0051 (8) | −0.0016 (8) |
C23 | 0.0174 (11) | 0.0220 (11) | 0.0191 (11) | −0.0029 (9) | 0.0051 (9) | −0.0061 (9) |
C24 | 0.0224 (12) | 0.0162 (11) | 0.0299 (13) | −0.0052 (9) | 0.0114 (10) | −0.0092 (9) |
C25 | 0.0241 (12) | 0.0139 (10) | 0.0271 (12) | 0.0004 (9) | 0.0114 (10) | 0.0021 (9) |
C31 | 0.0145 (10) | 0.0161 (10) | 0.0109 (9) | 0.0009 (8) | 0.0029 (8) | 0.0036 (8) |
C32 | 0.0207 (11) | 0.0193 (11) | 0.0187 (11) | −0.0001 (9) | 0.0043 (9) | −0.0022 (9) |
C33 | 0.0159 (11) | 0.0323 (13) | 0.0212 (11) | −0.0021 (9) | 0.0019 (9) | −0.0010 (10) |
C34 | 0.0185 (12) | 0.0310 (13) | 0.0217 (11) | 0.0077 (10) | 0.0079 (9) | 0.0077 (10) |
C35 | 0.0245 (12) | 0.0204 (11) | 0.0190 (11) | 0.0062 (9) | 0.0090 (9) | 0.0017 (9) |
C36 | 0.0192 (11) | 0.0165 (10) | 0.0161 (10) | 0.0010 (8) | 0.0050 (9) | 0.0014 (8) |
O1 | 0.0326 (9) | 0.0166 (8) | 0.0248 (8) | −0.0069 (7) | 0.0108 (7) | −0.0023 (6) |
O2 | 0.0281 (9) | 0.0176 (8) | 0.0175 (8) | −0.0026 (6) | 0.0102 (7) | −0.0018 (6) |
O3 | 0.0287 (9) | 0.0183 (8) | 0.0185 (8) | −0.0041 (6) | 0.0093 (7) | −0.0006 (6) |
P1 | 0.0134 (3) | 0.0107 (2) | 0.0116 (2) | 0.00022 (19) | 0.00232 (19) | −0.00053 (19) |
Rh1 | 0.01719 (10) | 0.01174 (9) | 0.01218 (9) | −0.00084 (6) | 0.00498 (6) | −0.00096 (5) |
C12 | 0.0184 (11) | 0.0146 (10) | 0.0162 (10) | −0.0007 (8) | 0.0012 (8) | −0.0034 (8) |
C26 | 0.0177 (11) | 0.0168 (11) | 0.0190 (11) | 0.0033 (8) | 0.0052 (9) | 0.0002 (8) |
Br1A | 0.01406 (13) | 0.02069 (13) | 0.02271 (14) | 0.00198 (9) | 0.00212 (9) | −0.00344 (9) |
Br1B | 0.028 (3) | 0.027 (3) | 0.023 (3) | 0.003 (2) | −0.004 (2) | 0.005 (2) |
C1—O1 | 1.148 (3) | C21—C26 | 1.398 (3) |
C1—Rh1 | 1.813 (2) | C21—P1 | 1.822 (2) |
C2—O3 | 1.277 (3) | C22—C23 | 1.393 (3) |
C2—C3 | 1.391 (3) | C22—H22 | 0.95 |
C2—C5 | 1.510 (3) | C23—C24 | 1.384 (3) |
C3—C4 | 1.395 (3) | C23—H23 | 0.95 |
C3—H3 | 0.95 | C24—C25 | 1.392 (3) |
C4—O2 | 1.278 (3) | C24—H24 | 0.95 |
C4—C6 | 1.508 (3) | C25—C26 | 1.391 (3) |
C5—H5A | 0.98 | C25—H25 | 0.95 |
C5—H5B | 0.98 | C31—C36 | 1.393 (3) |
C5—H5C | 0.98 | C31—C32 | 1.394 (3) |
C6—H6A | 0.98 | C31—P1 | 1.829 (2) |
C6—H6B | 0.98 | C32—C33 | 1.387 (3) |
C6—H6C | 0.98 | C32—H32 | 0.95 |
C11—C16 | 1.395 (3) | C33—C34 | 1.389 (3) |
C11—C12 | 1.398 (3) | C33—H33 | 0.95 |
C11—P1 | 1.835 (2) | C34—C35 | 1.381 (3) |
C13—C12 | 1.386 (3) | C34—H34 | 0.95 |
C13—C14 | 1.389 (4) | C35—C36 | 1.396 (3) |
C13—H13 | 0.95 | C35—H35 | 0.95 |
C14—C15 | 1.379 (4) | C36—H36 | 0.95 |
C14—H14 | 0.95 | O2—Rh1 | 2.0772 (15) |
C15—C16 | 1.393 (3) | O3—Rh1 | 2.0332 (15) |
C15—H15 | 0.95 | P1—Rh1 | 2.2415 (5) |
C16—H16 | 0.95 | C12—H12 | 0.95 |
C21—C22 | 1.397 (3) | C26—H26 | 0.95 |
O1—C1—Rh1 | 177.96 (19) | C22—C23—H23 | 119.9 |
O3—C2—C3 | 126.2 (2) | C23—C24—C25 | 119.8 (2) |
O3—C2—C5 | 114.4 (2) | C23—C24—H24 | 120.1 |
C3—C2—C5 | 119.4 (2) | C25—C24—H24 | 120.1 |
C2—C3—C4 | 125.8 (2) | C26—C25—C24 | 120.4 (2) |
C2—C3—H3 | 117.1 | C26—C25—H25 | 119.8 |
C4—C3—H3 | 117.1 | C24—C25—H25 | 119.8 |
O2—C4—C3 | 126.2 (2) | C36—C31—C32 | 118.6 (2) |
O2—C4—C6 | 115.2 (2) | C36—C31—P1 | 122.77 (16) |
C3—C4—C6 | 118.6 (2) | C32—C31—P1 | 118.58 (16) |
C2—C5—H5A | 109.5 | C33—C32—C31 | 121.0 (2) |
C2—C5—H5B | 109.5 | C33—C32—H32 | 119.5 |
H5A—C5—H5B | 109.5 | C31—C32—H32 | 119.5 |
C2—C5—H5C | 109.5 | C32—C33—C34 | 119.8 (2) |
H5A—C5—H5C | 109.5 | C32—C33—H33 | 120.1 |
H5B—C5—H5C | 109.5 | C34—C33—H33 | 120.1 |
C4—C6—H6A | 109.5 | C35—C34—C33 | 119.8 (2) |
C4—C6—H6B | 109.5 | C35—C34—H34 | 120.1 |
H6A—C6—H6B | 109.5 | C33—C34—H34 | 120.1 |
C4—C6—H6C | 109.5 | C34—C35—C36 | 120.3 (2) |
H6A—C6—H6C | 109.5 | C34—C35—H35 | 119.8 |
H6B—C6—H6C | 109.5 | C36—C35—H35 | 119.8 |
C16—C11—C12 | 117.34 (19) | C31—C36—C35 | 120.3 (2) |
C16—C11—P1 | 121.29 (16) | C31—C36—H36 | 119.8 |
C12—C11—P1 | 121.15 (16) | C35—C36—H36 | 119.8 |
C12—C13—C14 | 118.4 (2) | C4—O2—Rh1 | 125.64 (14) |
C12—C13—H13 | 120.8 | C2—O3—Rh1 | 127.02 (14) |
C14—C13—H13 | 120.8 | C21—P1—C31 | 102.92 (9) |
C15—C14—C13 | 120.8 (2) | C21—P1—C11 | 104.38 (9) |
C15—C14—H14 | 119.6 | C31—P1—C11 | 103.73 (10) |
C13—C14—H14 | 119.6 | C21—P1—Rh1 | 117.63 (7) |
C14—C15—C16 | 119.9 (2) | C31—P1—Rh1 | 114.54 (7) |
C14—C15—H15 | 120 | C11—P1—Rh1 | 112.14 (7) |
C16—C15—H15 | 120 | C1—Rh1—O3 | 176.91 (8) |
C15—C16—C11 | 121.0 (2) | C1—Rh1—O2 | 93.38 (7) |
C15—C16—H16 | 119.5 | O3—Rh1—O2 | 89.10 (6) |
C11—C16—H16 | 119.5 | C1—Rh1—P1 | 86.99 (6) |
C22—C21—C26 | 119.26 (19) | O3—Rh1—P1 | 90.52 (4) |
C22—C21—P1 | 121.32 (16) | O2—Rh1—P1 | 179.58 (5) |
C26—C21—P1 | 119.39 (16) | C13—C12—C11 | 122.5 (2) |
C23—C22—C21 | 120.3 (2) | C13—C12—H12 | 118.7 |
C23—C22—H22 | 119.8 | C11—C12—H12 | 118.7 |
C21—C22—H22 | 119.8 | C25—C26—C21 | 120.0 (2) |
C24—C23—C22 | 120.2 (2) | C25—C26—H26 | 120 |
C24—C23—H23 | 119.9 | C21—C26—H26 | 120 |
Experimental details
Crystal data | |
Chemical formula | [Rh(C5H7O2)(C18H14BrP)(CO)] |
Mr | 571.19 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.0503 (2), 17.8711 (4), 13.9552 (3) |
β (°) | 102.133 (1) |
V (Å3) | 2206.68 (8) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 9.26 |
Crystal size (mm) | 0.36 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Bruker APEX DUO 4K CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.410, 0.753 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 51955, 3830, 3800 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.047, 1.14 |
No. of reflections | 3830 |
No. of parameters | 283 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.47 |
Computer programs: APEX2 (Bruker 2010), SAINT (Bruker 2008), SAINT and XPREP (Bruker 2008), SIR97 (Altomare, et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Acknowledgements
Financial assistance from the Research Fund of the University of Johannesburg, Sasol and TESP is gratefully acknowledged. H. Ogutu is acknowledged for the data collection.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156–3160. CrossRef Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m2831–m2832. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carraz, C. A., Ditzel, E. J., Orpen, A. G., Ellis, D. D., Pringle, P. G. & Sunley, G. J. (2000). Chem. Commun. pp. 1277–1278. Web of Science CSD CrossRef Google Scholar
Coetzee, M., Purcell, W., Visser, H. G. & Venter, J. A. (2007). Acta Cryst. E63, m3165. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Moloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883–2892. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The labile carbonyl groups in dicarbonyl(acetylacetonate) rhodium(I) complexes promotes easy carbonyl displacement of one carbonyl group with a variety of phosphanes, phosphites or arsines (Bonati and Wilkinson, 1964). This work is part of an on-going investigation aimed at determining the steric effects induced by various phosphane ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square- planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bi-dentate ligand acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000).
In the title compound, [Rh(acac)(CO){PPh2(2-BrC6H4)}] (acac = acetylacetonate, Ph = phenyl), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C1—Rh1—P1 and O2—Rh1—O3 angles of 86.99 (6)° and 89.10 (6)°, respectively. The complex crystallizes in the monoclinic space group, P2(1)/n, with four molecules in the unit cell. A larger trans-influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.077 (2) Å) bond compared to Rh—O3 (2.033 (2) Å) bond which is trans to the carbonyl ligand. The steric demand of the phosphane is indicated by the smaller O3—Rh1—P1 angle, (90.52 (4)°), compared to the carbonyl ligand (O2—Rh1—C1 = 93.38 (7)°). All geometric parameters are similar to previous reported complexes of the general formula [Rh(acac)(CO)L]; L = tertiary phosphane ligand (Brink et al. (2007); Coetzee et al. (2007).
We modelled the position of the Br atom as a disordered model of 95:5 occupancy over two positions. A chemically more acceptable solution is the modelling of the complete ring C21—C26 as disordered over two positions. This resulted unfortunately in an unstable refinement.