organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,5,6-Tetra­fluoro-1,4-bis­­(tri­methyl­sil­yl)benzene

aInstitut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, bInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, and cInstitut für Anorganische Chemie, Universität Duisburg-Essen, Lotharstrasse 1, D-47048 Duisburg, Germany
*Correspondence e-mail: maik.finze@uni-wuerzburg.de

(Received 17 February 2012; accepted 10 March 2012; online 17 March 2012)

The asymmetric unit of the title compound, C12H18F4Si2, contains two independent mol­ecules, both lying on inversion centers. The Carene—Si distances are significantly longer than in the analogous non-fluorinated compound. The packing of the mol­ecules results in a herringbone motif in the ac plane.

Related literature

For the synthesis and chemistry of 1,4-(Me3Si)2—C6F4, see: Fearon & Gilman (1967[Fearon, F. W. G. & Gilman, H. (1967). J. Organomet. Chem. 10, 535-537.]); Tamborski & Soloski (1969[Tamborski, C. & Soloski, E. J. (1969). J. Organomet. Chem. 17, 185-192.]); Fields et al. (1970[Fields, R., Haszeldine, R. N. & Hubbard, A. F. (1970). J. Chem. Soc. C, pp. 2193-2195.]); Sartori & Frohn (1974[Sartori, P. & Frohn, H.-J. (1974). Chem. Ber. 107, 1195-1206.]); Bardin et al. (1991[Bardin, V. V., Pressman, L. S., Rogoza, L. N. & Furin, G. G. (1991). J. Fluorine Chem. 53, 213-231.]); Frohn et al. (1998[Frohn, H.-J., Lewin, A. & Bardin, V. V. (1998). J. Organomet. Chem. 570, 255-263.]); Kashiwabara & Tanaka (2006[Kashiwabara, T. & Tanaka, M. (2006). Organometallics, 25, 4648-4652.]). For related structures see: Rehm et al. (1999[Rehm, J. D. D., Ziemer, B. & Szeimies, G. (1999). Eur. J. Org. Chem. pp. 2079-2085.]); Sekiguchi et al. (2000[Sekiguchi, A., Fukaya, N., Ichinohe, M. & Ishida, Y. (2000). Eur. J. Inorg. Chem. pp. 1155-1159.]); Haberecht et al. (2002[Haberecht, M., Lerner, H.-W. & Bolte, M. (2002). Acta Cryst. E58, o436-o437.], 2004[Haberecht, M. C., Vitze, H., Lerner, H.-W. & Bolte, M. (2004). Acta Cryst. E60, o329-o330.]); Krumm et al. (2005[Krumm, B., Klapötke, T. M. & Polborn, K. (2005). Private communication (refcode NAXDAS). CCDC, Cambridge, England.]); Hanamoto et al. (2006[Hanamoto, T., Koga, Y., Kawanami, T., Furuno, H. & Inanaga, J. (2006). Tetrahedron Lett. 47, 493-495.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18F4Si2

  • Mr = 294.44

  • Monoclinic, P 21 /c

  • a = 19.8389 (4) Å

  • b = 6.35013 (10) Å

  • c = 12.3827 (2) Å

  • β = 107.407 (2)°

  • V = 1488.53 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 199 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Oxford Xcalibur Eos diffractometer

  • 8888 measured reflections

  • 2626 independent reflections

  • 2496 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.09

  • 2626 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

Si1—C2 1.9101 (15)
Si2—C8 1.9077 (15)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011)[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The first synthesis of the title compound 1,4-bis(trimethylsilyl)tetrafluorobenzene, 1,4-(Me3Si)2—C6F4, was reported in 1967 starting from 1,2,4,5-tetrafluorobenzene, n-butyl lithium, and trimethylsilyl chloride (Fearon & Gilman 1967). Later, the compound was observed as a by-product in related reactions, improved methods for its selective synthesis were published and some reactions of 1,4-(Me3Si)2—C6F4 were described (Tamborski & Soloski, 1969; Fields et al. 1970; Sartori & Frohn, 1974; Bardin et al. 1991; Frohn et al. 1998; Kashiwabara & Tanaka, 2006). The 1,4-(Me3Si)2—C6F4 employed in the present study was prepared by a different route using poly(cadmium-2,3,5,6-tetrafluorobenzene), [1,4-Cd—C6F4]n, and trimethylsilyl chloride as starting materials.

The title compound 1,4-bis(trimethylsilyl)tetrafluorobenzene (Figure 1) crystallizes in the monoclinic space group P21/c with two independent molecules each of which is located on a center of symmetry. Both crystallographically independent molecules display very similar geometric parameters. The C–C, Cmethyl–Si and C–F bond lengths are in the expected range. Both Carene–Si distances are slightly longer than those found for the non-fluorinated analogue 1,4-(Me3Si)2—C6H4 [d(Carene–Si) = 1.8817 (12) Å] (Haberecht et al. 2004) and other non-fluorinated Me3Si–Carene compounds (Haberecht et al. 2004; Rehm et al. 1999). In contrast, for related 1-trimethylsilyl-2,3,5,6-tetrafluoro benzene fragments similar values were reported (Sekiguchi et al. 2000, Krumm et al. 2005). In the closely related compound 1,2,4-(iPr3Si)3—C6F3 (Hanamoto et al. 2006) the d(Carene–Si) of the iPr3Si groups in ortho positions [d(C–Si) = 1.937 (2), 1.934 (2)] are significantly longer than those in the title compound whereas the third Carene–Si distance [d(C–Si) = 1.914 (2) Å], which corresponds to the iPr3Si group that has two F atoms in the ortho positions, is close to the values determined for 1,4-(Me3Si)2—C6F4.

The 1,4-bis(trimethylsilyl)tetrafluorobenzene molecules are arranged in the ac plane to form a herringbone structure (Figure 2). The trimethylsilyl groups are interlinked by van der Waals interactions with methyl groups of neighboring molecules.

Related literature top

For the synthesis and chemistry of 1,4-(Me3Si)2—C6F4, see: Fearon & Gilman (1967); Tamborski & Soloski (1969); Fields et al. (1970); Sartori & Frohn (1974); Bardin et al. (1991); Frohn et al. (1998); Kashiwabara & Tanaka (2006). For related structures see: Rehm et al. (1999); Sekiguchi et al. (2000); Haberecht et al. (2002, 2004); Krumm et al. (2005); Hanamoto et al. (2006).

Experimental top

The starting material poly(cadmium-2,3,5,6-tetrafluorobenzene), [1,4-Cd—C6F4]n, was synthesized by thermolysis of Cd(1,4-O2C—C6F4) at 270 °C under vacuum according to a literature procedure (Sartori & Frohn, 1974).

7.1 g (27.3 mmol) poly(cadmium-2,3,5,6-tetrafluorobenzene), [1,4-Cd—C6F4]n, was charged into a Duran-glass Carius tube inside a glove box. 6.55 g (60.3 mmol) freshly distilled (CH3)3SiCl was added under protection of dry nitrogen. The tube was sealed and shaken and heated inside an oven. The temperature was increased stepwise over 30 h to 222°C without visual change of the reaction components. Further heating from 230 to 250°C over 26 h was accompanied by a reduction of the liquid phase and a change of the color to light grey. The Carius tube was cooled stepwise to -78°C before opening under nitrogen protection. CAUTION: Handling of the sealed Carius tube should proceed behind a large protection screen with long-sleeve leather gloves. At 0°C 3.4 g (31.3 mmol) of (CH3)3SiCl were recovered by condensation under high-vacuum. The dark grey solid residue, which contained the co-product CdCl2, was extracted with boiling petrol ether (60–70°C fraction). After removing the solvent from the extract a slightly brownish oil remained which was sublimed under high vacuum. The colorless crystals were collected on a water cooled sublimation finger. Yield ca 80%; mp 46°C [31–32°C isomeric mixture (Fields et al., 1970)]; NMR (20% CCl4 solution): 1H -0.39 p.p.m., 19F -124.2 p.p.m.; MS (EI, 73 eV) M+. 294, the fragment ions 81 (CH3SiF2), 77 ((CH3)2SiF), and 73 ((CH3)3Si) possessed higher intensities than the parent ion; IR (neat): 2946 (m), 2889 (m), 1575 (w), 1487 (w), 1400 (st, b), 1343 (w), 1334 (w), 1286 (w), 1240 (st), 1214 (st), 1183 (m), 1035 (w), 921 (st), 830 (st, b), 748 (st), 684 (m), 613 (m), 566 (w), 432 (w).

Refinement top

Methyl H atoms were identified in a difference map, idealized and refined using rigid groups allowed to rotate about the Si—C bond (AFIX 137 option of the SHELXL97 program). All Uiso(H) values were refined unrestrictedly.

Structure description top

The first synthesis of the title compound 1,4-bis(trimethylsilyl)tetrafluorobenzene, 1,4-(Me3Si)2—C6F4, was reported in 1967 starting from 1,2,4,5-tetrafluorobenzene, n-butyl lithium, and trimethylsilyl chloride (Fearon & Gilman 1967). Later, the compound was observed as a by-product in related reactions, improved methods for its selective synthesis were published and some reactions of 1,4-(Me3Si)2—C6F4 were described (Tamborski & Soloski, 1969; Fields et al. 1970; Sartori & Frohn, 1974; Bardin et al. 1991; Frohn et al. 1998; Kashiwabara & Tanaka, 2006). The 1,4-(Me3Si)2—C6F4 employed in the present study was prepared by a different route using poly(cadmium-2,3,5,6-tetrafluorobenzene), [1,4-Cd—C6F4]n, and trimethylsilyl chloride as starting materials.

The title compound 1,4-bis(trimethylsilyl)tetrafluorobenzene (Figure 1) crystallizes in the monoclinic space group P21/c with two independent molecules each of which is located on a center of symmetry. Both crystallographically independent molecules display very similar geometric parameters. The C–C, Cmethyl–Si and C–F bond lengths are in the expected range. Both Carene–Si distances are slightly longer than those found for the non-fluorinated analogue 1,4-(Me3Si)2—C6H4 [d(Carene–Si) = 1.8817 (12) Å] (Haberecht et al. 2004) and other non-fluorinated Me3Si–Carene compounds (Haberecht et al. 2004; Rehm et al. 1999). In contrast, for related 1-trimethylsilyl-2,3,5,6-tetrafluoro benzene fragments similar values were reported (Sekiguchi et al. 2000, Krumm et al. 2005). In the closely related compound 1,2,4-(iPr3Si)3—C6F3 (Hanamoto et al. 2006) the d(Carene–Si) of the iPr3Si groups in ortho positions [d(C–Si) = 1.937 (2), 1.934 (2)] are significantly longer than those in the title compound whereas the third Carene–Si distance [d(C–Si) = 1.914 (2) Å], which corresponds to the iPr3Si group that has two F atoms in the ortho positions, is close to the values determined for 1,4-(Me3Si)2—C6F4.

The 1,4-bis(trimethylsilyl)tetrafluorobenzene molecules are arranged in the ac plane to form a herringbone structure (Figure 2). The trimethylsilyl groups are interlinked by van der Waals interactions with methyl groups of neighboring molecules.

For the synthesis and chemistry of 1,4-(Me3Si)2—C6F4, see: Fearon & Gilman (1967); Tamborski & Soloski (1969); Fields et al. (1970); Sartori & Frohn (1974); Bardin et al. (1991); Frohn et al. (1998); Kashiwabara & Tanaka (2006). For related structures see: Rehm et al. (1999); Sekiguchi et al. (2000); Haberecht et al. (2002, 2004); Krumm et al. (2005); Hanamoto et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The two crystallographically independent molecules of the title compound (H-atoms are drawn with arbitrary radii; ' = -x, 1 - y, -z; '' = 1 - x, 2 - y, 1 - z).
[Figure 2] Fig. 2. : Molecular packing of the title compound viewed parallel to the b axis, showing the herringbone type motif (ball and stick type model with arbitrary atom radii).
2,3,5,6-Tetrafluoro-1,4-bis(trimethylsilyl)benzene top
Crystal data top
C12H18F4Si2F(000) = 616
Mr = 294.44Dx = 1.314 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8162 reflections
a = 19.8389 (4) Åθ = 3.1–28.3°
b = 6.35013 (10) ŵ = 0.26 mm1
c = 12.3827 (2) ÅT = 199 K
β = 107.407 (2)°Block, colourless
V = 1488.53 (5) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Oxford Xcalibur Eos
diffractometer
2496 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Equatorial mounted graphite monochromatorθmax = 25.0°, θmin = 3.2°
Detector resolution: 16.2711 pixels mm-1h = 2223
ω–scank = 77
8888 measured reflectionsl = 1412
2626 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0284P)2 + 1.0425P]
where P = (Fo2 + 2Fc2)/3
2626 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H18F4Si2V = 1488.53 (5) Å3
Mr = 294.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.8389 (4) ŵ = 0.26 mm1
b = 6.35013 (10) ÅT = 199 K
c = 12.3827 (2) Å0.25 × 0.22 × 0.20 mm
β = 107.407 (2)°
Data collection top
Oxford Xcalibur Eos
diffractometer
2496 reflections with I > 2σ(I)
8888 measured reflectionsRint = 0.015
2626 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.09Δρmax = 0.39 e Å3
2626 reflectionsΔρmin = 0.22 e Å3
187 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.12486 (2)0.23395 (7)0.19607 (3)0.01427 (11)
C10.01679 (8)0.3116 (2)0.03692 (12)0.0145 (3)
F10.03838 (4)0.12566 (13)0.06873 (7)0.0203 (2)
C20.05291 (8)0.3765 (2)0.08187 (12)0.0139 (3)
C30.06680 (7)0.5691 (2)0.04012 (12)0.0141 (3)
F30.13382 (4)0.64624 (14)0.07568 (7)0.0199 (2)
C40.08544 (8)0.0143 (3)0.25580 (13)0.0224 (3)
H4A0.04840.06790.28340.034 (5)*
H4B0.12120.04990.31700.037 (5)*
H4C0.06630.08860.19790.037 (5)*
C50.19335 (8)0.1412 (3)0.13233 (13)0.0190 (3)
H5A0.21190.25920.10190.033 (5)*
H5B0.17270.04270.07280.030 (5)*
H5C0.23090.07380.18940.037 (5)*
C60.16406 (9)0.4291 (3)0.30949 (13)0.0241 (4)
H6A0.18580.54060.27940.044 (6)*
H6B0.19900.36110.37030.045 (6)*
H6C0.12760.48640.33730.042 (6)*
Si20.35988 (2)0.79571 (7)0.56124 (3)0.01519 (11)
C70.50606 (8)0.8812 (2)0.59251 (12)0.0156 (3)
F70.51552 (5)0.76178 (15)0.68697 (7)0.0227 (2)
C80.43772 (8)0.9180 (2)0.52347 (12)0.0147 (3)
C90.43451 (7)1.0409 (2)0.42942 (12)0.0152 (3)
F90.37103 (4)1.08933 (14)0.35422 (7)0.0203 (2)
C100.36292 (9)0.8818 (3)0.70638 (13)0.0235 (4)
H10A0.36041.03260.70860.038 (6)*
H10B0.40630.83480.75940.032 (5)*
H10C0.32370.82220.72590.039 (6)*
C110.27524 (8)0.8855 (3)0.46024 (13)0.0214 (3)
H11A0.27270.83940.38530.031 (5)*
H11B0.27291.03640.46170.030 (5)*
H11C0.23650.82690.48160.034 (5)*
C120.36891 (9)0.5045 (3)0.55206 (14)0.0235 (4)
H12A0.36610.46620.47580.042 (6)*
H12B0.33160.43650.57340.049 (6)*
H12C0.41370.46100.60220.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0148 (2)0.0168 (2)0.0121 (2)0.00203 (16)0.00533 (16)0.00124 (16)
C10.0186 (7)0.0128 (7)0.0152 (7)0.0018 (6)0.0099 (6)0.0001 (6)
F10.0192 (5)0.0163 (5)0.0258 (5)0.0034 (4)0.0073 (4)0.0062 (4)
C20.0158 (7)0.0160 (7)0.0121 (7)0.0017 (6)0.0074 (6)0.0015 (6)
C30.0114 (7)0.0177 (7)0.0144 (7)0.0023 (6)0.0057 (6)0.0030 (6)
F30.0124 (4)0.0215 (5)0.0247 (5)0.0043 (4)0.0041 (4)0.0018 (4)
C40.0210 (8)0.0264 (9)0.0213 (8)0.0043 (7)0.0089 (6)0.0093 (7)
C50.0189 (8)0.0216 (8)0.0186 (7)0.0019 (6)0.0085 (6)0.0008 (6)
C60.0262 (9)0.0271 (9)0.0162 (8)0.0050 (7)0.0019 (7)0.0033 (7)
Si20.0138 (2)0.0159 (2)0.0169 (2)0.00165 (16)0.00616 (16)0.00042 (16)
C70.0187 (8)0.0144 (7)0.0135 (7)0.0006 (6)0.0045 (6)0.0025 (6)
F70.0190 (5)0.0288 (5)0.0191 (5)0.0001 (4)0.0039 (4)0.0117 (4)
C80.0156 (7)0.0134 (7)0.0156 (7)0.0005 (6)0.0055 (6)0.0020 (6)
C90.0122 (7)0.0159 (7)0.0153 (7)0.0020 (6)0.0006 (6)0.0009 (6)
F90.0124 (4)0.0260 (5)0.0192 (4)0.0008 (4)0.0000 (3)0.0064 (4)
C100.0260 (9)0.0264 (9)0.0209 (8)0.0044 (7)0.0116 (7)0.0012 (7)
C110.0157 (8)0.0254 (9)0.0240 (8)0.0011 (6)0.0075 (6)0.0006 (7)
C120.0237 (8)0.0185 (8)0.0299 (9)0.0019 (7)0.0105 (7)0.0003 (7)
Geometric parameters (Å, º) top
Si1—C41.8574 (16)Si2—C111.8579 (16)
Si1—C51.8595 (15)Si2—C101.8620 (16)
Si1—C61.8602 (16)Si2—C121.8644 (17)
Si1—C21.9101 (15)Si2—C81.9077 (15)
C1—F11.3539 (17)C7—F71.3591 (17)
C1—C3i1.379 (2)C7—C9ii1.378 (2)
C1—C21.390 (2)C7—C81.389 (2)
C2—C31.387 (2)C8—C91.387 (2)
C3—F31.3605 (16)C9—F91.3587 (16)
C3—C1i1.379 (2)C9—C7ii1.378 (2)
C4—H4A0.9600C10—H10A0.9600
C4—H4B0.9600C10—H10B0.9600
C4—H4C0.9600C10—H10C0.9600
C5—H5A0.9600C11—H11A0.9600
C5—H5B0.9600C11—H11B0.9600
C5—H5C0.9600C11—H11C0.9600
C6—H6A0.9600C12—H12A0.9600
C6—H6B0.9600C12—H12B0.9600
C6—H6C0.9600C12—H12C0.9600
C4—Si1—C5112.29 (7)C11—Si2—C10108.76 (7)
C4—Si1—C6109.29 (8)C11—Si2—C12110.31 (8)
C5—Si1—C6109.76 (7)C10—Si2—C12111.96 (8)
C4—Si1—C2109.89 (7)C11—Si2—C8110.18 (7)
C5—Si1—C2108.36 (7)C10—Si2—C8108.80 (7)
C6—Si1—C2107.11 (7)C12—Si2—C8106.81 (7)
F1—C1—C3i117.10 (13)F7—C7—C9ii117.62 (13)
F1—C1—C2120.37 (13)F7—C7—C8118.79 (13)
C3i—C1—C2122.53 (14)C9ii—C7—C8123.58 (14)
C3—C2—C1113.39 (13)C9—C8—C7113.74 (13)
C3—C2—Si1120.39 (11)C9—C8—Si2126.70 (11)
C1—C2—Si1126.13 (11)C7—C8—Si2119.55 (11)
F3—C3—C1i117.22 (13)F9—C9—C7ii117.13 (13)
F3—C3—C2118.72 (13)F9—C9—C8120.19 (13)
C1i—C3—C2124.06 (13)C7ii—C9—C8122.68 (13)
Si1—C4—H4A109.5Si2—C10—H10A109.5
Si1—C4—H4B109.5Si2—C10—H10B109.5
H4A—C4—H4B109.5H10A—C10—H10B109.5
Si1—C4—H4C109.5Si2—C10—H10C109.5
H4A—C4—H4C109.5H10A—C10—H10C109.5
H4B—C4—H4C109.5H10B—C10—H10C109.5
Si1—C5—H5A109.5Si2—C11—H11A109.5
Si1—C5—H5B109.5Si2—C11—H11B109.5
H5A—C5—H5B109.5H11A—C11—H11B109.5
Si1—C5—H5C109.5Si2—C11—H11C109.5
H5A—C5—H5C109.5H11A—C11—H11C109.5
H5B—C5—H5C109.5H11B—C11—H11C109.5
Si1—C6—H6A109.5Si2—C12—H12A109.5
Si1—C6—H6B109.5Si2—C12—H12B109.5
H6A—C6—H6B109.5H12A—C12—H12B109.5
Si1—C6—H6C109.5Si2—C12—H12C109.5
H6A—C6—H6C109.5H12A—C12—H12C109.5
H6B—C6—H6C109.5H12B—C12—H12C109.5
F1—C1—C2—C3179.45 (12)F7—C7—C8—C9179.74 (13)
C3i—C1—C2—C31.0 (2)C9ii—C7—C8—C90.1 (2)
F1—C1—C2—Si13.9 (2)F7—C7—C8—Si21.36 (19)
C3i—C1—C2—Si1175.56 (11)C9ii—C7—C8—Si2178.52 (12)
C4—Si1—C2—C3167.71 (11)C11—Si2—C8—C95.61 (16)
C5—Si1—C2—C369.26 (13)C10—Si2—C8—C9124.75 (14)
C6—Si1—C2—C349.09 (13)C12—Si2—C8—C9114.22 (14)
C4—Si1—C2—C18.68 (15)C11—Si2—C8—C7176.25 (12)
C5—Si1—C2—C1114.36 (13)C10—Si2—C8—C757.10 (14)
C6—Si1—C2—C1127.29 (13)C12—Si2—C8—C763.93 (13)
C1—C2—C3—F3178.22 (12)C7—C8—C9—F9179.85 (13)
Si1—C2—C3—F34.96 (18)Si2—C8—C9—F91.6 (2)
C1—C2—C3—C1i1.1 (2)C7—C8—C9—C7ii0.1 (2)
Si1—C2—C3—C1i175.76 (11)Si2—C8—C9—C7ii178.38 (11)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC12H18F4Si2
Mr294.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)199
a, b, c (Å)19.8389 (4), 6.35013 (10), 12.3827 (2)
β (°) 107.407 (2)
V3)1488.53 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerOxford Xcalibur Eos
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8888, 2626, 2496
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.09
No. of reflections2626
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Si1—C21.9101 (15)Si2—C81.9077 (15)
C3—C2—Si1120.39 (11)C9—C8—Si2126.70 (11)
C1—C2—Si1126.13 (11)C7—C8—Si2119.55 (11)
 

Acknowledgements

This publication was funded by the German Research Foundation (DFG) and the University of Würzburg under the funding programme Open Access Publishing.

References

First citationBardin, V. V., Pressman, L. S., Rogoza, L. N. & Furin, G. G. (1991). J. Fluorine Chem. 53, 213–231.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFearon, F. W. G. & Gilman, H. (1967). J. Organomet. Chem. 10, 535–537.  CrossRef CAS Web of Science Google Scholar
First citationFields, R., Haszeldine, R. N. & Hubbard, A. F. (1970). J. Chem. Soc. C, pp. 2193–2195.  Google Scholar
First citationFrohn, H.-J., Lewin, A. & Bardin, V. V. (1998). J. Organomet. Chem. 570, 255–263.  Web of Science CrossRef CAS Google Scholar
First citationHaberecht, M., Lerner, H.-W. & Bolte, M. (2002). Acta Cryst. E58, o436–o437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaberecht, M. C., Vitze, H., Lerner, H.-W. & Bolte, M. (2004). Acta Cryst. E60, o329–o330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHanamoto, T., Koga, Y., Kawanami, T., Furuno, H. & Inanaga, J. (2006). Tetrahedron Lett. 47, 493–495.  Web of Science CSD CrossRef CAS Google Scholar
First citationKashiwabara, T. & Tanaka, M. (2006). Organometallics, 25, 4648–4652.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrumm, B., Klapötke, T. M. & Polborn, K. (2005). Private communication (refcode NAXDAS). CCDC, Cambridge, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRehm, J. D. D., Ziemer, B. & Szeimies, G. (1999). Eur. J. Org. Chem. pp. 2079–2085.  Google Scholar
First citationSartori, P. & Frohn, H.-J. (1974). Chem. Ber. 107, 1195–1206.  CrossRef CAS Web of Science Google Scholar
First citationSekiguchi, A., Fukaya, N., Ichinohe, M. & Ishida, Y. (2000). Eur. J. Inorg. Chem. pp. 1155–1159.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamborski, C. & Soloski, E. J. (1969). J. Organomet. Chem. 17, 185–192.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds