metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2-[3-carboxyl­atometh­yl-4-(phenyl­sulfan­yl)phen­yl]propano­ato-κ4O,O′:O′′,O′′′}bis­­[(2,2′-bi­pyridine-κ2N,N′)cadmium]

aSchool of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: 497426630@qq.com

(Received 11 March 2012; accepted 25 March 2012; online 31 March 2012)

In the title complex, [Cd2(C17H14O4S)2(C10H8N2)2], which was hydro­thermally synthesized, the CdII cation is hexa­coordinated in a distorted octa­hedral geometry by two N atoms from a 2,2′-bipyridine ligand and by four O atoms from two different 2-[3-carboxyl­atometh­yl-4-(phenyl­sulfan­yl)phen­yl]propano­ate ligands, forming a cyclic dimetallic complex.

Related literature

For reviews of metal-organic network solids, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Lu (2003[Lu, J. Y. (2003). Coord. Chem. Rev. 246, 327-347.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629-1658.]); Pan et al. (2004[Pan, L., Sander, M. B., Huang, X., Li, J., Smith, M., Bittner, E., Bockrath, B. & Johnson, J. K. (2004). J. Am. Chem. Soc. 126, 1308-1309.]). For the synthesis and structure of helical Cd complexes with related ligands, see: Wang et al. (2004[Wang, X. L., Qin, C., Wang, E. B., Xu, L., Su, Z. M. & Hu, C. W. (2004). Angew. Chem. Int. Ed. 43, 5036-5040.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C17H14O4S)2(C10H8N2)2]

  • Mr = 1165.85

  • Monoclinic, P 21 /c

  • a = 13.567 (3) Å

  • b = 11.572 (3) Å

  • c = 15.595 (4) Å

  • β = 92.540 (3)°

  • V = 2446.2 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 296 K

  • 0.35 × 0.34 × 0.32 mm

Data collection
  • Bruker SMART BREEZE CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.718, Tmax = 0.737

  • 14971 measured reflections

  • 5706 independent reflections

  • 4170 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.04

  • 5706 reflections

  • 329 parameters

  • 3 restraints

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of coordination polymers is of great interest due to their intriguing topologic architecture and significant application in many fields (Pan et al., 2004; Batten et al., 1998). Among the variety of organic molecules acting as linkers in the design of supramolecular networks, heterocyclic N rings and polycarboxylates are the most widely used ligands due to their rigidity in structure and flexibility in coordination modes (Moulton et al., 2001; Wang et al., 2004; Lu et al., 2003). In this work we report a cyclic CdII coordination complex, (I), constructed from 5-(1-carboxyethyl)-2-(phenylthio)phenylacetic acid and 2,2'-bipyridine (Fig. 1). The O—Cd bond distances range from 2.277 (6) to 2.416 (6) Å and the Cd—N bond distances are 2.311 (3) and 2.320 (3) Å. The dihedral angle between two benzene rings in the same L ligand is 78.73 (6)° and the C—S—C angle is 102.11 (6)°. It is to be noted that both carboxylates of L are bidentate but asymmetrically coordinated with the Cd1—O1 and Cd1—O2 bond distance of 2.276 (3) and 2.415 (3) Å, respectively while the Cd1—O3 and Cd1—O4 distances are 2.345 (3) and 2.309 (3) Å. These differences can likely be attibuted to packing considerations since of the four carboxylate oxygen atoms, only O1 is not involved with C—H···O hydrogen bonding interactions. The self-assembly of the metal with 5-(1-carboxyethyl)-2-(phenylthio)phenylacetic acid and 2,2'-bipyridine links the Cd ions into a cyclic dimer (Fig. 1). Weak π-π stacking interactions between pyridine rings from different bipy ligands (interplanar spacing = 3.708 (4) Å, dihedral angle between planes = 1.07 (4)°) as well as a number of short (C—H···X (X = O, N)) contacts generate a 3-D structure (Fig. 2).

Related literature top

For reviews of metal-organic network solids, see: Batten & Robson (1998); Lu (2003); Moulton & Zaworotko (2001); Pan et al. (2004). For the synthesis and structure of helical Cd complexes with related ligands, see: Wang et al. (2004).

Experimental top

H2L (0.5 mmol) and 2,2'-bipyridine (0.5 mmol) were dissolved in a mixture of 5 ml of ethanol and 15 ml of H2O to which an aqueous solution of sodium hydroxide was added dropwise with stirring to adjust the pH to 6. After addition of 10 ml of an aqueous solution of cadmium chloride (0.5 mmol) the mixture was heated at 403 K for 3 days. After cooling to room temperature, the reaction solution was filtered to remove a small quantity of white precipitate. Slow evaporation of the filtrate at room temperature over three days produced X-ray quality colorless block-shaped single crystals.

Refinement top

H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C)for methylene H atoms, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. Atoms C17 and C18 are disordered over two distinct sites in a 77:23 ratio. The two components of this disorder were refined with restraints to make their geometries similar.

Structure description top

The design and synthesis of coordination polymers is of great interest due to their intriguing topologic architecture and significant application in many fields (Pan et al., 2004; Batten et al., 1998). Among the variety of organic molecules acting as linkers in the design of supramolecular networks, heterocyclic N rings and polycarboxylates are the most widely used ligands due to their rigidity in structure and flexibility in coordination modes (Moulton et al., 2001; Wang et al., 2004; Lu et al., 2003). In this work we report a cyclic CdII coordination complex, (I), constructed from 5-(1-carboxyethyl)-2-(phenylthio)phenylacetic acid and 2,2'-bipyridine (Fig. 1). The O—Cd bond distances range from 2.277 (6) to 2.416 (6) Å and the Cd—N bond distances are 2.311 (3) and 2.320 (3) Å. The dihedral angle between two benzene rings in the same L ligand is 78.73 (6)° and the C—S—C angle is 102.11 (6)°. It is to be noted that both carboxylates of L are bidentate but asymmetrically coordinated with the Cd1—O1 and Cd1—O2 bond distance of 2.276 (3) and 2.415 (3) Å, respectively while the Cd1—O3 and Cd1—O4 distances are 2.345 (3) and 2.309 (3) Å. These differences can likely be attibuted to packing considerations since of the four carboxylate oxygen atoms, only O1 is not involved with C—H···O hydrogen bonding interactions. The self-assembly of the metal with 5-(1-carboxyethyl)-2-(phenylthio)phenylacetic acid and 2,2'-bipyridine links the Cd ions into a cyclic dimer (Fig. 1). Weak π-π stacking interactions between pyridine rings from different bipy ligands (interplanar spacing = 3.708 (4) Å, dihedral angle between planes = 1.07 (4)°) as well as a number of short (C—H···X (X = O, N)) contacts generate a 3-D structure (Fig. 2).

For reviews of metal-organic network solids, see: Batten & Robson (1998); Lu (2003); Moulton & Zaworotko (2001); Pan et al. (2004). For the synthesis and structure of helical Cd complexes with related ligands, see: Wang et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagram for the crystal of (I).
Bis{µ-2-[3-carboxylatomethyl-4-(phenylsulfanyl)phenyl]propanoato- κ4O,O':O'',O'''}bis[(2,2'-bipyridine- κ2N,N')cadmium] top
Crystal data top
[Cd2(C17H14O4S)2(C10H8N2)2]F(000) = 1176
Mr = 1165.85Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6794 reflections
a = 13.567 (3) Åθ = 2.3–27.8°
b = 11.572 (3) ŵ = 1.02 mm1
c = 15.595 (4) ÅT = 296 K
β = 92.540 (3)°Block, colorless
V = 2446.2 (10) Å30.35 × 0.34 × 0.32 mm
Z = 2
Data collection top
Bruker SMART BREEZE CCD area-detector
diffractometer
5706 independent reflections
Radiation source: fine-focus sealed tube4170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 28.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1718
Tmin = 0.718, Tmax = 0.737k = 915
14971 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0222P)2 + 1.2239P]
where P = (Fo2 + 2Fc2)/3
5706 reflections(Δ/σ)max = 0.002
329 parametersΔρmax = 0.59 e Å3
3 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cd2(C17H14O4S)2(C10H8N2)2]V = 2446.2 (10) Å3
Mr = 1165.85Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.567 (3) ŵ = 1.02 mm1
b = 11.572 (3) ÅT = 296 K
c = 15.595 (4) Å0.35 × 0.34 × 0.32 mm
β = 92.540 (3)°
Data collection top
Bruker SMART BREEZE CCD area-detector
diffractometer
5706 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4170 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.737Rint = 0.042
14971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
5706 reflectionsΔρmin = 0.67 e Å3
329 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.076611 (16)0.93279 (2)0.764046 (13)0.04782 (9)
S10.27579 (6)0.85650 (8)0.73380 (5)0.0515 (2)
N10.00382 (18)0.8216 (2)0.87232 (14)0.0398 (6)
N20.14700 (19)0.9786 (3)0.89259 (15)0.0453 (6)
O10.17570 (19)0.8271 (2)0.67240 (15)0.0656 (7)
O20.22891 (18)1.0016 (3)0.69612 (15)0.0637 (7)
O30.06431 (16)0.9391 (2)0.68258 (14)0.0507 (6)
O40.03442 (16)1.0841 (2)0.76726 (15)0.0525 (6)
C10.0686 (2)0.7475 (3)0.8589 (2)0.0514 (8)
H10.09230.74150.80400.062*
C20.1096 (3)0.6798 (3)0.9225 (3)0.0648 (10)
H20.16040.62880.91130.078*
C30.0746 (3)0.6885 (4)1.0030 (3)0.0728 (12)
H30.10070.64221.04720.087*
C40.0007 (3)0.7660 (3)1.0185 (2)0.0603 (10)
H40.02350.77311.07310.072*
C50.0371 (2)0.8332 (3)0.95146 (17)0.0397 (7)
C60.1152 (2)0.9199 (3)0.96275 (17)0.0403 (7)
C70.1544 (3)0.9423 (3)1.0416 (2)0.0593 (10)
H70.13250.90131.09000.071*
C80.2256 (3)1.0254 (4)1.0475 (2)0.0762 (12)
H80.25271.04121.10000.091*
C90.2563 (3)1.0845 (4)0.9761 (3)0.0728 (11)
H90.30441.14140.97900.087*
C100.2157 (3)1.0593 (3)0.9002 (3)0.0611 (9)
H100.23691.10030.85150.073*
C110.2382 (2)0.9068 (4)0.66121 (19)0.0512 (9)
C120.0872 (2)1.0346 (3)0.71384 (18)0.0399 (7)
C130.1804 (2)1.0957 (3)0.6894 (2)0.0527 (8)
H13A0.16221.17210.66840.063*
H13B0.22181.10620.74110.063*
C140.2415 (2)1.0395 (3)0.62373 (19)0.0390 (7)
C150.2532 (2)1.0938 (3)0.5439 (2)0.0483 (8)
H150.21751.16080.53130.058*
C160.3151 (2)1.0519 (3)0.48389 (18)0.0496 (9)
C170.3342 (3)1.1070 (4)0.3955 (2)0.0409 (10)0.770 (6)
H170.38751.06450.36900.049*0.770 (6)
C180.3637 (5)1.2319 (5)0.4048 (4)0.0575 (15)0.770 (6)
H18A0.37491.26350.34920.086*0.770 (6)
H18B0.31181.27420.43060.086*0.770 (6)
H18C0.42311.23770.44040.086*0.770 (6)
C17A0.2979 (9)1.1532 (9)0.4175 (6)0.0409 (10)0.230 (6)
H17A0.26551.22090.44130.049*0.230 (6)
C18A0.3971 (12)1.176 (3)0.3811 (13)0.079 (8)0.230 (6)
H18D0.39151.24020.34250.119*0.230 (6)
H18E0.44371.19370.42730.119*0.230 (6)
H18F0.41931.10910.35080.119*0.230 (6)
C190.3657 (2)0.9531 (3)0.50239 (19)0.0538 (9)
H190.40950.92460.46330.065*
C200.3535 (2)0.8944 (3)0.57788 (19)0.0470 (7)
H200.38690.82520.58820.056*
C210.2919 (2)0.9377 (3)0.63872 (17)0.0351 (6)
C220.3985 (2)0.8454 (3)0.77750 (18)0.0465 (8)
C230.4312 (3)0.7405 (3)0.8089 (2)0.0577 (9)
H230.39050.67580.80440.069*
C240.5250 (3)0.7317 (5)0.8472 (3)0.0826 (14)
H240.54690.66080.86870.099*
C250.5852 (3)0.8251 (5)0.8536 (3)0.0920 (16)
H250.64800.81820.87970.110*
C260.5534 (4)0.9301 (4)0.8216 (3)0.0930 (17)
H260.59510.99390.82490.112*
C270.4590 (3)0.9406 (4)0.7844 (3)0.0704 (12)
H270.43671.01200.76420.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04260 (13)0.07524 (19)0.02515 (11)0.00810 (12)0.00395 (8)0.00632 (10)
S10.0472 (4)0.0652 (6)0.0417 (4)0.0015 (4)0.0019 (3)0.0187 (4)
N10.0453 (14)0.0434 (15)0.0302 (11)0.0060 (12)0.0031 (10)0.0014 (11)
N20.0453 (14)0.0576 (17)0.0327 (12)0.0001 (13)0.0010 (10)0.0031 (12)
O10.0723 (17)0.0725 (19)0.0504 (13)0.0072 (15)0.0146 (12)0.0019 (13)
O20.0636 (16)0.075 (2)0.0510 (14)0.0048 (14)0.0140 (11)0.0087 (14)
O30.0473 (12)0.0600 (16)0.0452 (12)0.0121 (11)0.0076 (9)0.0100 (11)
O40.0461 (12)0.0600 (16)0.0519 (13)0.0043 (11)0.0093 (10)0.0064 (11)
C10.056 (2)0.050 (2)0.0483 (18)0.0058 (16)0.0004 (15)0.0073 (15)
C20.062 (2)0.057 (2)0.075 (2)0.0122 (19)0.0037 (19)0.002 (2)
C30.078 (3)0.076 (3)0.064 (2)0.009 (2)0.010 (2)0.024 (2)
C40.067 (2)0.079 (3)0.0349 (16)0.001 (2)0.0035 (15)0.0194 (17)
C50.0426 (16)0.0471 (19)0.0288 (13)0.0122 (14)0.0056 (11)0.0016 (12)
C60.0414 (15)0.052 (2)0.0269 (13)0.0128 (14)0.0025 (11)0.0012 (12)
C70.073 (2)0.073 (3)0.0320 (15)0.001 (2)0.0021 (15)0.0047 (16)
C80.090 (3)0.091 (3)0.048 (2)0.007 (3)0.014 (2)0.025 (2)
C90.077 (3)0.063 (3)0.078 (3)0.012 (2)0.008 (2)0.015 (2)
C100.059 (2)0.062 (3)0.061 (2)0.0068 (19)0.0008 (17)0.0065 (18)
C110.0492 (19)0.074 (3)0.0293 (14)0.0195 (18)0.0064 (13)0.0211 (16)
C120.0363 (15)0.0480 (19)0.0350 (14)0.0045 (13)0.0029 (12)0.0031 (13)
C130.0452 (18)0.046 (2)0.067 (2)0.0012 (15)0.0081 (15)0.0095 (16)
C140.0284 (13)0.0426 (18)0.0454 (16)0.0034 (12)0.0034 (11)0.0021 (13)
C150.0338 (15)0.049 (2)0.061 (2)0.0029 (14)0.0176 (14)0.0174 (16)
C160.0398 (16)0.076 (3)0.0318 (14)0.0213 (17)0.0106 (12)0.0094 (15)
C170.031 (2)0.062 (3)0.0298 (18)0.0041 (19)0.0038 (14)0.0031 (18)
C180.063 (4)0.063 (4)0.046 (3)0.020 (3)0.003 (2)0.005 (3)
C17A0.031 (2)0.062 (3)0.0298 (18)0.0041 (19)0.0038 (14)0.0031 (18)
C18A0.062 (13)0.13 (2)0.050 (12)0.021 (14)0.007 (9)0.024 (13)
C190.0526 (19)0.078 (3)0.0308 (15)0.0067 (18)0.0055 (13)0.0073 (16)
C200.0495 (18)0.050 (2)0.0414 (16)0.0077 (15)0.0030 (13)0.0021 (15)
C210.0359 (14)0.0401 (17)0.0290 (13)0.0008 (13)0.0033 (10)0.0023 (12)
C220.0513 (18)0.057 (2)0.0312 (14)0.0008 (16)0.0028 (12)0.0070 (14)
C230.062 (2)0.056 (2)0.054 (2)0.0041 (18)0.0080 (16)0.0128 (17)
C240.071 (3)0.102 (4)0.074 (3)0.016 (3)0.010 (2)0.037 (3)
C250.065 (3)0.130 (5)0.078 (3)0.007 (3)0.027 (2)0.035 (3)
C260.085 (3)0.105 (4)0.086 (3)0.039 (3)0.037 (3)0.033 (3)
C270.076 (3)0.066 (3)0.067 (2)0.010 (2)0.022 (2)0.023 (2)
Geometric parameters (Å, º) top
Cd1—O12.275 (2)C13—H13A0.9700
Cd1—O42.309 (2)C13—H13B0.9700
Cd1—N12.310 (2)C14—C211.377 (4)
Cd1—N22.320 (3)C14—C151.411 (4)
Cd1—O32.343 (2)C15—C161.373 (5)
Cd1—O22.415 (2)C15—H150.9300
S1—C221.776 (3)C16—C191.359 (5)
S1—C211.777 (3)C16—C171.551 (5)
N1—C11.328 (4)C16—C17A1.574 (9)
N1—C51.340 (4)C17—C181.505 (6)
N2—C101.329 (4)C17—C11i1.550 (4)
N2—C61.342 (4)C17—H170.9800
O1—C111.260 (4)C18—H18A0.9600
O2—C111.228 (4)C18—H18B0.9600
O3—C121.242 (4)C18—H18C0.9601
O4—C121.260 (4)C17A—C18A1.506 (10)
C1—C21.364 (5)C17A—C11i1.599 (9)
C1—H10.9300C17A—H17A0.9800
C2—C31.365 (5)C18A—H18D0.9600
C2—H20.9300C18A—H18E0.9600
C3—C41.375 (6)C18A—H18F0.9600
C3—H30.9300C19—C201.375 (5)
C4—C51.384 (4)C19—H190.9300
C4—H40.9300C20—C211.386 (4)
C5—C61.475 (4)C20—H200.9300
C6—C71.385 (4)C22—C231.375 (5)
C7—C81.369 (6)C22—C271.376 (5)
C7—H70.9300C23—C241.385 (5)
C8—C91.356 (6)C23—H230.9300
C8—H80.9300C24—C251.357 (7)
C9—C101.359 (6)C24—H240.9300
C9—H90.9300C25—C261.377 (6)
C10—H100.9300C25—H250.9300
C11—C17i1.550 (4)C26—C271.387 (6)
C11—C17Ai1.599 (9)C26—H260.9300
C12—C131.513 (4)C27—H270.9300
C13—C141.494 (4)
O1—Cd1—O4142.02 (9)C12—C13—H13A107.9
O1—Cd1—N1112.41 (9)C14—C13—H13B107.9
O4—Cd1—N198.58 (8)C12—C13—H13B107.9
O1—Cd1—N2114.29 (10)H13A—C13—H13B107.2
O4—Cd1—N295.81 (9)C21—C14—C15117.2 (3)
N1—Cd1—N271.01 (9)C21—C14—C13122.9 (3)
O1—Cd1—O398.61 (9)C15—C14—C13119.9 (3)
O4—Cd1—O356.01 (8)C16—C15—C14122.7 (3)
N1—Cd1—O394.65 (9)C16—C15—H15118.7
N2—Cd1—O3146.99 (8)C14—C15—H15118.7
O1—Cd1—O255.34 (10)C19—C16—C15118.2 (3)
O4—Cd1—O2107.72 (9)C19—C16—C17115.6 (3)
N1—Cd1—O2146.53 (9)C15—C16—C17126.3 (3)
N2—Cd1—O285.80 (9)C19—C16—C17A145.6 (6)
O3—Cd1—O2117.05 (8)C15—C16—C17A96.2 (6)
C22—S1—C21102.15 (14)C18—C17—C11i111.5 (4)
C1—N1—C5119.5 (3)C18—C17—C16111.3 (4)
C1—N1—Cd1122.7 (2)C11i—C17—C16107.2 (3)
C5—N1—Cd1117.8 (2)C18—C17—H17109.0
C10—N2—C6118.9 (3)C11i—C17—H17108.9
C10—N2—Cd1123.7 (2)C16—C17—H17108.9
C6—N2—Cd1117.3 (2)C17—C18—H18A109.3
C11—O1—Cd193.9 (2)C17—C18—H18B109.5
C11—O2—Cd188.2 (2)H18A—C18—H18B109.5
C12—O3—Cd190.61 (18)C17—C18—H18C109.6
C12—O4—Cd191.7 (2)H18A—C18—H18C109.5
N1—C1—C2122.4 (3)H18B—C18—H18C109.5
N1—C1—H1118.8C18A—C17A—C16105.6 (13)
C2—C1—H1118.8C18A—C17A—C11i102.5 (12)
C1—C2—C3118.7 (4)C16—C17A—C11i103.7 (6)
C1—C2—H2120.6C18A—C17A—H17A115.3
C3—C2—H2120.6C16—C17A—H17A113.8
C2—C3—C4119.6 (3)C11i—C17A—H17A114.6
C2—C3—H3120.2C17A—C18A—H18E108.9
C4—C3—H3120.2H18D—C18A—H18E109.5
C3—C4—C5119.0 (3)C17A—C18A—H18F110.6
C3—C4—H4120.5H18D—C18A—H18F109.5
C5—C4—H4120.5H18E—C18A—H18F109.5
N1—C5—C4120.7 (3)C16—C19—C20121.2 (3)
N1—C5—C6116.9 (2)C16—C19—H19119.4
C4—C5—C6122.5 (3)C20—C19—H19119.4
N2—C6—C7120.5 (3)C19—C20—C21120.5 (3)
N2—C6—C5116.9 (3)C19—C20—H20119.8
C7—C6—C5122.6 (3)C21—C20—H20119.8
C8—C7—C6119.4 (3)C14—C21—C20120.2 (3)
C8—C7—H7120.3C14—C21—S1121.0 (2)
C6—C7—H7120.3C20—C21—S1118.7 (2)
C9—C8—C7119.4 (4)C23—C22—C27119.8 (3)
C9—C8—H8120.3C23—C22—S1118.9 (3)
C7—C8—H8120.3C27—C22—S1121.2 (3)
C8—C9—C10119.0 (4)C22—C23—C24119.6 (4)
C8—C9—H9120.5C22—C23—H23120.2
C10—C9—H9120.5C24—C23—H23120.2
N2—C10—C9122.8 (4)C25—C24—C23120.9 (4)
N2—C10—H10118.6C25—C24—H24119.6
C9—C10—H10118.6C23—C24—H24119.6
O2—C11—O1122.5 (3)C24—C25—C26119.9 (4)
O2—C11—C17i114.4 (4)C24—C25—H25120.1
O1—C11—C17i123.1 (4)C26—C25—H25120.1
O2—C11—C17Ai140.1 (5)C25—C26—C27119.9 (4)
O1—C11—C17Ai95.9 (5)C25—C26—H26120.1
O3—C12—O4121.6 (3)C27—C26—H26120.1
O3—C12—C13121.0 (3)C22—C27—C26120.0 (4)
O4—C12—C13117.4 (3)C22—C27—H27120.0
C14—C13—C12117.7 (3)C26—C27—H27120.0
C14—C13—H13A107.9
O1—Cd1—N1—C172.7 (3)C5—C6—C7—C8178.9 (3)
O4—Cd1—N1—C184.9 (2)C6—C7—C8—C90.2 (6)
N2—Cd1—N1—C1178.1 (3)C7—C8—C9—C100.2 (7)
O3—Cd1—N1—C128.6 (2)C6—N2—C10—C90.8 (6)
O2—Cd1—N1—C1133.3 (2)Cd1—N2—C10—C9179.7 (3)
O1—Cd1—N1—C5107.1 (2)C8—C9—C10—N20.2 (7)
O4—Cd1—N1—C595.3 (2)Cd1—O2—C11—O10.5 (3)
N2—Cd1—N1—C52.0 (2)Cd1—O2—C11—C17i178.0 (2)
O3—Cd1—N1—C5151.6 (2)Cd1—O2—C11—C17Ai162.3 (8)
O2—Cd1—N1—C546.6 (3)Cd1—O1—C11—O20.5 (3)
O1—Cd1—N2—C1075.4 (3)Cd1—O1—C11—C17i177.9 (3)
O4—Cd1—N2—C1080.8 (3)Cd1—O1—C11—C17Ai168.9 (4)
N1—Cd1—N2—C10177.9 (3)Cd1—O3—C12—O40.9 (3)
O3—Cd1—N2—C10109.8 (3)Cd1—O3—C12—C13178.7 (3)
O2—Cd1—N2—C1026.6 (3)Cd1—O4—C12—O30.9 (3)
O1—Cd1—N2—C6105.1 (2)Cd1—O4—C12—C13178.7 (2)
O4—Cd1—N2—C698.7 (2)O3—C12—C13—C142.5 (5)
N1—Cd1—N2—C61.6 (2)O4—C12—C13—C14177.9 (3)
O3—Cd1—N2—C669.7 (3)C12—C13—C14—C2167.9 (4)
O2—Cd1—N2—C6153.9 (2)C12—C13—C14—C15115.3 (3)
O4—Cd1—O1—C1173.7 (2)C21—C14—C15—C162.9 (4)
N1—Cd1—O1—C11144.02 (19)C13—C14—C15—C16174.2 (3)
N2—Cd1—O1—C1165.6 (2)C14—C15—C16—C190.9 (5)
O3—Cd1—O1—C11117.3 (2)C14—C15—C16—C17178.6 (3)
O2—Cd1—O1—C110.26 (18)C14—C15—C16—C17A176.7 (4)
O1—Cd1—O2—C110.27 (18)C19—C16—C17—C18126.6 (4)
O4—Cd1—O2—C11141.99 (19)C15—C16—C17—C1853.0 (5)
N1—Cd1—O2—C1177.9 (2)C17A—C16—C17—C1849.1 (8)
N2—Cd1—O2—C11123.2 (2)C19—C16—C17—C11i111.2 (4)
O3—Cd1—O2—C1181.7 (2)C15—C16—C17—C11i69.2 (5)
O1—Cd1—O3—C12149.75 (18)C17A—C16—C17—C11i73.1 (7)
O4—Cd1—O3—C120.51 (16)C19—C16—C17A—C18A34.7 (15)
N1—Cd1—O3—C1296.72 (18)C15—C16—C17A—C18A141.6 (12)
N2—Cd1—O3—C1235.0 (3)C17—C16—C17A—C18A41.6 (13)
O2—Cd1—O3—C1294.40 (18)C19—C16—C17A—C11i72.7 (10)
O1—Cd1—O4—C1255.7 (2)C15—C16—C17A—C11i111.0 (6)
N1—Cd1—O4—C1289.33 (18)C17—C16—C17A—C11i65.8 (6)
N2—Cd1—O4—C12160.94 (18)C15—C16—C19—C201.9 (5)
O3—Cd1—O4—C120.50 (16)C17—C16—C19—C20178.5 (3)
O2—Cd1—O4—C12111.62 (18)C17A—C16—C19—C20177.7 (7)
C5—N1—C1—C21.6 (5)C16—C19—C20—C212.7 (5)
Cd1—N1—C1—C2178.2 (3)C15—C14—C21—C202.0 (4)
N1—C1—C2—C30.1 (6)C13—C14—C21—C20174.9 (3)
C1—C2—C3—C41.1 (6)C15—C14—C21—S1175.4 (2)
C2—C3—C4—C50.4 (6)C13—C14—C21—S17.6 (4)
C1—N1—C5—C42.4 (4)C19—C20—C21—C140.6 (5)
Cd1—N1—C5—C4177.5 (2)C19—C20—C21—S1178.1 (2)
C1—N1—C5—C6177.9 (3)C22—S1—C21—C14124.0 (2)
Cd1—N1—C5—C62.3 (3)C22—S1—C21—C2058.5 (3)
C3—C4—C5—N11.4 (5)C21—S1—C22—C23135.7 (3)
C3—C4—C5—C6178.9 (3)C21—S1—C22—C2747.8 (3)
C10—N2—C6—C70.8 (5)C27—C22—C23—C240.1 (6)
Cd1—N2—C6—C7179.6 (2)S1—C22—C23—C24176.7 (3)
C10—N2—C6—C5178.5 (3)C22—C23—C24—C250.4 (7)
Cd1—N2—C6—C51.0 (3)C23—C24—C25—C260.2 (8)
N1—C5—C6—N20.8 (4)C24—C25—C26—C271.3 (8)
C4—C5—C6—N2179.0 (3)C23—C22—C27—C261.2 (6)
N1—C5—C6—C7178.5 (3)S1—C22—C27—C26177.7 (4)
C4—C5—C6—C71.7 (5)C25—C26—C27—C221.8 (8)
N2—C6—C7—C80.4 (5)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cd2(C17H14O4S)2(C10H8N2)2]
Mr1165.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.567 (3), 11.572 (3), 15.595 (4)
β (°) 92.540 (3)
V3)2446.2 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.35 × 0.34 × 0.32
Data collection
DiffractometerBruker SMART BREEZE CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.718, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
14971, 5706, 4170
Rint0.042
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.04
No. of reflections5706
No. of parameters329
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.67

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the Scientific Research Program of the Education Department of Guangxi Zhuang Autonomous Region (project No. 201010LX081) and the Scientific Research Program of Guangxi University for Nationalities (project No. 2010QD019).

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, J. Y. (2003). Coord. Chem. Rev. 246, 327–347.  Web of Science CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPan, L., Sander, M. B., Huang, X., Li, J., Smith, M., Bittner, E., Bockrath, B. & Johnson, J. K. (2004). J. Am. Chem. Soc. 126, 1308–1309.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. L., Qin, C., Wang, E. B., Xu, L., Su, Z. M. & Hu, C. W. (2004). Angew. Chem. Int. Ed. 43, 5036–5040.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds